Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Intervalo de año de publicación
1.
Protoplasma ; 260(4): 1097-1107, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36602620

RESUMEN

L-myo-inositol phosphate synthase (MIPS; EC 5.5.1.4) encodes the enzyme synthesizing Myo-inositol for plant growth and development. Myo-inositol and its phosphate derivatives are involved in various physiological functions ranging from cell wall synthesis, chromatin remodeling, signal transduction, and providing stress responses. In the present study, we report that MIPS regulates chlorophyll content and photosynthesis efficiency via the ethylene signaling pathway. We have used Triticum aestivum MIPS-A (TAMIPS-A) for the present study and characterized it by mutant complementation and overexpression studies in Arabidopsis. TaMIPS-A overexpressing Arabidopsis transgenics were analyzed physiologically under thermal stress conditions. Analysis of overexpression TaMIPS-A transgenics under control and thermal stress conditions revealed them to have enhanced photosynthetic potential under heat stress. When TaMIPS-A overexpression (OE) Arabidopsis transgenics are supplemented with either ACC, the ethylene precursor, or AgNO3, the ethylene signaling inhibitor indicated that MIPS regulates the photosynthetic efficiency and chlorophyll content via the ethylene signaling pathway under control and thermal stress. Expression analysis of essential genes involved in the ethylene biosynthetic and signaling pathway corroborated.


Asunto(s)
Arabidopsis , Fosfatos de Inositol , Arabidopsis/metabolismo , Clorofila , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Fosfatos , Fotosíntesis , Etilenos , Respuesta al Choque Térmico
2.
Sci Rep ; 10(1): 10766, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612188

RESUMEN

L-myo-inositol phosphate synthase (MIPS; EC 5.5.1.4) is involved in abiotic stress tolerance, however its disruption and overexpression has also been associated with enhanced tolerance to pathogens. The molecular mechanism underlying the role of MIPS in growth, immunity and abiotic stress tolerance remains uncharacterized. We explore the molecular mechanism of MIPS action during growth and heat stress conditions. We raised and characterized the TaMIPS over-expressing rice transgenics which showed a reduced reproductive potential. Transcriptome analysis of overexpression transgenics revealed the activation of ET/JA dependent immune response. Pull-down analysis revealed the interaction of TaMIPS-B with ethylene related proteins. Our results suggest an essential requirement of MIPS for mediating the ethylene response and regulate the growth. A model is proposed outlining how fine tuning of MIPS regulate growth and stress tolerance of the plant.


Asunto(s)
Etilenos/química , Inositol/química , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Fosfatos/química , Proteínas de Plantas/metabolismo , Triticum/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Clonación Molecular , Minería de Datos , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Oryza/genética , Fenotipo , Fotosíntesis , Plantas Modificadas Genéticamente , Semillas/metabolismo , Transducción de Señal , Estrés Fisiológico , Transcriptoma , Transgenes , Triticum/genética
3.
PLoS One ; 15(3): e0230572, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210477

RESUMEN

Chromatin structure plays a decisive role in gene regulation through the actions of transcriptional activators, coactivators, and epigenetic machinery. These trans-acting factors contribute to gene expression through their interactions with chromatin structure. In yeast INO1 activation, transcriptional activators and coactivators have been defined through intense study but the mechanistic links within these trans-acting factors and their functional implications are not yet fully understood. In this study, we examined the crosstalk within transcriptional coactivators with regard to the implications of Snf2p acetylation during INO1 activation. Through various biochemical analysis, we demonstrated that both Snf2p and Ino80p chromatin remodelers accumulate at the INO1 promoter in the absence of Snf2p acetylation during induction. Furthermore, nucleosome density and histone acetylation patterns remained unaffected by Snf2p acetylation status. We also showed that cells experience increased sensitivity to copper toxicity when remodelers accumulate at the INO1 promoter due to the decreased CUP1 expression. Therefore, our data provide evidence for crosstalk within transcriptional co-activators during INO1 activation. In light of these findings, we propose a model in which acetylation-driven chromatin remodeler recycling allows for efficient regulation of genes that are dependent upon limited co-activators.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Metalotioneína/metabolismo , Mio-Inositol-1-Fosfato Sintasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Adenosina Trifosfatasas/genética , Supervivencia Celular/efectos de los fármacos , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Cobre/metabolismo , Cobre/toxicidad , Histonas/metabolismo , Metalotioneína/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Activación Transcripcional
4.
Dev Cell ; 52(3): 309-320.e5, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31902656

RESUMEN

Movement of chromosome sites within interphase cells is critical for numerous pathways including RNA transcription and genome organization. Yet, a mechanism for reorganizing chromatin in response to these events had not been reported. Here, we delineate a molecular chaperone-dependent pathway for relocating activated gene loci in yeast. Our presented data support a model in which a two-authentication system mobilizes a gene promoter through a dynamic network of polymeric nuclear actin. Transcription factor-dependent nucleation of a myosin motor propels the gene locus through the actin matrix, and fidelity of the actin association was ensured by ARP-containing chromatin remodelers. Motor activity of nuclear myosin was dependent on the Hsp90 chaperone. Hsp90 further contributed by biasing the remodeler-actin interaction toward nucleosomes with the non-canonical histone H2A.Z, thereby focusing the pathway on select sites such as transcriptionally active genes. Together, the system provides a rapid and effective means to broadly yet selectively mobilize chromatin sites.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromosomas Fúngicos , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional , Actinas/genética , Actinas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Histonas/genética , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
5.
Biochemistry ; 58(51): 5112-5116, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31825604

RESUMEN

The myo-inositol-1-phosphate synthase (MIPS) ortholog Ari2, which is encoded in the aristeromycin biosynthetic gene cluster, catalyzes the formation of five-membered cyclitol phosphate using d-fructose 6-phosphate (F6P) as a substrate. To understand the stereochemistry during the Ari2 reaction in vivo, we carried out feeding experiments with (6S)-d-[6-2H1]- and (6R)-d-[6-2H1]glucose in the aristeromycin-producing strain Streptomyces citricolor. We observed retention of the 2H atom of (6S)-d-[6-2H1]glucose and no incorporation of the 2H atom from (6R)-d-[6-2H1]glucose in aristeromycin. This indicates that Ari2 abstracts the pro-R proton at C6 of F6P after oxidation of C5-OH by nicotinamide adenine dinucleotide (NAD+) to generate the enolate intermediate, which then attacks the C2 ketone to form the C-C bond via aldol-type condensation. The reaction of Ari2 with (6S)-d-[6-2H1]- and (6R)-d-[6-2H1]F6P in vitro exhibited identical stereochemistry compared with that observed during the feeding experiments. Furthermore, analysis of the crystal structure of Ari2, including NAD+ as a ligand, revealed the active site of Ari2 to be similar to that of MIPS of Mycobacterium tuberculosis, supporting the similarity of the reaction mechanisms of Ari2 and MIPS.


Asunto(s)
Adenosina/análogos & derivados , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Adenosina/biosíntesis , Adenosina/química , Modelos Moleculares , Mio-Inositol-1-Fosfato Sintasa/química , Conformación Proteica , Estereoisomerismo , Streptomyces/enzimología
6.
Microbiologyopen ; 8(5): e00721, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30270521

RESUMEN

Reactive oxygen species (ROS) generated in aerobic metabolism and oxidative stress lead to macromolecules damage, such as to proteins, lipids, and DNA, which can be eliminated by the redox buffer mycothiol (AcCys-GlcN-Ins, MSH). Myo-inositol-phosphate synthase (Ino-1) catalyzes the first committed step in the synthesis of MSH, thus playing a critical role in the growth of the organism. Although Ino-1s have been systematically studied in eukaryotes, their physiological and biochemical functions remain largely unknown in bacteria. In this study, we report that Ino-1 plays an important role in oxidative stress resistance in the gram-positive Actinobacteria Corynebacterium glutamicum. Deletion of the ino-1 gene resulted in a decrease in cell viability, an increase in ROS production, and the aggravation of protein carbonylation levels under various stress conditions. The physiological roles of Ino-1 in the resistance to oxidative stresses were corroborated by the absence of MSH in the Δino-1 mutant. In addition, we found that the homologous expression of Ino-1 in C. glutamicum yielded a functionally active protein, while when expressed in Escherichia coliBL21(DE3), it lacked measurable activity. An examination of the molecular mass (Mr) suggested that Ino-1 expressed in E. coliBL21(DE3) was not folded in a catalytically competent conformation. Together, the results unequivocally showed that Ino-1 was important for the mediation of oxidative resistance by C. glutamicum.


Asunto(s)
Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/fisiología , Cisteína/metabolismo , Glicopéptidos/metabolismo , Inositol/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Aerobiosis , Eliminación de Gen , Viabilidad Microbiana , Mio-Inositol-1-Fosfato Sintasa/genética , Carbonilación Proteica
7.
Enzyme Microb Technol ; 112: 1-5, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29499774

RESUMEN

Myo-inositol (inositol) is important in the cosmetics, pharmaceutical and functional food industries. Here, we report a novel pathway to produce inositol from glucose by a trienzymatic cascade system involving polyphosphate glucokinase (PPGK), inositol 1-phosphate synthase (IPS) and inositol monophosphatase (IMP). The system contained three highly active enzymes, AspPPGK from Arthrobacter sp. OY3WO11, TbIPS from Trypanosoma brucei TREU927, and EcIMP from Escherichia coli. A trienzymatic cascade reaction was implemented, and the conversion ratio from glucose to inositol reached 90%, which is promising for the enzymatic synthesis of inositol without ATP supplementation.


Asunto(s)
Glucosa/metabolismo , Inositol/biosíntesis , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas/metabolismo , Arthrobacter/enzimología , Vías Biosintéticas , Biotecnología , Escherichia coli/enzimología , Cinética , Proteínas Recombinantes/metabolismo , Trypanosoma brucei brucei/enzimología
8.
Chembiochem ; 17(22): 2143-2148, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27577857

RESUMEN

Aristeromycin is a unique carbocyclic nucleoside antibiotic produced by Streptomyces citricolor. In order to elucidate its intriguing carbocyclic formation, we used a genome-mining approach to identify the responsible enzyme. In silico screening with known cyclitol synthases involved in primary metabolism, such as myo-inositol-1-phosphate synthase (MIPS) and dehydroqunate synthase (DHQS), identified a unique MIPS orthologue (Ari2) encoded in the genome of S. citricolor. Heterologous expression of the gene cluster containing ari2 with a cosmid vector in Streptomyces albus resulted in the production of aristeromycin, thus indicating that the cloned DNA region (37.5 kb) with 33 open reading frames contains its biosynthetic gene cluster. We verified that Ari2 catalyzes the formation of a novel five-membered cyclitol phosphate from d-fructose 6-phosphate (F6P) with NAD+ as a cofactor. This provides insight into cyclitol phosphate synthase as a member of the MIPS family of enzymes. A biosynthetic pathway to aristeromycin is proposed based on bioinformatics analysis of the gene cluster.


Asunto(s)
Adenosina/análogos & derivados , Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Ciclitoles/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Adenosina/biosíntesis , Adenosina/química , Antibacterianos/química , Proteínas Bacterianas/genética , Cósmidos/genética , Cósmidos/metabolismo , Ciclitoles/química , Espectroscopía de Resonancia Magnética , Familia de Multigenes , Mio-Inositol-1-Fosfato Sintasa/genética , Nucleósidos/química , Liasas de Fósforo-Oxígeno/genética , Espectrometría de Masa por Ionización de Electrospray , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/genética
9.
Int J Oncol ; 48(6): 2415-24, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27035231

RESUMEN

In response to various cellular stresses, p53 exerts its tumor suppressive effects such as apoptosis, cell cycle arrest, and senescence through the induction of its target genes. Recently, p53 was shown to control cellular homeostasis by regulating energy metabolism, glycolysis, antioxidant effect, and autophagy. However, its function in inositol synthesis was not reported. Through a microarray screening, we found that five genes related with myo-inositol metabolism were induced by p53. DNA damage enhanced intracellular myo-inositol content in HCT116 p53+/+ cells, but not in HCT116 p53-/- cells. We also indicated that inositol 3-phosphate synthase (ISYNA1) which encodes an enzyme essential for myo-inositol biosynthesis as a direct target of p53. Activated p53 regulated ISYNA1 expression through p53 response element in the seventh exon. Ectopic ISYNA1 expression increased myo-inositol levels in the cells and suppressed tumor cell growth. Knockdown of ISYNA1 caused resistance to adriamycin treatment, demonstrating the role of ISYNA1 in p53-mediated growth suppression. Furthermore, ISYNA1 expression was significantly associated with p53 mutation in bladder, breast cancer, head and neck squamous cell carcinoma, lung squamous cell carcinoma, and pancreatic adenocarcinoma. Our findings revealed a novel role of p53 in myo-inositol biosynthesis which could be a potential therapeutic target.


Asunto(s)
Inositol/biosíntesis , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Células HCT116 , Células HEK293 , Células Hep G2 , Humanos , Ratones , Ratones Noqueados , Mio-Inositol-1-Fosfato Sintasa/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína p53 Supresora de Tumor/genética
10.
Plant Physiol ; 170(3): 1745-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26747283

RESUMEN

Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3'-phosphoadenosine 5'-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5'-3' exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response.


Asunto(s)
Adenosina Difosfato/metabolismo , Apoptosis/fisiología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Transducción de Señal/fisiología , Apoptosis/genética , Arabidopsis/genética , Arabidopsis/microbiología , Clorofila/metabolismo , Cloroplastos/genética , Resistencia a la Enfermedad/genética , Mutación , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Oxidación-Reducción , Fotosíntesis/genética , Fotosíntesis/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Pseudomonas syringae/fisiología , Transducción de Señal/genética
11.
Nucleic Acids Res ; 41(5): 2907-17, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23341037

RESUMEN

Because regulation of its activity is instrumental either to support cell proliferation and growth or to promote cell death, the universal myo-inositol phosphate synthase (MIPS), responsible for myo-inositol biosynthesis, is a critical enzyme of primary metabolism. Surprisingly, we found this enzyme to be imported in the nucleus and to interact with the histone methyltransferases ATXR5 and ATXR6, raising the question of whether MIPS1 has a function in transcriptional regulation. Here, we demonstrate that MIPS1 binds directly to its promoter to stimulate its own expression by locally inhibiting the spreading of ATXR5/6-dependent heterochromatin marks coming from a transposable element. Furthermore, on activation of pathogen response, MIPS1 expression is reduced epigenetically, providing evidence for a complex regulatory mechanism acting at the transcriptional level. Thus, in plants, MIPS1 appears to have evolved as a protein that connects cellular metabolism, pathogen response and chromatin remodeling.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Mio-Inositol-1-Fosfato Sintasa/fisiología , Apoptosis , Arabidopsis/citología , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Núcleo Celular/enzimología , Ensamble y Desensamble de Cromatina , Citoplasma/enzimología , Metilación de ADN , Epigénesis Genética , Flagelina/inmunología , Expresión Génica , Histonas/metabolismo , Meristema/citología , Meristema/enzimología , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/fisiología , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Inmunidad de la Planta/genética , Regiones Promotoras Genéticas , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Nicotiana
12.
Plant Cell Environ ; 36(2): 288-99, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22774933

RESUMEN

myo-Inositol phosphate synthase (MIPS) is the key enzyme of myo-inositol synthesis, which is a central molecule required for cell metabolism and plant growth as a precursor to a large variety of compounds. A full-length fragment of MfMIPS1 cDNA was cloned from Medicago falcata that is more cold-tolerant than Medicago sativa. While MfMIPS1 transcript was induced in response to cold, dehydration and salt stress, MIPS transcript and myo-inositol were maintained longer and at a higher level in M. falcata than in M. sativa during cold acclimation at 5 °C. MfMIPS1 transcript was induced by hydrogen peroxide (H(2) O(2)) and nitric oxide (NO), but was not responsive to abscisic acid (ABA). Pharmacological experiments revealed that H(2) O(2) and NO are involved in the regulation of MfMIPS1 expression by cold and dehydration, but not by salt. Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants. It is suggested that MfMIPS1 is induced by diverse environmental factors and confers resistance to various abiotic stresses.


Asunto(s)
Frío , Peróxido de Hidrógeno/farmacología , Medicago/enzimología , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Nicotiana/fisiología , Óxido Nítrico/farmacología , Estrés Fisiológico/efectos de los fármacos , Ácido Abscísico/farmacología , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/genética , Clonación Molecular , Deshidratación , Congelación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Iones , Medicago/genética , Mio-Inositol-1-Fosfato Sintasa/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Filogenia , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cloruro de Sodio/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/genética
13.
Biosci Biotechnol Biochem ; 76(1): 199-201, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22232265

RESUMEN

A malfunction in the yeast HAC1 causes the unfolding-protein response in the endoplasmic reticulum, resulting in stress-sensitive and inositol auxotrophic phenotypes. Chaperonin-containing TCP1 (CCT) is necessary for the folding of actin and tubulin in the cytosol. The introduction of the truncated human CCT epsilon subunit into yeast cells of which hac1 was disrupted clearly suppressed not only its inositol auxotrophic phenotype but also its stress-sensitive phenotype.


Asunto(s)
Chaperonina con TCP-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Chaperonina con TCP-1/genética , Regulación Fúngica de la Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Inositol/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada
14.
Mol Biol Cell ; 22(21): 4192-204, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21900497

RESUMEN

A yeast strain lacking Met4p, the primary transcriptional regulator of the sulfur assimilation pathway, cannot synthesize methionine. This apparently simple auxotroph did not grow well in rich media containing excess methionine, forming small colonies on yeast extract/peptone/dextrose plates. Faster-growing large colonies were abundant when overnight cultures were plated, suggesting that spontaneous suppressors of the growth defect arise with high frequency. To identify the suppressor mutations, we used genome-wide single-nucleotide polymorphism and standard genetic analyses. The most common suppressors were loss-of-function mutations in OPI1, encoding a transcriptional repressor of phospholipid metabolism. Using a new system that allows rapid and specific degradation of Met4p, we could study the dynamic expression of all genes following loss of Met4p. Experiments using this system with and without Opi1p showed that Met4 activates and Opi1p represses genes that maintain levels of S-adenosylmethionine (SAM), the substrate for most methyltransferase reactions. Cells lacking Met4p grow normally when either SAM is added to the media or one of the SAM synthetase genes is overexpressed. SAM is used as a methyl donor in three Opi1p-regulated reactions to create the abundant membrane phospholipid, phosphatidylcholine. Our results show that rapidly growing cells require significant methylation, likely for the biosynthesis of phospholipids.


Asunto(s)
Fosfolípidos/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Azufre/metabolismo , Sustitución de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Membrana Celular/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Metionina/metabolismo , Metilación , Mutación , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfolípidos/biosíntesis , Polimorfismo de Nucleótido Simple , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
15.
J Plant Res ; 124(3): 385-94, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20960216

RESUMEN

Myo-inositol monophosphatase (IMP) catalyzes the dephosphorylation of myo-inositol 3-phosphate in the last step of myo-inositol biosynthesis. IMP is also important in phosphate metabolism and is required for the biosynthesis of cell wall polysaccharides, phytic acid, and phosphatidylinositol. In Arabidopsis, IMP is encoded by VTC4. There are, however, two additional IMP candidate genes, IMPL1 and IMPL2, which have not yet been elucidated. In our genetic studies of Arabidopsis IMP genes, only the loss-of-function mutant impl2 showed embryonic lethality at the globular stage. All IMP genes were expressed in a similar manner both in the vegetative and reproductive organs. In developing seeds, expression of IMP genes was not coupled with the expression of the genes encoding myo-inositol phosphate synthases, which supply the substrate for IMPs in the de novo synthesis pathway. Instead, expression of IMP genes was correlated with expression of the gene for myo-inositol polyphosphate 1-phosphatase (SAL1), which is involved in the myo-inositol salvage pathway, suggesting a possible salvage pathway role in seed development. Moreover, the partial rescue of the impl2 phenotype by histidine application implies that IMPL2 is also involved in histidine biosynthesis during embryo development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Mio-Inositol-1-Fosfato Sintasa/genética , Semillas/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genes Letales , Prueba de Complementación Genética , Histidina/metabolismo , Familia de Multigenes , Mutagénesis Insercional , Mutación , Mio-Inositol-1-Fosfato Sintasa/metabolismo , ARN de Planta/genética , Semillas/crecimiento & desarrollo
16.
Eukaryot Cell ; 9(12): 1845-55, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20935143

RESUMEN

The Saccharomyces cerevisiae INO1 gene encodes the structural enzyme inositol-3-phosphate synthase for the synthesis de novo of inositol and inositol-containing phospholipids. The transcription of INO1 is completely derepressed in the absence of inositol and choline (I(-) C(-)). Derepression requires the binding of the Ino2p-Ino4p basic helix-loop-helix (bHLH) heterodimer to the UAS(INO) promoter element. We report here the requirement of a third bHLH protein, centromere-binding factor 1 (Cbf1p), for the complete derepression of INO1 transcription. We found that Cbf1p regulates INO1 transcription by binding to sites distal to the INO1 promoter and encompassing the upstream SNA3 open reading frame (ORF) and promoter. The binding of Cbf1p requires Ino2p-Ino4p binding to the UAS(INO) sites in the INO1 promoter and vice versa, suggesting a cooperative mechanism. Furthermore, Cbf1p binding to the upstream sites was required for the binding of the ISW2 chromatin-remodeling complex to the Ino2p-Ino4p-binding sites on the INO1 promoter. Consistent with this, ISW2 was also required for the complete derepression of INO1 transcription.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ensamble y Desensamble de Cromatina , Regulación Fúngica de la Expresión Génica , Mio-Inositol-1-Fosfato Sintasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cromatina/genética , Cromatina/metabolismo , Dimerización , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Transcripción Genética
17.
Protoplasma ; 245(1-4): 143-52, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20524018

RESUMEN

Introgression and functional expression of either the PcINO1 (L: -myo-inositol 1-phosphate synthase or MIPS coding gene from the wild halophytic rice, Porteresia coarctata) or McIMTI (inositol methyl transferase, IMTI coding gene from common ice plant Mesembryanthemum crystallinum) has earlier been shown to confer salt tolerance to transgenic tobacco plants (Sheveleva et al., Plant Physiol 115:1211-1219, 1997; Majee et al., J Biol Chem 279:28539-28552, 2004). In this communication, we show that transgenic tobacco plants co-expressing PcINO1 and McIMT1 gene either in cytosol or in chloroplasts accumulate higher amount of total inositol (free and methyl inositol) compared to non-transgenic plants. These transgenic plants were more competent in terms of growth potential and photosynthetic activity and were less prone to oxidative stress under salt stress. A positive correlation between the elevated level of total inositol and methylated inositol and the capability of the double transgenic plants to withstand a higher degree of salt stress compared to the plants expressing either PcINO1 or McIMT1 alone is inferred.


Asunto(s)
Inositol/metabolismo , Metiltransferasas/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Nicotiana/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Tolerancia a la Sal/fisiología , Estrés Fisiológico
18.
Plant J ; 56(4): 638-52, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18643983

RESUMEN

Phytic acid (myo-inositol hexakisphosphate, InsP6) is an important phosphate store and signal molecule in plants. However, low-phytate plants are being developed to minimize the negative health effects of dietary InsP6 and pollution caused by undigested InsP6 in animal waste. InsP6 levels were diminished in transgenic potato plants constitutively expressing an antisense gene sequence for myo-inositol 3-phosphate synthase (IPS, catalysing the first step in InsP6 biosynthesis) or Escherichia coli polyphosphate kinase. These plants were less resistant to the avirulent pathogen potato virus Y and the virulent pathogen tobacco mosaic virus (TMV). In Arabidopsis thaliana, mutation of the gene for the enzyme catalysing the final step of InsP6 biosynthesis (InsP5 2-kinase) also diminished InsP6 levels and enhanced susceptibility to TMV and to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae. Arabidopsis thaliana has three IPS genes (AtIPS1-3). Mutant atips2 plants were depleted in InsP6 and were hypersusceptible to TMV, turnip mosaic virus, cucumber mosaic virus and cauliflower mosaic virus as well as to the fungus Botrytis cinerea and to P. syringae. Mutant atips2 and atipk1 plants were as hypersusceptible to infection as plants unable to accumulate salicylic acid (SA) but their increased susceptibility was not due to reduced levels of SA. In contrast, mutant atips1 plants, which were also depleted in InsP6, were not compromised in resistance to pathogens, suggesting that a specific pool of InsP6 regulates defence against phytopathogens.


Asunto(s)
Arabidopsis/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Ácido Fítico/biosíntesis , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/patogenicidad , Caulimovirus/patogenicidad , Cucumovirus/patogenicidad , ADN Bacteriano/genética , Susceptibilidad a Enfermedades/microbiología , Susceptibilidad a Enfermedades/virología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Inmunidad Innata/genética , Mutagénesis Insercional , Mutación , Mio-Inositol-1-Fosfato Sintasa/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Plantas Modificadas Genéticamente/virología , Potyvirus/patogenicidad , Pseudomonas syringae/patogenicidad , ARN de Planta/genética , Ácido Salicílico/metabolismo , Transducción de Señal , Solanum tuberosum/genética , Solanum tuberosum/virología , Virus del Mosaico del Tabaco/patogenicidad , Tymovirus/patogenicidad
19.
J Biotechnol ; 128(4): 726-34, 2007 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-17275118

RESUMEN

The need for novel antimicrobial agents to combat the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis is a worldwide urgency. This study has investigated the effects on phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of inositol-1-phosphate synthase, the key enzyme in the first step in inositol synthesis. Inositol is utilized by M. tuberculosis in the production of its major thiol, which is an antioxidant that helps M. tuberculosis to get rid of reactive oxygen species and electrophilic toxins. Real-time RT-PCR analysis revealed that mRNA expression of inositol-1-phosphate (I-1-P) synthase was significantly reduced upon addition of 20 microM PS-ODNs. Treatment with antisense PS-ODNs also reduced the level of mycothiol and the proliferation of M. tuberculosis and enhanced susceptibility to antibiotics. The experiments indicated that the antisense PS-ODNs could enter the cytoplasm of M. tuberculosis and inhibit the expression of I-1-P synthase. This study demonstrates that the M. tuberculosis I-1-P synthase is a target for the development of novel antibiotics and PS-ODN to I-1-P synthase is a promising antimycobaterial candidate.


Asunto(s)
Mycobacterium tuberculosis/efectos de los fármacos , Mio-Inositol-1-Fosfato Sintasa/antagonistas & inhibidores , Oligonucleótidos Antisentido/farmacología , Antibacterianos/farmacología , Recuento de Colonia Microbiana , Cisteína/metabolismo , Glicopéptidos/metabolismo , Peróxido de Hidrógeno/farmacología , Inositol/metabolismo , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Oxidantes/farmacología , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Tionucleótidos/farmacología
20.
FEBS Lett ; 580(16): 3980-8, 2006 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-16806195

RESUMEN

We have previously demonstrated that introgression of PcINO1 gene from Porteresia coarctata (Roxb.) Tateoka, coding for a novel salt-tolerant L-myo-inositol 1-phosphate synthase (MIPS) protein, confers salt tolerance to transgenic tobacco plants (Majee, M., Maitra, S., Dastidar, K.G., Pattnaik, S., Chatterjee, A., Hait, N.C., Das, K.P. and Majumder, A.L. (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt-tolerance phenotype. J. Biol. Chem. 279, 28539-28552). In this communication we have shown that functional introgression of the PcINO1 gene confers salt-tolerance to evolutionary diverse organisms from prokaryotes to eukaryotes including crop plants albeit to a variable extent. A direct correlation between unabated increased synthesis of inositol under salinity stress by the PcINO1 gene product and salt tolerance has been demonstrated for all the systems pointing towards the universality of the application across evolutionary divergent taxa.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Evolución Biológica , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Poaceae/efectos de los fármacos , Poaceae/enzimología , Cloruro de Sodio/farmacología , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Poaceae/crecimiento & desarrollo , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA