Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Mol Cell ; 81(2): 340-354.e5, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33450210

RESUMEN

In addition to its role as an electron transporter, mitochondrial nicotinamide adenine dinucleotide (NAD+) is an important co-factor for enzymatic reactions, including ADP-ribosylation. Although mitochondria harbor the most intra-cellular NAD+, mitochondrial ADP-ribosylation remains poorly understood. Here we provide evidence for mitochondrial ADP-ribosylation, which was identified using various methodologies including immunofluorescence, western blot, and mass spectrometry. We show that mitochondrial ADP-ribosylation reversibly increases in response to respiratory chain inhibition. Conversely, H2O2-induced oxidative stress reciprocally induces nuclear and reduces mitochondrial ADP-ribosylation. Elevated mitochondrial ADP-ribosylation, in turn, dampens H2O2-triggered nuclear ADP-ribosylation and increases MMS-induced ARTD1 chromatin retention. Interestingly, co-treatment of cells with the mitochondrial uncoupler FCCP decreases PARP inhibitor efficacy. Together, our results suggest that mitochondrial ADP-ribosylation is a dynamic cellular process that impacts nuclear ADP-ribosylation and provide evidence for a NAD+-mediated mitochondrial-nuclear crosstalk.


Asunto(s)
ADP-Ribosilación , Núcleo Celular/enzimología , Mitocondrias/enzimología , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ADP-Ribosilación/efectos de los fármacos , Animales , Antimicina A/análogos & derivados , Antimicina A/farmacología , Línea Celular , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Cromatina/química , Cromatina/metabolismo , Transporte de Electrón/efectos de los fármacos , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Metacrilatos/farmacología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Oligomicinas/farmacología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Poli(ADP-Ribosa) Polimerasa-1/genética , Rotenona/farmacología , Tiazoles/farmacología
2.
J Cell Physiol ; 236(7): 5293-5305, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33378552

RESUMEN

The ubiquitin-proteasome system is a major protein degradation pathway in the cell. Proteasomes produce several peptides that are rapidly degraded to free amino acids by intracellular aminopeptidases. Our previous studies reported that proteolysis via proteasomes and aminopeptidases is required for myoblast proliferation and differentiation. However, the role of intracellular aminopeptidases in myoblast proliferation and differentiation had not been clarified. In this study, we investigated the effects of puromycin-sensitive aminopeptidase (PSA) on C2C12 myoblast proliferation and differentiation by knocking down PSA. Aminopeptidase enzymatic activity was reduced in PSA-knockdown myoblasts. Knockdown of PSA induced impaired cell cycle progression in C2C12 myoblasts and accumulation of cells at the G2/M phase. Additionally, after the induction of myogenic differentiation in PSA-knockdown myoblasts, multinucleated circular-shaped myotubes with impaired cell polarity were frequently identified. Cell division cycle 42 (CDC42) knockdown in myoblasts resulted in a loss of cell polarity and the formation of multinucleated circular-shaped myotubes, which were similar to PSA-knockdown myoblasts. These data suggest that PSA is required for the proliferation of myoblasts in the growth phase and for the determination of cell polarity and elongation of myotubes in the differentiation phase.


Asunto(s)
Aminopeptidasas/metabolismo , Desarrollo de Músculos/fisiología , Mioblastos/enzimología , Animales , Diferenciación Celular/fisiología , Línea Celular , Proliferación Celular/fisiología , Ratones
3.
Cell Signal ; 78: 109870, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33290842

RESUMEN

Recognized as a novel and important gasotransmitter, hydrogen sulfide (H2S) is widely present in various tissues and organs. Cystathionine gamma-lyase (CSE)-derived H2S has been shown to regulate oxidative stress and lipid metabolism. The aim of the present study is to examine the role of H2S in ferroptosis and lipid peroxidation in mouse myoblasts and skeletal muscles. Ferroptosis agonist RSL3 inhibited the expressions of Gpx4 and reduced CSE/H2S signaling, which lead to increased oxidative stress, lipid peroxidation, and ferroptotic cell death. In addition, ferroptosis antagonist ferrostatin-1 (Fer-1) up-regulated the expression of CSE, scavenged the generation of reactive oxygen species (ROS) and lipid peroxidation, and improved cell viability. Exogenously applied NaHS was also able to block RSL3-induced ferroptotic cell death. Neither RSL3 nor H2S affected cell apoptosis. Furthermore, H2S reversed RSL3-induced Drp1 expression and mitochondrial damage, which lead to abnormal lipid metabolism as evidenced by altered expressions of ACSL4, FAS, ACC and CPT1 as well as higher acetyl-CoA contents in both cytoplasm and mitochondria. RSL3 promoted the protein expression and acetylation of ALOX12, a key protein in initiating membrane phospholipid oxidation, while the addition of NaHS attenuated ALOX12 acetylation and protected from membrane lipid peroxidation. Moreover, we observed that CSE deficiency alters the expressions of ferroptosis and lipid peroxidation-related proteins and enhances global protein acetylation in mouse skeletal muscles under aging or injury conditions. These results indicate that downregulation of CSE/H2S signaling would contribute to mitochondrial damage, abnormal lipid metabolism, membrane lipid peroxidation, and ferroptotic cell death. CSE/H2S system can be a target for preventing ferroptosis in skeletal muscle.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Ferroptosis/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Mioblastos/enzimología , Transducción de Señal/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Línea Celular , Ratones
4.
Nucleic Acids Res ; 48(20): 11452-11467, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33080014

RESUMEN

Msh homeobox (Msx) is a subclass of homeobox transcriptional regulators that control cell lineage development, including the early stage of vertebrate limb development, although the underlying mechanisms are not clear. Here, we demonstrate that Msx1 promotes the proliferation of myoblasts and mesenchymal stem cells (MSCs) by enhancing mitogen-activated protein kinase (MAPK) signaling. Msx1 directly binds to and upregulates the expression of fibroblast growth factor 9 (Fgf9) and Fgf18. Accordingly, knockdown or antibody neutralization of Fgf9/18 inhibits Msx1-activated extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation. Mechanistically, we determined that the phosphorylation of Msx1 at Ser136 is critical for enhancing Fgf9 and Fgf18 expression and cell proliferation, and cyclin-dependent kinase 1 (CDK1) is apparently responsible for Ser136 phosphorylation. Furthermore, mesenchymal deletion of Msx1/2 results in decreased Fgf9 and Fgf18 expression and Erk1/2 phosphorylation, which leads to serious defects in limb development in mice. Collectively, our findings established an important function of the Msx1-Fgf-MAPK signaling axis in promoting cell proliferation, thus providing a new mechanistic insight into limb development.


Asunto(s)
Proliferación Celular , Extremidades/embriología , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Transcripción MSX1/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Línea Celular , Factor 9 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/genética , Factor de Transcripción MSX1/química , Factor de Transcripción MSX1/genética , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Mioblastos/citología , Mioblastos/enzimología , Mioblastos/metabolismo , Fosforilación , Serina/metabolismo
5.
Sci Rep ; 10(1): 14302, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868812

RESUMEN

Recent findings suggest a pathologic role of skeletal muscle in amyotrophic lateral sclerosis (ALS) onset and progression. However, the exact mechanism by which this occurs remains elusive due to limited human-based studies. To this end, phenotypic ALS skeletal muscle models were developed from induced pluripotent stem cells (iPSCs) derived from healthy individuals (WT) and ALS patients harboring mutations in the superoxide dismutase 1 (SOD1) gene. Although proliferative, SOD1 myoblasts demonstrated delayed and reduced fusion efficiency compared to WT. Additionally, SOD1 myotubes exhibited significantly reduced length and cross-section. Also, SOD1 myotubes had loosely arranged myosin heavy chain and reduced acetylcholine receptor expression per immunocytochemical analysis. Functional analysis indicated considerably reduced contractile force and synchrony in SOD1 myotubes. Mitochondrial assessment indicated reduced inner mitochondrial membrane potential (ΔΨm) and metabolic plasticity in the SOD1-iPSC derived myotubes. This work presents the first well-characterized in vitro iPSC-derived muscle model that demonstrates SOD1 toxicity effects on human muscle regeneration, contractility and metabolic function in ALS. Current findings align with previous ALS patient biopsy studies and suggest an active contribution of skeletal muscle in NMJ dysfunction. Further, the results validate this model as a human-relevant platform for ALS research and drug discovery studies.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Esquelético/patología , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/genética , Linaje de la Célula/genética , Progresión de la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mutación/genética , Mioblastos/enzimología , Mioblastos/patología
6.
Biochem Biophys Res Commun ; 524(3): 608-613, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32029277

RESUMEN

The ubiquitin-proteasome pathway is essential for skeletal muscle growth and development. Proteasomes generate oligopeptides in the cytoplasm, and these peptides are considered to be rapidly degraded to amino acids by several intracellular aminopeptidases. However, the role of intracellular aminopeptidases in muscle growth remains unknown. In this study, therefore, we investigated the role of intracellular aminopeptidases in C2C12 myoblast proliferation and differentiation. Inhibition of intracellular aminopeptidases by Bestatin methyl ester (Bes-ME) decreased leucine and alanine aminopeptidase activity, and impaired proliferation and differentiation of C2C12 myoblasts. Furthermore, we observed that the inhibition of intracellular aminopeptidases reduced intracellular levels of amino acid and ATP level, and suppressed the phosphorylation of the mTOR pathway. These results suggested that intracellular aminopeptidases affect C2C12 myoblast proliferation and differentiation via mTOR pathway; however, further studies are required to clarify the role of aminopeptidase in skeletal muscle.


Asunto(s)
Aminopeptidasas/metabolismo , Diferenciación Celular , Espacio Intracelular/enzimología , Mioblastos/citología , Mioblastos/enzimología , Adenosina Trifosfato/metabolismo , Aminoácidos/metabolismo , Aminopeptidasas/antagonistas & inhibidores , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ratones , Mioblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
7.
Cell Death Dis ; 10(10): 773, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601787

RESUMEN

Adult skeletal muscle regeneration after injury depends on normal myoblast function. However, the intrinsic mechanisms for the control of myoblast behaviors are not well defined. Herein, we identified Pim1 kinase as a novel positive regulator of myoblast behaviors in vitro and muscle regeneration in vivo. Specifically, knockdown of Pim1 significantly restrains the proliferation and accelerates the apoptosis of myoblasts in vitro, indicating that Pim1 is critical for myoblast survival and amplification. Meanwhile, we found that Pim1 kinase is increased and translocated from cytoplasm into nucleus during myogenic differentiation. By using Pim1 kinase inhibitor, we proved that inhibition of Pim1 activity prevents myoblast differentiation and fusion, suggesting the necessity of Pim1 kinase activity for proper myogenesis. Mechanistic studies demonstrated that Pim1 kinase interacts with myogenic regulator MyoD and controls its transcriptional activity, inducing the expression of muscle-specific genes, which consequently promotes myogenic differentiation. Additionally, in skeletal muscle injury mouse model, deletion of Pim1 hinders the regeneration of muscle fibers and the recovery of muscle strength. Taken together, our study provides a potential target for the manipulation of myoblast behaviors in vitro and the myoblast-based therapeutics of skeletal muscle injury.


Asunto(s)
Desarrollo de Músculos/genética , Músculo Esquelético/fisiología , Mioblastos/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Regeneración/genética , Animales , Apoptosis/genética , Línea Celular , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Proliferación Celular/genética , Supervivencia Celular/ética , Bases de Datos Genéticas , Regulación de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Desarrollo de Músculos/fisiología , Músculo Esquelético/enzimología , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Mioblastos/enzimología , Fosforilación , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/genética , Regulación hacia Arriba
8.
Int J Mol Sci ; 19(6)2018 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-29865254

RESUMEN

Myoblast proliferation is crucial to skeletal muscle hypertrophy and regeneration. Our previous study indicated that mechanical stretch altered the proliferation of C2C12 myoblasts, associated with insulin growth factor 1 (IGF-1)-mediated phosphoinositide 3-kinase (PI3K)/Akt (also known as protein kinase B) and mitogen-activated protein kinase (MAPK) pathways through IGF-1 receptor (IGF-1R). The purpose of this study was to explore the same stretches on the proliferation of L6 myoblasts and its association with IGF-1-regulated PI3K/Akt and MAPK activations. L6 myoblasts were divided into three groups: control, 15% stretch, and 20% stretch. Stretches were achieved using FlexCell Strain Unit. Cell proliferation and IGF-1 concentration were detected by CCK8 and ELISA, respectively. IGF-1R expression, and expressions and activities of PI3K, Akt, and MAPKs (including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38) were determined by Western blot. We found that 15% stretch promoted, while 20% stretch inhibited L6 myoblast proliferation. A 15% stretch increased IGF-1R level, although had no effect on IGF-1 secretion of L6 myoblasts, and PI3K/Akt and ERK1/2 (not p38) inhibitors attenuated 15% stretch-induced pro-proliferation. Exogenous IGF-1 reversed 20% stretch-induced anti-proliferation, accompanied with increases in IGF-1R level as well as PI3K/Akt and MAPK (ERK1/2 and p38) activations. In conclusion, stretch regulated L6 myoblasts proliferation, which may be mediated by the changes in PI3K/Akt and MAPK activations regulated by IGF-1R, despite no detectable IGF-1 from stretched L6 myoblasts.


Asunto(s)
Proliferación Celular , Mecanotransducción Celular , Mioblastos/fisiología , Receptor IGF Tipo 1/metabolismo , Animales , Línea Celular , Sistema de Señalización de MAP Quinasas , Mioblastos/enzimología , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
9.
Toxicol Lett ; 292: 12-19, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29680376

RESUMEN

Bisphenol A (BPA), one of the most widespread endocrine disrupting chemicals, is known as an artificial estrogen, which interacts with estrogen receptor (ER). In this study, we investigated the effects of BPA and estradiol on myoblast differentiation and the underlying signaling mechanism. Exposure to BPA (0.01-1 µM) in mouse myoblast C2C12 cells attenuated myogenic differentiation via the reduced expression of muscle-specific genes, such as myosin heavy chain (MHC), MyoD, and Myogenin, without the alteration of cell proliferation and viability. BPA-exposed C2C12 myoblasts also showed a reduction of Akt phosphorylation ((37-61) %, p < 0.001), a key event for myogenesis. Similarly to BPA, estradiol (0.01-1 µM) reduced the expression of muscle-specific proteins and the formation of multinucleated myotubes, and attenuated the muscle differentiation-specific phosphorylation of Akt ((42-59) %, p < 0.001). We conclude that BPA and estradiol suppress myogenic differentiation through the inhibition of Akt signaling.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Diferenciación Celular/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Estradiol/toxicidad , Desarrollo de Músculos/efectos de los fármacos , Mioblastos/efectos de los fármacos , Fenoles/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mioblastos/enzimología , Mioblastos/patología , Fosforilación
10.
Skelet Muscle ; 8(1): 15, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703249

RESUMEN

BACKGROUND: Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the DMD gene coding for dystrophin, a protein being part of a large sarcolemmal protein scaffold that includes the neuronal nitric oxide synthase (nNOS). The nNOS was shown to play critical roles in a variety of muscle functions and alterations of its expression and location in dystrophic muscle fiber leads to an increase of the muscle fatigability. We previously revealed a decrease of nNOS expression in BMD patients all presenting a deletion of exons 45 to 55 in the DMD gene (BMDd45-55), impacting the nNOS binding site of dystrophin. Since several studies showed deregulation of microRNAs (miRNAs) in dystrophinopathies, we focused on miRNAs that could target nNOS in dystrophic context. METHODS: By a screening of 617 miRNAs in BMDd45-55 muscular biopsies using TLDA and an in silico study to determine which one could target nNOS, we selected four miRNAs. In order to select those that targeted a sequence of 3'UTR of NOS1, we performed luciferase gene reporter assay in HEK393T cells. Finally, expression of candidate miRNAs was modulated in control and DMD human myoblasts (DMDd45-52) to study their ability to target nNOS. RESULTS: TLDA assay and the in silico study allowed us to select four miRNAs overexpressed in muscle biopsies of BMDd45-55 compared to controls. Among them, only the overexpression of miR-31, miR-708, and miR-34c led to a decrease of luciferase activity in an NOS1-3'UTR-luciferase assay, confirming their interaction with the NOS1-3'UTR. The effect of these three miRNAs was investigated on control and DMDd45-52 myoblasts. First, we showed a decrease of nNOS expression when miR-708 or miR-34c were overexpressed in control myoblasts. We then confirmed that DMDd45-52 cells displayed an endogenous increased of miR-31, miR-708, and miR-34c and a decreased of nNOS expression, the same characteristics observed in BMDd45-55 biopsies. In DMDd45-52 cells, we demonstrated that the inhibition of miR-708 and miR-34c increased nNOS expression, confirming that both miRNAs can modulate nNOS expression in human myoblasts. CONCLUSION: These results strongly suggest that miR-708 and miR-34c, overexpressed in dystrophic context, are new actors involved in the regulation of nNOS expression in dystrophic muscle.


Asunto(s)
MicroARNs/genética , Distrofia Muscular de Duchenne/genética , Óxido Nítrico Sintasa de Tipo I/genética , Adolescente , Adulto , Anciano , Biopsia , Niño , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , MicroARNs/fisiología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mioblastos/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
11.
Sci Rep ; 7(1): 5085, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698543

RESUMEN

Obstructive sleep apnea and hypopnea syndrome (OSAHS) is a clinical syndrome characterized by recurrent episodes of obstruction of the upper airway during sleep that leads to a hypoxic condition. Genioglossus, an important pharyngeal muscle, plays an important role in maintaining an open upper airway for effective breathing. Our previous study found that genistein (a kind of phytoestrogen) protects genioglossus muscle from hypoxia-induced oxidative injury. However, the underlying mechanism is still unknown. In the present study, we examined the effects of hypoxia on genioglossus myoblast proliferation, viability and apoptosis, and the protective effect of genistein and its relationship with the PI3K/Akt and ERK MAPK pathways. Cell viability and Bcl-2 were reduced under hypoxic condition, while ROS generation, caspase-3, MDA, and DNA damage were increased following a hypoxia exposure. However, the effects of hypoxia were partially reversed by genistein in an Akt- and ERK- (but not estrogen receptor) dependent manner. In conclusion, genistein protects genioglossus myoblasts against hypoxia-induced oxidative injury and apoptosis independent of estrogen receptor. The PI3K-Akt and ERK1/2 MAPK signaling pathways are involved in the antioxidant and anti-apoptosis effect of genistein on genioglossus myoblasts.


Asunto(s)
Genisteína/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mioblastos/enzimología , Mioblastos/patología , Músculos Faríngeos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Mioblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Factores de Tiempo
12.
Cell Tissue Res ; 369(3): 591-602, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28623422

RESUMEN

In Duchenne muscular dystrophy (DMD), lack of dystrophin leads to progressive muscle degeneration, with DMD patients suffering from cardiorespiratory failure. Cell therapy is an alternative to life-long corticoid therapy. Satellite cells, the stem cells of skeletal muscles, do not completely compensate for the muscle damage in dystrophic muscles. Elevated levels of proinflammatory and profibrotic factors, such as metalloproteinase 9 (MMP-9), impair muscle regeneration, leading to extensive fibrosis and poor results with myoblast transplantation therapies. Omega-3 is an anti-inflammatory drug that protects against muscle degeneration in the mdx mouse model of DMD. In the present study, we test our hypothesis that omega-3 affects MMP-9 and thereby benefits muscle regeneration and myoblast transplantation in the mdx mouse. We observe that omega-3 reduces MMP-9 gene expression and improves myoblast engraftment, satellite cell activation, and muscle regeneration by mechanisms involving, at least in part, the regulation of macrophages, as shown here with the fluorescence-activated cell sorting technique. The present study demonstrates the benefits of omega-3 on satellite cell survival and muscle regeneration, further supporting its use in clinical trials and cell therapies in DMD.


Asunto(s)
Distrofina/deficiencia , Ácidos Grasos Omega-3/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Fibras Musculares Esqueléticas/patología , Mioblastos/enzimología , Mioblastos/trasplante , Células Satélite del Músculo Esquelético/patología , Animales , Biomarcadores/metabolismo , Distrofina/metabolismo , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/efectos de los fármacos , Atrofia Muscular/patología , Mioblastos/efectos de los fármacos , Necrosis , Receptores Notch/metabolismo , Regeneración/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
13.
Mol Cell Endocrinol ; 450: 83-93, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28454723

RESUMEN

OBJECTS: To detect the effects of androgen receptor (AR) on cyclic mechanical stretch-modulated proliferation of C2C12 myoblasts and its pathways: roles of IGF-1, PI3K and MAPK. METHODS: C2C12 were randomly divided into five groups: un-stretched control, six or 8 h of fifteen percent stretch, and six or 8 h of twenty percent stretch. Cyclic mechanical stretch of C2C12 were completed using a computer-controlled FlexCell Strain Unit. Cell proliferation and IGF-1 concentration in medium were detected by CCK8 and ELISA, respectively. Expressions of AR and IGF-1R, and expressions and activities of PI3K, p38 and ERK1/2 in stretched C2C12 cells were determined by Western blot. RESULTS: ①The proliferation of C2C12 cells, IGF-1 concentration in medium, expressions of AR and IGF-1R, and activities of PI3K, p38 and ERK1/2 were increased by 6 h of fifteen percent stretch, while decreased by twenty percent stretch for six or 8 h ②The fifteen percent stretch-increased proliferation of C2C12 cells was reversed by AR inhibitor, Flutamide. ③The increases of AR expression, activities of PI3K, p38 and ERK1/2 resulted from fifteen percent stretch were attenuated by IGF-1 neutralizing antibody, while twenty percent stretch-induced decreases of the above indicators were enhanced by recombinant IGF-1. ④Specific inhibitors of p38, ERK1/2 and PI3K all decreased the expression of AR in fifteen percent and twenty percent of stretched C2C12 cells. CONCLUSIONS: Cyclic mechanical stretch modulated the proliferation of C2C12 cells, which may be attributed to the alterations of AR via IGF-1-PI3K/Akt and IGF-1-MAPK (p38, ERK1/2) pathways in C2C12 cells.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mioblastos/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/metabolismo , Estrés Mecánico , Animales , Anticuerpos Neutralizantes/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Mioblastos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptor IGF Tipo 1/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
J Mol Biol ; 429(7): 1045-1066, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28238764

RESUMEN

The role of cullin E3-ubiquitin ligases for muscle homeostasis is best known during muscle atrophy, as the cullin-1 substrate adaptor atrogin-1 is among the most well-characterized muscle atrogins. We investigated whether cullin activity was also crucial during terminal myoblast differentiation and aggregation of acetylcholine receptors for the establishment of neuromuscular junctions in vitro. The activity of cullin E3-ligases is modulated through post-translational modification with the small ubiquitin-like modifier nedd8. Using either the Nae1 inhibitor MLN4924 (Pevonedistat) or siRNA against nedd8 in early or late stages of differentiation on C2C12 myoblasts, and primary satellite cells from mouse and human, we show that cullin E3-ligase activity is necessary for each step of the muscle cell differentiation program in vitro. We further investigate known transcriptional repressors for terminal muscle differentiation, namely ZBTB38, Bhlhe41, and Id1. Due to their identified roles for terminal muscle differentiation, we hypothesize that the accumulation of these potential cullin E3-ligase substrates may be partially responsible for the observed phenotype. MLN4924 is currently undergoing clinical trials in cancer patients, and our experiments highlight concerns on the homeostasis and regenerative capacity of muscles in these patients who often experience cachexia.


Asunto(s)
Diferenciación Celular , Mioblastos/enzimología , Mioblastos/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Cultivadas , Humanos , Ratones
15.
Apoptosis ; 22(4): 531-543, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28181111

RESUMEN

Reduced Na+-K+-ATPase activity has close relationship with cardiomyocyte death. Reactive oxygen species (ROS) also plays an important role in cardiac cell damage. It has been proved that Na+-K+-ATPase and ROS form a feed-forward amplifier. The aim of this study was to explore whether DRm217, a proved Na+/K+-ATPase's DR-region specific monoclonal antibody and direct activator, could disrupt Na+-K+-ATPase/ROS amplifier and protect cardiac cells from ROS-induced injury. We found that DRm217 protected myocardial cells against hydrogen peroxide (H2O2)-induced cardiac cell injury and mitochondrial dysfunction. DRm217 also alleviated the effect of H2O2 on inhibition of Na+-K+-ATPase activity, Na+-K+-ATPase cell surface expression, and Src phosphorylation. H2O2-treatment increased intracellular ROS, mitochondrial ROS and induced intracellular Ca2+, mitochondrial Ca2+ overload. DRm217 closed Na+-K+-ATPase/ROS amplifier, alleviated Ca2+ accumulation and finally inhibited ROS and mitochondrial ROS generation. These novel results may help us to understand the important role of the Na+-K+-ATPase in oxidative stress and oxidative stress-related disease.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Mioblastos/enzimología , Miocitos Cardíacos/enzimología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Animales , Anticuerpos Monoclonales/inmunología , Señalización del Calcio , Línea Celular , Activación Enzimática/inmunología , Humanos , Peróxido de Hidrógeno/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Mioblastos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Cultivo de Órganos , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/inmunología , Familia-src Quinasas/fisiología
16.
Biochem Biophys Res Commun ; 469(4): 1049-54, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26740179

RESUMEN

Chronic inflammation augments the deleterious effects of several diseases, particularly diabetes, cancer, and sepsis. It is also involved in the process of metabolic shift from glucose oxidation to lactate production. Although several studies suggest that the change in activity of the pyruvate dehydrogenase complex (PDC) is a major factor causing this metabolic change, the exact mechanism of the inflammatory state remains unclear. In this study, we investigated the effect of lipopolysaccharide (LPS) on the expression of pyruvate dehydrogenase kinase 4 (PDK4), which is strongly associated with inactivation of the PDC in C2C12 myoblasts. In C2C12 myoblasts, LPS exposure led to increased PDK4 mRNA and protein expression levels as well as lactate production in culture medium. However, the expression levels of other PDK isoenzymes (PDK1 - 3) remained unchanged. Additionally, we observed that LPS treatment induced phosphorylation of Jun N-Terminal Kinases (JNK). To confirm the role of JNK, we inhibited the JNK pathway and observed that PDK4 expression and lactate production were decreased, but p38 and ERK were not significantly changed. Taken together, our results suggest that LPS induces PDK4 expression and alters glucose metabolism via the JNK pathway.


Asunto(s)
MAP Quinasa Quinasa 4/metabolismo , Mioblastos/enzimología , Miositis/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Lipopolisacáridos , Ratones , Mioblastos/efectos de los fármacos , Miositis/inducido químicamente , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
17.
Adv Biol Regul ; 60: 1-5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26525203

RESUMEN

PI-PLCbeta1 plays an important role in cell differentiation, and particularly in myogenesis, osteogenesis and hematopoiesis. Indeed, the increase of PI-PLCbeta1, along with Cyclin D3, has been detected in C2C12 mouse myoblasts induced to differentiate, as well as in human cells obtained from myotonic dystrophy. Also in the case of osteogenic differentiation there is a specific induction of PI-PLCbeta1, but in this case the role of PI-PLCbeta1 seems to be independent from Cyclin D3, so that a different mechanism could be involved. As for the hematopoietic system, PI-PLCbeta1 has a peculiar behavior: it increases during myeloid differentiation and decreases during erythroid differentiation, thus confirming the role of PI-PLCbeta1 as a modulator of hematopoiesis.


Asunto(s)
Células Sanguíneas/enzimología , Hematopoyesis , Mioblastos/enzimología , Osteogénesis , Fosfolipasa C beta/metabolismo , Animales , Células Sanguíneas/citología , Ciclina D3/genética , Ciclina D3/metabolismo , Humanos , Ratones , Mioblastos/citología , Fosfolipasa C beta/genética
18.
Life Sci ; 143: 50-7, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26408915

RESUMEN

AIMS: The purpose of this study is to explore whether antioxidant DJ-1 protein affects the atrophy of skeletal muscle cell induced by undernutrition. MAIN METHODS: To determine cell atrophic responses, L6 cell line and skeletal primary cells from mouse hind limbs were cultivated under condition of FBS-free and low glucose. Changes of protein expression were analyzed using Western blot. Overexpression and knockdown of DJ-1 was performed in cells to assess its influence on cell atrophic responses. KEY FINDINGS: Undernutrition decreased cell size and increased the abundance of oxidized form and total form of DJ-1 protein in L6 myoblasts. The undernourished cells revealed an elevation in the expression of muscle-specific RING finger-1 (MuRF-1) and atrogin-1, and in the phosphorylations of p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase compared with control groups. Moreover, DJ-1-knockout mice showed a decrease in cell size and an enhancement in the expression of MuRF-1 and atrogin-1, as well as in the phosphorylation of MAPKs in gastrocnemius muscles; these changes were also observed in L6 cells transfected with siRNA of DJ-1. On the other hand, L6 cells overexpressing full-length DJ-1 did not exhibit the alterations in cell size and ubiquitin ligases seen after undernourished states of control cells. Myotubes differentiated from L6 cells also showed elevated expression of MuRF-1 and atrogin-1 in response to undernutrition. SIGNIFICANCE: These results suggest that DJ-1 protein may contribute to undernutrition-induced atrophy via MAPKs/ubiquitin ligase pathway in skeletal muscle cells.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Desnutrición/metabolismo , Mioblastos/enzimología , Proteínas Oncogénicas/deficiencia , Peroxirredoxinas/deficiencia , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Atrofia/enzimología , Atrofia/prevención & control , Línea Celular , Femenino , Masculino , Desnutrición/prevención & control , Ratones , Ratones Noqueados , Mioblastos/patología , Técnicas de Cultivo de Órganos , Proteína Desglicasa DJ-1 , Ratas
19.
Sci Rep ; 5: 14533, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26416158

RESUMEN

Cannabinoid receptor 1 (CB1R) antagonists appear to be promising drugs for the treatment of obesity, however, serious side effects have hampered their clinical application. Rimonabant, the first in class CB1R antagonist, was withdrawn from the market because of psychiatric side effects. This has led to the search for more peripherally restricted CB1R antagonists, one of which is ibipinabant. However, this 3,4-diarylpyrazoline derivative showed muscle toxicity in a pre-clinical dog study with mitochondrial dysfunction. Here, we studied the molecular mechanism by which ibipinabant induces mitochondrial toxicity. We observed a strong cytotoxic potency of ibipinabant in C2C12 myoblasts. Functional characterization of mitochondria revealed increased cellular reactive oxygen species generation and a decreased ATP production capacity, without effects on the catalytic activities of mitochondrial enzyme complexes I-V or the complex specific-driven oxygen consumption. Using in silico off-target prediction modelling, combined with in vitro validation in isolated mitochondria and mitoplasts, we identified adenine nucleotide translocase (ANT)-dependent mitochondrial ADP/ATP exchange as a novel molecular mechanism underlying ibipinabant-induced toxicity. Minor structural modification of ibipinabant could abolish ANT inhibition leading to a decreased cytotoxic potency, as observed with the ibipinabant derivative CB23. Our results will be instrumental in the development of new types of safer CB1R antagonists.


Asunto(s)
Adenosina Trifosfato/antagonistas & inhibidores , Amidinas/química , Fármacos Antiobesidad/química , Antagonistas de Receptores de Cannabinoides/química , Mitocondrias/efectos de los fármacos , Translocasas Mitocondriales de ADP y ATP/antagonistas & inhibidores , Pirazoles/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Amidinas/síntesis química , Amidinas/toxicidad , Animales , Fármacos Antiobesidad/síntesis química , Fármacos Antiobesidad/toxicidad , Antagonistas de Receptores de Cannabinoides/síntesis química , Antagonistas de Receptores de Cannabinoides/toxicidad , Línea Celular , Perros , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Obesidad/tratamiento farmacológico , Obesidad/patología , Consumo de Oxígeno/efectos de los fármacos , Pirazoles/síntesis química , Pirazoles/farmacología , Pirazoles/toxicidad , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Relación Estructura-Actividad
20.
J Biol Chem ; 290(34): 20774-20781, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26139603

RESUMEN

The vast majority of newly synthesized acetylcholinesterase (AChE) molecules do not assemble into catalytically active oligomeric forms and are rapidly degraded intracellularly by the endoplasmic reticulum-associated protein degradation pathway. We have previously shown that AChE in skeletal muscle is regulated in part post-translationally by the availability of the noncatalytic subunit collagen Q, and others have shown that expression of a 17-amino acid N-terminal proline-rich attachment domain of collagen Q is sufficient to promote AChE tetramerization in cells producing AChE. In this study we show that muscle cells, or cell lines expressing AChE catalytic subunits, incubated with synthetic proline-rich attachment domain peptides containing the endoplasmic reticulum retrieval sequence KDEL take up and retrogradely transport them to the endoplasmic reticulum network where they induce assembly of AChE tetramers. The peptides act to enhance AChE folding thereby rescuing them from reticulum degradation. This enhanced folding efficiency occurs in the presence of inhibitors of protein synthesis and in turn increases total cell-associated AChE activity and active tetramer secretion. Pulse-chase studies of isotopically labeled AChE molecules show that the enzyme is rescued from intracellular degradation. These studies provide a mechanistic explanation for the large scale intracellular degradation of AChE previously observed and indicate that simple peptides alone can increase the production and secretion of this critical synaptic enzyme in muscle tissue.


Asunto(s)
Acetilcolinesterasa/metabolismo , Proteínas Aviares/metabolismo , Dominio Catalítico/genética , Mioblastos/efectos de los fármacos , Péptidos/farmacología , Acetilcolinesterasa/genética , Secuencia de Aminoácidos , Animales , Proteínas Aviares/genética , Células COS , Chlorocebus aethiops , Embrión no Mamífero , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Mioblastos/citología , Mioblastos/enzimología , Péptidos/síntesis química , Cultivo Primario de Células , Multimerización de Proteína , Estabilidad Proteica/efectos de los fármacos , Codorniz , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA