Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.446
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 818, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014059

RESUMEN

BACKGROUND: Oculocutaneous albinism (OCA) is a congenital heterogeneous group of autosomal recessive disorders characterized by the absence or loss of melanin in the skin, eyes and hair of the affected individuals. Based on the mutated gene, OCA has been classified into eight sub-types (OCA1-8) with overlapping clinical phenotypes. Mutations in the TYR gene cause OCA1, the most prevalent OCA worldwide including India. Mutations in OCA2 and SLC45A2, both of which regulate melanosomal pH that is critical to TYR activity, cause OCA2 and OCA4 respectively, the other common OCA subtypes in India. METHODS: In the present study, we have included 54 OCA-affected cases from 41 unrelated families representing 16 different marriage/ethnic groups from 17 districts of West Bengal, India. We pursued a PCR-sequencing based approach followed by bioinformatic analysis to identify mutations in TYR, OCA2 and SLC45A2 genes. RESULTS: Mutations were detected in 27 of the 54 (50%) OCA patients from 18 unrelated families, representing 9 different marriage/ethnic groups from 11 districts of West Bengal. Three TYR variants: NM_000372.4: c.391 A > G, NP_000363.1: p. Lys131Glu; NM_000372.4: c.1037G > T; NP_000363.1: p. Gly346Val, NM_000372.4: c.715 C > T; NP_000363.1:p.Arg239Trp was identified for the first time in Eastern Indian OCA cases. A novel nonsense variant: NM_016180.5: c.389 T > A, NP_057264.4: p. Leu130* and a novel synonymous variation NM_016180.5: c.1092 A > G; NP_057264.4: p.364E = were identified in SLC45A2. Additionally, NM_016180.5: c.904A > T; NP_057264.4: p. Thre302Ser was identified for the first time in any Eastern Indian OCA case. We identified 2 previously reported mutations in OCA2. In concordance with previous reports, NM_000372.4: c.832C > T, NP_000363.1: p. (Arg278*) was the commonest TYR mutation. CONCLUSION: The results of our study enrich the mutational spectrum of the known OCA causing genes in Eastern India, which would facilitate accurate diagnosis, familial screening, carrier detection and containment of the disease load.


Asunto(s)
Albinismo Oculocutáneo , Proteínas de Transporte de Membrana , Mutación , Albinismo Oculocutáneo/genética , Humanos , India/epidemiología , Proteínas de Transporte de Membrana/genética , Femenino , Masculino , Mutación/genética , Monofenol Monooxigenasa/genética , Antígenos de Neoplasias/genética , Linaje , Fenotipo
2.
Bioorg Chem ; 150: 107612, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986418

RESUMEN

The high level of tyrosinase leads to the generation of neuromelanin, further causing the abnormality of redox-related protein level and mediating the occurrence and development of Parkinson's disease (PD). However, the existing tyrosinase inhibitors are mostly natural product extracts or polyphenolic derivatives, which hindered them from penetrating the blood-brain barrier (BBB). Herein, we obtained a novel tyrosinase inhibitor, 2-06 (tyrosinase: monophenolase IC50 = 70.44 ± 22.69 µM, diphenolase IC50 = 1.89 ± 0.64 µM), through the structure-based screening method. The compound 2-06 presented good in vitro and in vivo safety, and can inhibit the tyrosinase and melanogenesis in B16F10. Moreover, this compound showed neuroprotective effects and Parkinsonism behavior improving function. 2-06 was proved to penetrate the BBB and enter the central nervous system (CNS). The exploration of the binding mode between 2-06 and tyrosinase provided the foundation for the subsequent structural optimization. This is the first research to develop a central-targeting tyrosinase inhibitor, which is crucial for in-depth study on the new strategy for utilizing tyrosinase inhibitors to treat PD.


Asunto(s)
Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores Enzimáticos , Monofenol Monooxigenasa , Enfermedad de Parkinson , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Animales , Relación Estructura-Actividad , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Estructura Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Humanos , Masculino , Simulación del Acoplamiento Molecular , Barrera Hematoencefálica/metabolismo
3.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893349

RESUMEN

This study aimed to isolate and purify resveratrol and oxyresveratrol from the heartwoods of Maclura cochinchinensis, and to evaluate their inhibitory effects on melanogenesis in B16F10 murine melanoma cells. A methanol maceration process yielded a crude extract comprising 24.86% of the initial mass, which was subsequently analyzed through HPTLC, HPLC, and LC-MS/MS. These analyses revealed the presence of resveratrol and oxyresveratrol at concentrations of 4.32 mg/g and 33.6 mg/g in the extract, respectively. Initial purification employing food-grade silica gel column chromatography separated the extract into two fractions: FA, exhibiting potent inhibition of both tyrosinase activity and melanogenesis, and FM, showing no such inhibitory activity. Further purification processes led to the isolation of fractions Y11 and Gn12 with enhanced concentrations of resveratrol (94.9 and 110.21 mg/g, respectively) and fractions Gn15 and Gn16 with elevated levels of oxyresveratrol (321.93 and 274.59 mg/g, respectively), all of which significantly reduced melanin synthesis. These outcomes affirm the substantial presence of resveratrol and oxyresveratrol in the heartwood of M. cochinchinensis, indicating their promising role as natural agents for skin lightening.


Asunto(s)
Melaninas , Melanoma Experimental , Extractos Vegetales , Resveratrol , Estilbenos , Resveratrol/farmacología , Resveratrol/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Ratones , Melaninas/biosíntesis , Estilbenos/farmacología , Estilbenos/química , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Línea Celular Tumoral , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Melanogénesis
4.
J Agric Food Chem ; 72(25): 14326-14336, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870410

RESUMEN

Cadmium (Cd) is a hazardous element that may jeopardize environmental safety and human health through biotransfer and trophic accumulation. Here, we tested Cd toxicity on cotton plants, cotton bollworms, and their responses. Results demonstrated that Cd accumulated in plant roots, aerial parts, insect larvae, pupae, and frass in a dose-dependent pattern. The ∼9.35 mg kg-1 of Cd in plant aerial parts, ∼3.68 in larvae, ∼6.43 in pupae, and high transfer coefficient (∼5.59) indicate significant mobility. The ∼19.61 mg kg-1 of Cd in larvae frass suggests an effective detoxification strategy, while BAFcotton (∼1.14) and BAFworm (∼0.54) indicated low bioaccumulation. Cadmium exposure resulted in compromised plant growth and yield as well as alterations in photosynthetic pigment contents, antioxidant enzyme activities, and certain life history traits of cotton bollworms. Furthermore, carboxylesterase activity and encapsulation rates of insect larvae decreased with increasing Cd concentrations, whereas acetylcholinesterase, phenol oxidase, glutathione S-transferase, and multifunctional oxidase exhibited hormesis responses.


Asunto(s)
Cadmio , Gossypium , Larva , Contaminantes del Suelo , Animales , Cadmio/metabolismo , Cadmio/toxicidad , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Gossypium/parasitología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Inactivación Metabólica , Glutatión Transferasa/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/química , Raíces de Plantas/parasitología , Monofenol Monooxigenasa/metabolismo , Biotransformación , Acetilcolinesterasa/metabolismo
5.
Org Lett ; 26(26): 5511-5516, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38904436

RESUMEN

1,2,4-Triazoles are privileged scaffolds for many pharmaceuticals, and methods for structurally diverse compound libraries are of current interest. Here we report an efficient coupling of α-diazoacetates with amino acid-derived alkyl N-hydroxy phthalimide esters, under metal-free conditions involving 1,8-diazabicyclo(5.4.0)undec-7-ene as the base, with which highly functionalized 1,2,4-triazoles can be obtained in excellent yields with remarkable functional group tolerance. Preliminary studies revealed that 1,2,4-triazole 3a exhibits potent inhibition of tyrosinase activities in melanoma B16F10 cell lines, demonstrating promising skin-whitening properties.


Asunto(s)
Aminoácidos , Ésteres , Triazoles , Animales , Ratones , Aminoácidos/química , Aminoácidos/síntesis química , Reacción de Cicloadición , Ésteres/química , Estructura Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Triazoles/química , Triazoles/síntesis química , Triazoles/farmacología , Ftalimidas/química
6.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930952

RESUMEN

Based on the fact that substances with a ß-phenyl-α,ß-unsaturated carbonyl (PUSC) motif confer strong tyrosinase inhibitory activity, benzylidene-3-methyl-2-thioxothiazolidin-4-one (BMTTZD) analogs 1-8 were prepared as potential tyrosinase inhibitors. Four analogs (1-3 and 5) inhibited mushroom tyrosinase strongly. Especially, analog 3 showed an inhibitory effect that was 220 and 22 times more powerful than kojic acid in the presence of l-tyrosine and l-dopa, respectively. A kinetic study utilizing mushroom tyrosinase showed that analogs 1 and 3 competitively inhibited tyrosinase, whereas analogs 2 and 5 inhibited tyrosinase in a mixed manner. A docking simulation study indicated that analogs 2 and 5 could bind to both the tyrosinase active and allosteric sites with high binding affinities. In cell-based experiments using B16F10 cells, analogs 1, 3, and 5 effectively inhibited melanin production; their anti-melanogenic effects were attributed to their ability to inhibit intracellular tyrosinase activity. Moreover, analogs 1, 3, and 5 inhibited in situ B16F10 cellular tyrosinase activity. In three antioxidant experiments, analogs 2 and 3 exhibited strong antioxidant efficacy, similar to that of the positive controls. These results suggest that the BMTTZD analogs are promising tyrosinase inhibitors for the treatment of hyperpigmentation-related disorders.


Asunto(s)
Agaricales , Antioxidantes , Inhibidores Enzimáticos , Melaninas , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Agaricales/enzimología , Animales , Antioxidantes/farmacología , Antioxidantes/química , Ratones , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Melaninas/antagonistas & inhibidores , Melaninas/biosíntesis , Tiazolidinas/química , Tiazolidinas/farmacología , Línea Celular Tumoral , Cinética , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Compuestos de Bencilideno/farmacología , Compuestos de Bencilideno/química , Pironas
7.
J Food Drug Anal ; 32(2): 194-212, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934692

RESUMEN

Investigation of utilization possibilities of natural sources has been an important area for research. Tyrosinase inhibitory activity plays a key role in food and medicine industry. Strawberry tree (Arbutus unedo), a widely distributed plant among Mediterranean countries, possess fruits and leaves with rich bioactive phytochemicals, especially polyphenolic compounds. In this study, we aimed to investigate the antityrosinase activity of the fruit and leaf extracts of the plant, and to determine the phenolic compounds that contribute to the antityrosinase activity. In this regard, we evaluated the effect of solvent composition on the extraction of phenolic compounds from A. unedo and on its antityrosinase activity using a simplex centroid design approach, and used chromatographic and LC-MS/MS techniques. The leaf extracts prepared using EtOH:water (50:50) provided higher TPC (456.39 mg GAE/g extract) and acetone:EtOH:water (33:33:33) provided higher TFC (56.15 mg QE/g extract) values than of fruit extracts. LC-MS/MS analysis revealed 23 phenolic/flavonoid compounds in leaf extracts (L1-8), and major metabolites were detected as quercitrin, quinic acid, catechin, tannic acid, isoquercitrin, gallic acid, and ellagic acid. Among the leaf extracts, L3 (aceton:water, 50:50) exhibited 72.01% tyrosinase inhibition at 500 µg/mL. After fractionation studies guided by antityrosinase activity, its subfraction L3-Fr2 exhibited 40.06% inhibition at 50 µg/mL concentration (IC50: 146 ± 7.75 µg/mL), and catechin (113.19 mg/g), tannic acid (53.14 mg/g), ellagic acid (22.14 mg/g), gallic acid (10.27 mg/g), and epicatechin gallate (8.65 mg/g) were determined as major metabolites. Its subfraction L3-Fr2-sub7 exhibited better antityrosinase activity (IC50: 206.23 ± 9.87 µg/mL), and quantitative analysis results revealed the presence of tannic acid (127.40 mg/g), gallic acid (13.96 mg/g), ellagic acid (7.66 mg/g), quercetin-3-O-glucuronide (5.06 mg/g), and quinic acid (3.2 mg/g) as major metabolites, and correlation analysis showed that ellagic acid and quinic acid were positively correlated with antityrosinase activity.


Asunto(s)
Frutas , Monofenol Monooxigenasa , Extractos Vegetales , Espectrometría de Masas en Tándem , Extractos Vegetales/química , Extractos Vegetales/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Frutas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hojas de la Planta/química , Cromatografía Liquida/métodos , Fenoles/química , Fenoles/análisis , Fenoles/farmacología , Cromatografía Líquida de Alta Presión , Anacardiaceae/química , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/química , Cromatografía Líquida con Espectrometría de Masas
8.
Sci Rep ; 14(1): 14370, 2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909081

RESUMEN

Metabolites exploration of the ethyl acetate extract of Fusarium solani culture broth that was isolated from Euphorbia tirucalli root afforded five compounds; 4-hydroxybenzaldehyde (1), 4-hydroxybenzoic acid (2), tyrosol (3), azelaic acid (4), malic acid (5), and fusaric acid (6). Fungal extract as well as its metabolites were evaluated for their anti-inflammatory and anti-hyperpigmentation potential via in vitro cyclooxygenases and tyrosinase inhibition assays, respectively. Azelaic acid (4) exhibited powerful and selective COX-2 inhibition followed by fusaric acid (6) with IC50 values (2.21 ± 0.06 and 4.81 ± 0.14 µM, respectively). As well, azelaic acid (4) had the most impressive tyrosinase inhibitory effect with IC50 value of 8.75 ± 0.18 µM compared to kojic acid (IC50 = 9.27 ± 0.19 µM). Exclusive computational studies of azelaic acid and fusaric acid with COX-2 were in good accord with the in vitro results. Interestingly, this is the first time to investigate and report the potential of compounds 3-6 to inhibit cyclooxygenase enzymes. One of the most invasive forms of skin cancer is melanoma, a molecular docking study using a set of enzymes related to melanoma suggested pirin to be therapeutic target for azelaic acid and fusaric acid as a plausible mechanism for their anti-melanoma activity.


Asunto(s)
Antiinflamatorios , Ácidos Dicarboxílicos , Fusarium , Simulación del Acoplamiento Molecular , Fusarium/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/farmacología , Ácidos Dicarboxílicos/química , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Humanos , Ciclooxigenasa 2/metabolismo , Ácido Fusárico/farmacología , Ácido Fusárico/metabolismo , Ácido Fusárico/química , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Simulación por Computador , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química
9.
Bioorg Chem ; 150: 107533, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878750

RESUMEN

Hyperpigmentation disorders may result from inappropriate melanin deposition and/or excessive melanin synthesis. They are classified mainly as aesthetic problems, but they can significantly affect human health by decreasing self-esteem. There are available only limited treatment options for hyperpigmentation disorder, among others, cosmetic products applied topically. Depigmenting ingredients were found to be ineffective and characterized by various side effects. As a result, many efforts are made to discover novel, potent, and safe melanogenesis inhibitors for possible use in topical cosmetic depigmenting formulations. Cinnamic acid derivatives constitute a widely tested group for that purpose. This article reports research in the group of N-alkyl cinnamamide derivatives (un)substituted in phenyl ring. Among tested series, (E)-3-(4-chlorophenyl)-N-(5-hydroxypentyl)acrylamide (compound 21) showed the most promising inhibitory properties in mushroom tyrosinase assay (IC50 = 36.98 ± 1.07 µM for monophenolase activity, IC50 = 146.71 ± 16.82 µM for diphenolase activity) and melanin production inhibition in B16F10 mouse melanoma cell line at concentration 6.25 µM resulting probably from decreasing of Tyr, Mitf, Tyrp-1, and Tyrp-2 genes expression. This compound also showed melanin production inhibitory properties in pigmented reconstructed human epidermis when used in 1 % and 2 % solutions in 50 % PEG400. In vitro evaluation of its safety profile showed no cytotoxicity to human keratinocytes HaCaT, human skin fibroblasts BJ, and human primary epidermal melanocytes HEMa, no mutagenicity in the Ames test, no genotoxicity in micronucleus test, no phototoxicity, as well as no skin irritation potential tested in PEG400 solution. This compound was also shown to penetrate across the epidermis to reach the possible site of action. The performed research led to classify (E)-3-(4-chlorophenyl)-N-(5-hydroxypentyl)acrylamide as a novel potential depigmenting cosmetic ingredient.


Asunto(s)
Cinamatos , Cosméticos , Hiperpigmentación , Melaninas , Monofenol Monooxigenasa , Humanos , Animales , Hiperpigmentación/tratamiento farmacológico , Ratones , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Cinamatos/química , Cinamatos/farmacología , Cinamatos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Cosméticos/química , Cosméticos/farmacología , Melaninas/metabolismo , Relación Dosis-Respuesta a Droga , Acrilamida/química , Acrilamida/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Agaricales
10.
Exp Dermatol ; 33(5): e15101, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770555

RESUMEN

Skin hyperpigmentation is mainly caused by excessive synthesis of melanin; however, there is still no safe and effective therapy for its removal. Here, we found that the dermal freezer was able to improve UVB-induced hyperpigmentation of guinea pigs without causing obvious epidermal damage. We also mimic freezing stimulation at the cellular level by rapid freezing and observed that freezing treatments <2.5 min could not decrease cell viability or induce cell apoptosis in B16F10 and Melan-A cells. Critically, melanin content and tyrosinase activity in two cells were greatly reduced after freezing treatments. The dramatic decrease in tyrosinase activity was associated with the downregulation of MITF, TYR, TRP-1 and TRP-2 protein expression in response to freezing treatments for two cells. Furthermore, our results first demonstrated that freezing treatments significantly reduced the levels of p-GSK3ß and ß-catenin and the nuclear accumulation of ß-catenin in B16F10 and Melan-A cells. Together, these data suggest that fast freezing treatments can inhibit melanogenesis-related gene expression in melanocytes by regulating the Wnt/ß-catenin signalling pathway. The inhibition of melanin production eventually contributed to the improvement in skin hyperpigmentation induced by UVB. Therefore, fast freezing treatments may be a new alternative of skin whitening in the clinic in the future.


Asunto(s)
Congelación , Hiperpigmentación , Melaninas , Melanocitos , Monofenol Monooxigenasa , Rayos Ultravioleta , Vía de Señalización Wnt , beta Catenina , Animales , Melaninas/biosíntesis , Melaninas/metabolismo , Melanocitos/metabolismo , Ratones , Hiperpigmentación/metabolismo , beta Catenina/metabolismo , Monofenol Monooxigenasa/metabolismo , Cobayas , Factor de Transcripción Asociado a Microftalmía/metabolismo , Supervivencia Celular , Oxidorreductasas Intramoleculares/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Apoptosis , Oxidorreductasas/metabolismo , Interferón Tipo I , Proteínas Gestacionales
11.
Front Biosci (Landmark Ed) ; 29(5): 194, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38812330

RESUMEN

BACKGROUNDS: Melanogenesis, regulated by genetic, hormonal, and environmental factors, occurs in melanocytes in the basal layer of the epidermis. Dysregulation of this process can lead to various skin disorders, such as hyperpigmentation and hypopigmentation. Therefore, the present study investigated the effect of ultrasonic-assisted ethanol extract (SHUE) from Sargassum horneri (S. horneri), brown seaweed against melanogenesis in α-melanocyte-stimulating hormone (MSH)-stimulated B16F10 murine melanocytes. METHODS: Firstly, yield and proximate compositional analysis of the samples were conducted. The effect of SHUE on cell viability has been evaluated by using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. After that, the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes were examined. Western blot analysis was carried out to investigate the protein expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2). In addition, the effect of extracellular signal-regulated kinase (ERK) on the melanogenesis process was assessed via Western blotting. RESULTS: As per the analysis, SHUE contained the highest average yield on a dry basis at 28.70 ± 3.21%. The findings showed that SHUE reduced the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes. Additionally, the expression levels of MITF, TRP1, and TRP2 protein were significantly downregulated by SHUE treatment in α-MSH-stimulated B16F10 murine melanocytes. Moreover, SHUE upregulated the phosphorylation of ERK and AKT in α-MSH-stimulated B16F10 murine melanocytes. In addition, experiments conducted using the ERK inhibitor (PD98059) revealed that the activity of SHUE depends on the ERK signaling cascade. CONCLUSION: These results suggest that SHUE has an anti-melanogenic effect and can be used as a material in the formulation of cosmetics related to whitening and lightening.


Asunto(s)
Etanol , Melaninas , Melanocitos , Monofenol Monooxigenasa , Sargassum , Animales , Sargassum/química , Melaninas/biosíntesis , Melaninas/metabolismo , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Ratones , Etanol/química , Factor de Transcripción Asociado a Microftalmía/metabolismo , alfa-MSH/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Melanoma Experimental/metabolismo , Línea Celular Tumoral , Oxidorreductasas Intramoleculares/metabolismo
12.
Mar Drugs ; 22(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38786597

RESUMEN

Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 µg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 µmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 µmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.


Asunto(s)
Melaninas , Melanoma Experimental , Monofenol Monooxigenasa , Takifugu , Pez Cebra , Animales , Melaninas/biosíntesis , Takifugu/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Ratones , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Línea Celular Tumoral , Factor de Transcripción Asociado a Microftalmía/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Receptor de Melanocortina Tipo 1/metabolismo , Simulación de Dinámica Molecular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
13.
J Food Sci ; 89(6): 3469-3483, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720586

RESUMEN

Pyracantha fortuneana (P. fortuneana) fruit is a wild fruit that is popular because of its delicious taste and numerous nutrients, and phenolic compounds are considered to be the main bioactive components in P. fortuneana fruits. However, the relationship between phenolic compounds and their antioxidant and tyrosinase (TYR) inhibitory activities during the ripening process is still unclear. The study compared the influence of the five developmental stages on the accumulation of phenolic compounds, antioxidant activity, and TYR inhibitory activity in the fruits of P. fortuneana. The compounds were identified by offline two-dimensional liquid chromatography-electrochemical detection (2D-LC-ECD) combined with liquid chromatography-tandem mass spectrometry, and the main active ingredients were quantified. The results showed that stage II had higher total phenolic and flavonoid content, as well as higher antioxidant and TYR inhibitory activity, but the total anthocyanin content was lowest at this stage. A total of 30 compounds were identified by 2D-LC-ECD. Orthogonal partial least squares discriminant analysis screened out six major potential markers, including phenolic acids, procyanidins, and flavonoids. In addition, it was found that caffeoylquinic acids, procyanidins, and flavonoids were higher in stage II than in stages I, III, IV, and V, whereas anthocyanins accumulated gradually from stages III to V. Therefore, this study suggests that the changes in antioxidant and TYR inhibitory activities of P. fortuneana during the five developmental stages may be due to the transformation of procyanidins, caffeoylquinic acids, and phenolic glycosides into other forms during the fruit maturation process. Practical Application: Differences in chemical constituents, antioxidant, and tyrosinase inhibitory activities in fruit maturity stages of P. fortuneana were elucidated to provide reference for rational harvesting and utilization of the fruits and their bioactive components. These findings are expected to provide a comprehensive assessment of the bioactive profile and guide the food industrial production.


Asunto(s)
Antioxidantes , Frutas , Monofenol Monooxigenasa , Fenoles , Pyracantha , Frutas/química , Antioxidantes/análisis , Antioxidantes/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Fenoles/análisis , Pyracantha/química , Flavonoides/análisis , Espectrometría de Masas en Tándem/métodos , Inhibidores Enzimáticos/farmacología , Proantocianidinas/farmacología , Proantocianidinas/análisis , Antocianinas/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cromatografía Liquida/métodos
14.
Chem Biodivers ; 21(6): e202400379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38743034

RESUMEN

Robusta coffee blossom honey stands as a key regional product in Dak Lak province, Vietnam. Despite its significance, there exists a dearth of scientific data for assessing its quality. This study aims to fill this gap by characterizing the physicochemical properties and biological activities of coffee blossom honeys from three distinct sub-regions within Dak Lak province, Vietnam. These activities include ferric reducing power (FRP), DPPH and ABTS radical scavenging, as well as tyrosinase inhibitory activities. Moreover, the study compares these honey samples with other popular varieties in Vietnam, such as Lychee and Longan honeys. The physicochemical parameters of the honey samples meet the standards set by Codex Alimentarius 2001. Through UPLC analysis, eleven compounds were identified, with caffeine serving as a marker for coffee honey. Furthermore, by employing multiple factor analysis (MFA), it was observed that certain physicochemical properties correlate positively with tyrosinase inhibitory, DPPH, ABTS free radicals scavenging activities, and FRP. Notably, tyrosinase inhibitory activity exhibited a positive correlation with antioxidant activity. These findings underscore the high quality of Coffea robusta honey, showcasing its potent antioxidant and tyrosinase inhibitory activities.


Asunto(s)
Antioxidantes , Inhibidores Enzimáticos , Miel , Monofenol Monooxigenasa , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Benzotiazoles/antagonistas & inhibidores , Benzotiazoles/química , Compuestos de Bifenilo/antagonistas & inhibidores , Café/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Flores/química , Miel/análisis , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Picratos/antagonistas & inhibidores , Ácidos Sulfónicos/antagonistas & inhibidores , Vietnam
15.
Nat Microbiol ; 9(6): 1454-1466, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806673

RESUMEN

With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch. To inventory alternative polyphenol removal strategies, we built CAMPER, a gene annotation tool leveraging polyphenol enzyme knowledge gleaned across microbial ecosystems. Applying CAMPER to genome-resolved metatranscriptomes, we identified genes for diverse polyphenol-active enzymes expressed by various microbial lineages under a range of redox conditions. This shifts the paradigm that polyphenols stabilize carbon in saturated soils and highlights the need to consider both oxic and anoxic polyphenol metabolisms to understand carbon cycling in changing ecosystems.


Asunto(s)
Ciclo del Carbono , Microbiota , Hielos Perennes , Polifenoles , Microbiología del Suelo , Polifenoles/metabolismo , Hielos Perennes/microbiología , Bacterias/metabolismo , Bacterias/genética , Bacterias/enzimología , Bacterias/clasificación , Carbono/metabolismo , Oxidación-Reducción , Regiones Árticas , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/genética , Suelo/química , Ecosistema
16.
Food Chem ; 450: 139392, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640546

RESUMEN

The combinational effects of kojic acid and lauroyl arginine ethyl ester hydrochloride (ELAH) on fresh-cut potatoes were investigated. Kojic acid of 0.6% (w/w) effectively inhibited the browning of fresh-cut potatoes and displayed antimicrobial capacity. The color difference value of samples was decreased from 175 to 26 by kojic acid. In contrast, ELAH could not effectively bind with the active sites of tyrosinase and catechol oxidase at molecular level. Although 0.5% (w/w) of ELAH prominently inhibited the microbial growth, it promoted the browning of samples. However, combining kojic acid and ELAH effectively inhibited the browning of samples and microbial growth during the storage and the color difference value of samples was decreased to 52. This amount of kojic acid inhibited enzyme activities toward phenolic compounds. The results indicated that combination of kojic acid and ELAH could provide a potential strategy to extend the shelf life of fresh-cut products.


Asunto(s)
Arginina , Monofenol Monooxigenasa , Pironas , Solanum tuberosum , Pironas/farmacología , Pironas/química , Arginina/química , Arginina/análogos & derivados , Arginina/farmacología , Solanum tuberosum/química , Solanum tuberosum/crecimiento & desarrollo , Monofenol Monooxigenasa/metabolismo , Conservación de Alimentos/métodos , Catecol Oxidasa/metabolismo , Conservantes de Alimentos/farmacología , Conservantes de Alimentos/química , Bacterias/efectos de los fármacos , Bacterias/genética
17.
Biosensors (Basel) ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667195

RESUMEN

Tyrosinase (TYR) emerges as a key enzyme that exerts a regulatory influence on the synthesis of melanin, thereby assuming the role of a critical biomarker for the detection of melanoma. Detecting the authentic concentration of TYR in the skin remains a primary challenge. Distinguished from ex vivo detection methods, this study introduces a novel sensor platform that integrates a microneedle (MN) biosensor with surface-enhanced Raman spectroscopy (SERS) technology for the in situ detection of TYR in human skin. The platform utilized dopamine (DA)-functionalized gold nanoparticles (Au NPs) as the capturing substrate and 4-mercaptophenylboronic acid (4-MPBA)-modified silver nanoparticles (Ag NPs) acting as the SERS probe. Here, the Au NPs were functionalized with mercaptosuccinic acid (MSA) for DA capture. In the presence of TYR, DA immobilized on the MN is preferentially oxidized to dopamine quinone (DQ), a process that results in a decreased density of SERS probes on the platform. TYR concentration was detected through variations in the signal intensity emitted by the phenylboronic acid. The detection system was able to evaluate TYR concentrations within a linear range of 0.05 U/mL to 200 U/mL and showed robust anti-interference capabilities. The proposed platform, integrating MN-based in situ sensing, SERS technology, and TYR responsiveness, holds significant importance for diagnosing cutaneous melanoma.


Asunto(s)
Técnicas Biosensibles , Detección Precoz del Cáncer , Melanoma , Monofenol Monooxigenasa , Espectrometría Raman , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Monofenol Monooxigenasa/análisis , Monofenol Monooxigenasa/metabolismo , Piel/enzimología , Animales , Ratones , Melanoma/diagnóstico , Melanoma/enzimología , Nanopartículas del Metal/química , Oro/química , Agujas/normas , Ensayo de Inmunoadsorción Enzimática , Plata/química , Sensibilidad y Especificidad , Detección Precoz del Cáncer/instrumentación , Detección Precoz del Cáncer/métodos
18.
Microb Pathog ; 190: 106641, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588925

RESUMEN

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Asunto(s)
Adyuvantes Inmunológicos , Antioxidantes , Bivalvos , Kéfir , Probióticos , Superóxido Dismutasa , Vibrio alginolyticus , Animales , Probióticos/farmacología , Bivalvos/química , Bivalvos/microbiología , Antioxidantes/metabolismo , Kéfir/microbiología , Superóxido Dismutasa/metabolismo , Spirulina/química , Malondialdehído/metabolismo , Malondialdehído/análisis , Alimentación Animal , Monofenol Monooxigenasa/metabolismo , Suplementos Dietéticos , Fosfatasa Alcalina/metabolismo , Muramidasa/metabolismo , Vibriosis/prevención & control
19.
Chembiochem ; 25(12): e202400235, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38642076

RESUMEN

The pigmentation of the skin, modulated by different actors in melanogenesis, is mainly due to the melanins (protective pigments). In humans, these pigments' precursors are synthetized by an enzyme known as tyrosinase (TyH). The regulation of the enzyme activity by specific modulators (inhibitors or activators) can offer a means to fight hypo- and hyper-pigmentations responsible for medical, psychological and societal handicaps. Herein, we report the investigation of phenylalanine derivatives as TyH modulators. Interacting with the binuclear copper active site of the enzyme, phenylalanine derivatives combine effects induced by combination with known resorcinol inhibitors and natural substrate/intermediate (amino acid part). Computational studies including docking, molecular dynamics and free energy calculations combined with biological activity assays on isolated TyH and in human melanoma MNT-1 cells, and X-ray crystallography analyses with the TyH analogue Tyrp1, provide conclusive evidence of the interactions of phenylalanine derivatives with human tyrosinase. In particular, our findings indicate that an analogue of L-DOPA, namely (S)-3-amino-tyrosine, stands out as an amino phenol derivative with inhibitory properties against TyH.


Asunto(s)
Inhibidores Enzimáticos , Monofenol Monooxigenasa , Fenilalanina , Humanos , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/química , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/síntesis química , Simulación del Acoplamiento Molecular , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Dominio Catalítico , Estructura Molecular
20.
Chem Biodivers ; 21(6): e202400463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606752

RESUMEN

One novel compound, (R)-3, 6-diethoxy-4-hydroxycyclohex-3-en-1-one (1) and thirteen known compounds were isolated from the waste tobacco leaves. The structures of two compounds (1-2) were confirmed and attributed firstly by the extensive spectroscopic data, including 1D/2D NMR, IR, HR-ESI-MS, CD, and ECD spectra. Notably, seven compounds (2, 3, 9, 10, 11, 12, and 13) exhibited better tyrosinase inhibitory activity than the positive control kojic acid. The binding modes of these compounds revealed that their structure formed strong hydrogen bonds and van der Waals forces with the active sites of tyrosinase. These results indicated that waste tobacco leaves are good resources for developing tyrosinase inhibitors.


Asunto(s)
Inhibidores Enzimáticos , Monofenol Monooxigenasa , Nicotiana , Hojas de la Planta , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Hojas de la Planta/química , Nicotiana/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA