Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Cell Mol Life Sci ; 81(1): 317, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066891

RESUMEN

Inner dynein arms (IDAs) are formed from a protein complex that is essential for appropriate flagellar bending and beating. IDA defects have previously been linked to the incidence of asthenozoospermia (AZS) and male infertility. The testes-enriched ZMYND12 protein is homologous with an IDA component identified in Chlamydomonas. ZMYND12 deficiency has previously been tied to infertility in males, yet the underlying mechanism remains uncertain. Here, a CRISPR/Cas9 approach was employed to generate Zmynd12 knockout (Zmynd12-/-) mice. These Zmynd12-/- mice exhibited significant male subfertility, reduced sperm motile velocity, and impaired capacitation. Through a combination of co-immunoprecipitation and mass spectrometry, ZMYND12 was found to interact with TTC29 and PRKACA. Decreases in the levels of PRKACA were evident in the sperm of these Zmynd12-/- mice, suggesting that this change may account for the observed drop in male fertility. Moreover, in a cohort of patients with AZS, one patient carrying a ZMYND12 variant was identified, expanding the known AZS-related variant spectrum. Together, these findings demonstrate that ZMYND12 is essential for flagellar beating, capacitation, and male fertility.


Asunto(s)
Infertilidad Masculina , Ratones Noqueados , Motilidad Espermática , Animales , Humanos , Masculino , Ratones , Astenozoospermia/genética , Astenozoospermia/metabolismo , Astenozoospermia/patología , Sistemas CRISPR-Cas , Dineínas/metabolismo , Dineínas/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Ratones Endogámicos C57BL , Capacitación Espermática/genética , Motilidad Espermática/genética , Espermatozoides/metabolismo , Contactina 2/genética , Contactina 2/metabolismo
2.
Asian J Androl ; 26(5): 484-489, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39054792

RESUMEN

ABSTRACT: The cause of asthenozoospermia (AZS) is not well understood because of its complexity and heterogeneity. Although some gene mutations have been identified as contributing factors, they are only responsible for a small number of cases. Radial spokes (RSs) are critical for adenosine triphosphate-driven flagellar beating and axoneme stability, which is essential for flagellum motility. In this study, we found novel compound heterozygous mutations in leucine-rich repeat-containing protein 23 ( LRRC23 ; c.1018C>T: p.Q340X and c.881_897 Del: p.R295Gfs*32) in a proband from a nonconsanguineous family with AZS and male infertility. Diff-Quik staining and scanning electron microscopy revealed no abnormal sperm morphology. Western blotting and immunofluorescence staining showed that these mutations suppressed LRRC23 expression in sperm flagella. Additionally, transmission electron microscopy showed the absence of RS3 in sperm flagella, which disrupts stability of the radial spoke complex and impairs motility. Following in vitro fertilization and embryo transfer, the proband's spouse achieved successful pregnancy and delivered a healthy baby. In conclusion, our study indicates that two novel mutations in LRRC23 are associated with AZS, but successful fertility outcomes can be achieved by in vitro fertilization-embryo transfer techniques.


Asunto(s)
Astenozoospermia , Mutación , Adulto , Femenino , Humanos , Masculino , Embarazo , Astenozoospermia/genética , Linaje , Motilidad Espermática/genética , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Cola del Espermatozoide/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo
3.
Mol Biol Rep ; 51(1): 727, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861014

RESUMEN

BACKGROUND: The presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor in various testicular cells and spermatozoa suggests a potential role in enhancing spermatogonial and postmeiotic cell development. Moreover, GM-CSF activates the pivotal pathways implicated in sperm motility regulation and glucose metabolism. However, the impact of GM-CSF on testicular biopsies from patients with obstructive azoospermia (OA) remains unexplored. Therefore, this study aimed to investigate the in vitro effects of GM-CSF on the expression of genes related to glucose transporters and signaling pathways, sperm motility, and viability in testicular biopsies. METHODS AND RESULTS: Following testicular sperm extraction from 20 patients diagnosed with OA, each sample was divided into two parts: the experimental samples were incubated with medium containing 2 ng/ml GM-CSF at 37 °C for 60 min, and the control samples were incubated with medium without GM-CSF. Subsequently, the oocytes retrieved from the partner were injected with sperm from the treatment and control groups. The sperm parameters (motility and viability), the expression levels of sperm motility-related genes (PIK3R1, PIK3CA, and AKT1), and the expression levels of sperm energy metabolism-related genes (GLUT1, GLUT3, and GLUT14) were assessed. Furthermore, the fertilization and day 3 embryo development rate and embryo quality were evaluated. Compared with those in the nontreated group, the motility parameters and the mRNA expression levels of PIK3R1, AKT1, and GLUT3 in testicular sperm supplemented with GM-CSF were significantly greater (p < 0.05). However, no significant differences in the mRNA expression of PIK3CA, GLUT1, or GLUT14 were detected. According to the ICSI results, compared with the control group, the GM-CSF treatment group exhibited significantly greater fertilization rates (p = 0.027), Day 3 embryo development rate (p = 0.001), and proportions of good-quality embryos (p = 0.002). CONCLUSIONS: GM-CSF increased the expression of genes related to motility and the energy metabolism pathway and effectively promoted the motility of testis-extracted spermatozoa, consequently yielding positive clinical outcomes.


Asunto(s)
Azoospermia , Metabolismo Energético , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Inyecciones de Esperma Intracitoplasmáticas , Motilidad Espermática , Adulto , Femenino , Humanos , Masculino , Azoospermia/genética , Azoospermia/tratamiento farmacológico , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Regulación de la Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Transducción de Señal/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Motilidad Espermática/genética , Espermatozoides/efectos de los fármacos , Testículo/metabolismo , Testículo/efectos de los fármacos
4.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876797

RESUMEN

Calcium is critical for regulating the waveform of motile cilia and flagella. Calaxin is currently the only known molecule involved in the calcium-dependent regulation in ascidians. We have recently shown that Calaxin stabilizes outer arm dynein (OAD), and the knockout of Calaxin results in primary ciliary dyskinesia phenotypes in vertebrates. However, from the knockout experiments, it was not clear which functions depend on calcium and how Calaxin regulates the waveform. To address this question, here, we generated transgenic zebrafish expressing a mutant E130A-Calaxin deficient in calcium binding. E130A-Calaxin restored the OAD reduction of calaxin -/- sperm and the abnormal movement of calaxin -/- left-right organizer cilia, showing that Calaxin's stabilization of OADs is calcium-independent. In contrast, our quantitative analysis of E130A-Calaxin sperms showed that the calcium-induced asymmetric beating was not restored, linking Calaxin's calcium-binding ability with an asymmetric flagellar beating for the first time. Our data show that Calaxin is a calcium-dependent regulator of the ciliary beating and a calcium-independent OAD stabilizer.


Asunto(s)
Proteínas de Unión al Calcio , Espermatozoides , Proteínas de Pez Cebra , Pez Cebra , Animales , Masculino , Animales Modificados Genéticamente , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Cilios/metabolismo , Dineínas/metabolismo , Dineínas/genética , Flagelos/metabolismo , Flagelos/fisiología , Motilidad Espermática/genética , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Espermatozoides/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas del Citoesqueleto/metabolismo
5.
PeerJ ; 12: e17399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799061

RESUMEN

Background: Circular RNAs (circRNAs) are a large class of RNAs present in mammals. Among these, circCamsap1 is a well-acknowledged circRNA with significant implications, particularly in the development and progression of diverse tumors. However, the potential consequences of circCamsap1 depletion in vivo on male reproduction are yet to be thoroughly investigated. Methods: The presence of circCamsap1 in the mouse testes was confirmed, and gene expression analysis was performed using reverse transcription quantitative polymerase chain reaction. CircCamsap1 knockout mice were generated utilizing the CRISPR/Cas9 system. Phenotypic analysis of both the testes and epididymis was conducted using histological and immunofluorescence staining. Additionally, fertility and sperm motility were assessed. Results: Here, we successfully established a circCamsap1 knockout mouse model without affecting the expression of parental gene. Surprisingly, male mice lacking circCamsap1 (circCamsap1-/-) exhibited normal fertility, with no discernible differences in testicular and epididymal histology, spermatogenesis, sperm counts or sperm motility compared to circCamsap1+/+ mice. These findings suggest that circCamsap1 may not play an essential role in physiological spermatogenesis. Nonetheless, this result also underscores the complexity of circRNA function in male reproductive biology. Therefore, further research is necessary to elucidate the precise roles of other circRNAs in regulating male fertility.


Asunto(s)
Fertilidad , Ratones Noqueados , ARN Circular , Motilidad Espermática , Espermatogénesis , Testículo , Animales , Masculino , Ratones , Epidídimo/metabolismo , Fertilidad/genética , ARN Circular/genética , ARN Circular/metabolismo , Motilidad Espermática/genética , Espermatogénesis/genética , Testículo/metabolismo
6.
J Hum Genet ; 69(8): 401-409, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769386

RESUMEN

Human infertility affects 10-15% of couples. Asthenozoospermia accounts for 18% of men with infertility and is a common male infertility phenotype. The nexin-dynein regulatory complex (N-DRC) is a large protein complex in the sperm flagellum that connects adjacent doublets of microtubules. Defects in the N-DRC can disrupt cilia/flagellum movement, resulting in primary ciliary dyskinesia and male infertility. Using whole-exome sequencing, we identified a pathological homozygous variant of the dynein regulatory complex subunit 3 (DRC3) gene, which expresses leucine-rich repeat-containing protein 48, a component of the N-DRC, in a patient with asthenozoospermia. The variant ENST00000313838.12: c.644dup (p. Glu216GlyfsTer36) causes premature translational arrest of DRC3, resulting in a dysfunctional DRC3 protein. The patient's semen count, color, and pH were normal according to the reference values of the World Health Organization guidelines; however, sperm motility and progressive motility were reduced. DRC3 protein was not detected in the patient's sperm and the ultrastructure of the patient's sperm flagella was destroyed. More importantly, the DRC3 variant reduced its interaction with other components of the N-DRC, including dynein regulatory complex subunits 1, 2, 4, 5, 7, and 8. Our data not only revealed the essential biological functions of DRC3 in sperm flagellum movement and structure but also provided a new basis for the clinical genetic diagnosis of male infertility.


Asunto(s)
Astenozoospermia , Homocigoto , Infertilidad Masculina , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Motilidad Espermática/genética , Adulto , Espermatozoides/metabolismo , Espermatozoides/patología , Secuenciación del Exoma , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/patología , Dineínas/genética , Dineínas/metabolismo , Mutación
7.
J Mol Evol ; 92(3): 217-257, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38662235

RESUMEN

The coral Acropora spp., known for its reef-building abilities, is a simultaneous hermaphroditic broadcast spawning species. Acropora spp. release gametes into seawater, activating sperm motility. This activation is mediated by adenylyl cyclase (AC) and protein kinase A (PKA). Notably, membrane-permeable cAMP (8-bromo-cAMP) promotes sperm motility activation of Acropora florida. While the signal transduction for PKA-dependent motility activation is highly conserved among animals, the downstream signaling of PKA remains unclear. In this study, we used mass spectrometry (MS) analyses to identify sperm proteins in the coral Acropora digitifera, as well as the serine/threonine residues of potential PKA substrates, and then, we investigated the conservation of these proteins from corals to vertebrates. We identified 148 sperm proteins of A. digitifera with typical PKA recognition motifs, namely RRXT and RRXS. We subsequently used ORTHOSCOPE to screen for orthologs encoding these 148 proteins from corals to vertebrates. Among the isolated orthologs, we identified positive selection in 48 protein-encoding genes from 18 Acropora spp. Subsequently, we compared the conservation rates of the PKA phosphorylation motif residues between the orthologs under positive and purifying selections. Notably, the serine residues of the orthologs under positive selection were more conserved. Therefore, adaptive evolution might have occurred in the orthologs of PKA substrate candidates from corals to vertebrates, accompanied by phosphorylation residue conservation. Collectively, our findings suggest that while PKA signal transduction, including substrates in sperm, may have been conserved, the substrates may have evolved to adapt to diverse fertilization conditions, such as synchronous broadcast spawning.


Asunto(s)
Antozoos , Proteínas Quinasas Dependientes de AMP Cíclico , Evolución Molecular , Espermatozoides , Animales , Masculino , Antozoos/genética , Antozoos/fisiología , Antozoos/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Espermatozoides/metabolismo , Espermatozoides/fisiología , Filogenia , Transducción de Señal , Motilidad Espermática/genética , Motilidad Espermática/fisiología
8.
Mol Biol Rep ; 51(1): 588, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683237

RESUMEN

BACKGROUND: Mechanisms by which varicocele causes infertility are not clear and few studies have reported that some miRNAs show expression alterations in men with varicocele. Recently, sperm promoter methylation of MLH1 has been shown to be higher in men diagnosed with varicocele. This study aimed to assess the potential effects of miR-145, which was determined to target MLH1 mRNA in silico on sperm quality and function in varicocele. METHODS: Sperm miR-145 and MLH1 expressions of six infertile men with varicocele (Group 1), nine idiopathic infertile men (Group 2), and nine fertile men (control group) were analyzed by quantitative PCR. Sperm DNA fragmentation was evaluated by TUNEL and the levels of seminal oxidative damage and total antioxidant capacity were analyzed by ELISA. RESULTS: Our results have shown that sperm expression of miR-145 was decreased in Group 1 compared to Group 2 (P = 0.029). MLH1 expression was significantly higher in Group 2 than the controls (P = 0.048). Total antioxidant level and sperm DNA fragmentations of Group 1 and Group 2 were decreased (P = 0.001 and P = 0.011, respectively). Total antioxidant capacity was positively correlated with sperm concentration (ρ = 0.475, P = 0.019), total sperm count (ρ = 0.427, P = 0.037), motility (ρ = 0.716, P < 0.0001) and normal morphological forms (ρ = 0.613, P = 0.001) and negatively correlated with the seminal oxidative damage (ρ=-0.829, P = 0.042) in varicocele patients. CONCLUSION: This is the first study investigating the expressions of sperm miR-145 and MLH1 in varicocele patients. Further studies are needed to clarify the potential effect of miR-145 on male fertility.


Asunto(s)
Fragmentación del ADN , Infertilidad Masculina , MicroARNs , Homólogo 1 de la Proteína MutL , Estrés Oxidativo , Espermatozoides , Varicocele , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Varicocele/genética , Varicocele/metabolismo , Varicocele/patología , Estrés Oxidativo/genética , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Espermatozoides/metabolismo , Adulto , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Semen/metabolismo , Motilidad Espermática/genética , Antioxidantes/metabolismo
9.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612939

RESUMEN

Sperm cryopreservation is a procedure widely used to store gametes for later use, to preserve fertility in patients prior to gonadotoxic treatments or surgery, and for sperm donation programs. The purpose of the study was to assess the impact of cryopreservation on human sperm transcriptome. Semen samples were collected from 13 normospermic men. Each sample was divided into two aliquots. The total RNA was immediately extracted from one aliquot. The second aliquot was frozen and total RNA was extracted after a week of storage in liquid nitrogen. The RNA samples were randomized in four pools, each of six donors, and analyzed by microarrays. The paired Significance Analysis of Microarray was performed. We found 219 lower abundant transcripts and 28 higher abundant transcripts in cryopreserved sperm than fresh sperm. The gene ontology analysis disclosed that cryopreservation alters transcripts of pathways important for fertility (i.e., spermatogenesis, sperm motility, mitochondria function, fertilization, calcium homeostasis, cell differentiation, and early embryo development), although the increase of some transcripts involved in immune response can compensate for the harmful effects of freezing.


Asunto(s)
Semen , Transcriptoma , Humanos , Masculino , Motilidad Espermática/genética , Espermatozoides , Criopreservación , ARN
10.
Proc Natl Acad Sci U S A ; 121(16): e2322211121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593080

RESUMEN

Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.


Asunto(s)
Marchantia , Masculino , Animales , Marchantia/genética , AMP Cíclico/metabolismo , Motilidad Espermática/genética , Semillas/metabolismo , Adenilil Ciclasas/metabolismo , Espermatozoides/metabolismo
11.
J Assist Reprod Genet ; 41(4): 1097-1109, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38294621

RESUMEN

PURPOSE: Semen parameters are subjected to within-individual variability over time. The driving factors for this variability are likely multi-factorial, with healthier lifestyle associated with better semen quality. The extent in which variations in individual's lifestyle contributes to within-individual semen variability is unknown. METHODS: A total of 116 repeat semen samples from 29 men aged 19-37 over 6 months were collected. Basic semen analysis as per 5th WHO manual and extended semen parameters (sperm DNA fragmentation, redox potential and lipid peroxidation, sperm binding to hyaluronan and hyperactive motility) were assessed. An additional 39 lifestyle/biological factors (weight, blood pressure, etc.) were collected at each sample including validated health questionnaires SF36 Health Status, Australian Recommend Food Score, and International Physical Activity Questionnaire. RESULTS: Only 10 out of the 39 lifestyle factors varied within men across samples including age (P = 0.0024), systolic blood pressure (P = 0.0080), social functioning (P = 0.0340), energy (P = 0.0069), non-alcoholic caffeinated beverages (P = 0.0010), and nutrition (P < 0.0001). The only semen parameter that varied between collections was sperm morphology (coefficient of variation 23.8 (6.1-72.0), P < 0.05). We only observed weak (r < 0.3) to moderate (r > 0.3- < 0.6) correlations between lifestyle factors, including body mass index, waist circumference, nutrition, exercise, blood pressure and semen parameters including sperm count, progressive motility, and sperm DNA fragmentation (P < 0.05). CONCLUSION: In healthy men from the general population, semen quality and associated lifestyle factors do not significantly vary over 6 months, indicating that one semen sample is likely sufficient for determining male fertility in this population.


Asunto(s)
Fragmentación del ADN , Estilo de Vida , Análisis de Semen , Semen , Motilidad Espermática , Espermatozoides , Humanos , Masculino , Adulto , Motilidad Espermática/genética , Semen/metabolismo , Recuento de Espermatozoides , Adulto Joven , Ejercicio Físico , Peroxidación de Lípido
12.
Reprod Biol Endocrinol ; 22(1): 15, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254112

RESUMEN

BACKGROUND: Cyclophilin D (CypD) negatively regulates ATP production by opening of the mitochondrial permeability transition pore. This study aimed to understand the role of CypD in sperm motility regulation. METHODS: Changes in CypD during sperm capacitation and its interaction with glycogen synthase kinase 3α (GSK3α), a key kinase regulating sperm motility, were examined in mouse spermatozoa. The effects of CypD inhibitor cyclosporin A (CsA) and GSK3 inhibitor 6-bromo-indirubin-3'-oxime (BIO) on sperm motility, p-GSK3α(Ser21), mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (MMP), and ATP production were examined. The effect of proteasome inhibitor MG115 on the cellular levels of CypD was examined. RESULTS: In cauda epididymal spermatozoa, GSK3α was found in both cytosolic and mitochondrial fractions whereas CypD was primarily found in the mitochondrial fraction together with ATP synthase F1 subunit alpha (ATP5A), a mitochondrial marker. GSK3α and CypD were co-localized in the sperm midpiece. Interaction between GSK3α and CypD was identified in co-immunoprecipitation. CsA, a CypD inhibitor, significantly increased sperm motility, tyrosine phosphorylation, mPTP closing, MMP, and ATP levels in spermatozoa, suggesting that CypD acts as a negative regulator of sperm function. Under capacitation condition, both GSK3α and CypD were decreased in spermatozoa but ATP5A was not. The GSK3 inhibitor BIO markedly increased p-GSK3α(Ser21) and decreased CypD but significantly increased mPTP closing, MMP, ATP production, and motility of spermatozoa. This suggests that inhibitory phosphorylation of GSK3α is coupled with degradation of CypD, potentiating the mitochondrial function. Degradation of CypD was attenuated by MG115, indicative of involvement of the ubiquitin proteasome system. CONCLUSIONS: During sperm capacitation, CypD act as a downstream target of GSK3α can be degraded via the ubiquitin proteasome system, stimulating mitochondrial function and sperm motility.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Peptidil-Prolil Isomerasa F , Complejo de la Endopetidasa Proteasomal , Motilidad Espermática , Animales , Masculino , Ratones , Adenosina Trifosfato/farmacología , Ciclosporina/farmacología , Peptidil-Prolil Isomerasa F/antagonistas & inhibidores , Peptidil-Prolil Isomerasa F/metabolismo , Semen , Motilidad Espermática/genética , Ubiquitinas
13.
Endocrinology ; 165(3)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38066676

RESUMEN

Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction. The H2NES mouse expresses only mESR1 but lacks nESR1. The goal of this study was to identify the functions of mESR1 alone in mice where nESR1 was absent. Breeding trials showed that H2NES males are fertile, with decreased litter numbers but normal pup numbers/litter. In contrast to Esr1KO mice, H2NES testicular, and epididymal weights were not reduced, and seminiferous tubule abnormalities were less pronounced. However, Esr1KO and H2NES males both had decreased sperm motility and a high incidence of abnormal sperm morphology. Seminiferous tubule and rete testis dilation and decreased efferent ductule epithelial height characteristic of Esr1KO males were reduced in H2NES. Consistent with this, expression of genes involved in fluid transport and ion movement that were reduced in Esr1KO (Aqp1, Car2, Car14, Cftr) were partially or fully restored to wild-type levels in H2NES. In summary, in contrast to Esr1KO males, H2NES males are fertile and have reduced phenotypic and functional abnormalities in the testis and efferent ductules. Thus, mESR1 alone, in the absence of nESR1, can partially regulate male reproductive tract structure and function, emphasizing its importance for overall estrogen action.


Asunto(s)
Receptor alfa de Estrógeno , Motilidad Espermática , Masculino , Ratones , Animales , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Motilidad Espermática/genética , Semen/metabolismo , Estrógenos , Ratones Noqueados , Fertilidad/genética
14.
J Gene Med ; 26(1): e3583, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37640479

RESUMEN

BACKGROUND: Although defects in sperm morphology and physiology lead to male infertility, in many instances, the exact disruption of molecular pathways in a given patient is often unknown. The glycolytic pathway is an essential process to supply energy in sperm cell motility. Enolase 4 (ENO4) is crucial for the glycolytic process, which provides the energy for sperm cells in motility. ENO4 is located in the sperm principal piece and is essential for the motility and organization of the sperm flagellum. In the present study, we characterized a family with asthenozoospermia and abnormal sperm morphology as a result of a variant in the enolase 4 (ENO4) gene. METHODS: Computer-assisted semen analysis, papanicolaou smear staining and scanning electron microscopy were used to examine sperm motility and morphology for semen analysis in patients. For genetic analysis, whole-exome sequencing followed by Sanger sequencing was performed. RESULTS: Two brothers in a consanguineous family were being clinically investigated for sperm motility and morphology issues. Genetic analysis by whole-exome sequencing revealed a homozygous variant [c.293A>G, p.(Lys98Arg)] in the ENO4 gene that segregated with infertility in the family, shared by affected but not controls. CONCLUSIONS: In view of the association of asthenozoospermia and abnormal sperm morphology in Eno4 knockout mice, we consider this to be the first report describing the involvement of ENO4 gene in human male infertility. We also explore the possible involvement of another variant in explaining other phenotypic features in this family.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Ratones , Animales , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/metabolismo , Semen/metabolismo , Motilidad Espermática/genética , Espermatozoides/fisiología , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Ratones Noqueados , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo
15.
Biol Reprod ; 110(4): 684-697, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38145487

RESUMEN

The protein kinase A (PKA) signaling pathway, which mediates protein phosphorylation, is important for sperm motility and male fertility. This process relies on A-kinase anchoring proteins that organize PKA and its signalosomes within specific subcellular compartments. Previously, it was found that the absence of A-kinase anchoring protein 3 (AKAP3) leads to multiple morphological abnormalities in mouse sperm. But how AKAP3 regulates sperm motility is yet to be elucidated. AKAP3 has two amphipathic domains, here named dual and RI, in its N-terminus. These domains are responsible for binding regulatory subunits I alpha (RIα) and II alpha (RIIα) of PKA and for RIα only, respectively. Here, we generated mutant mice lacking the dual and RI domains of AKAP3. It was found that the deletion of these domains caused male mouse infertile, accompanied by mild defects in the fibrous sheath of sperm tails. Additionally, the levels of serine/threonine phosphorylation of PKA substrates and tyrosine phosphorylation decreased in the mutant sperm, which exhibited a defect in hyperactivation under capacitation conditions. The protein levels of PKA subunits remained unchanged. But, interestingly, the regulatory subunit RIα was mis-localized from principal piece to midpiece of sperm tail, whereas this was not observed for RIIα. Further protein-protein interaction assays revealed a preference for AKAP3 to bind RIα over RIIα. Collectively, our findings suggest that AKAP3 is important for sperm hyperactivity by regulating type-I PKA signaling pathway mediated protein phosphorylation via its dual and RI domains.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Proteína Quinasa Tipo I Dependiente de AMP Cíclico , Motilidad Espermática , Animales , Masculino , Ratones , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteína Quinasa Tipo I Dependiente de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fertilidad/genética , Semen/metabolismo , Transducción de Señal/fisiología , Motilidad Espermática/genética , Espermatozoides/metabolismo , Capacitación Espermática/genética
16.
Theriogenology ; 208: 43-51, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295289

RESUMEN

The objectives of this study were to establish baseline information for seminal traits in Lusitano stallions, to assess the impact of inbreeding, interval between collections and age on semen quality during the breeding and non-breeding seasons, and to estimate the corresponding genetic parameters. A total of 2129 ejaculates by 146 Lusitano stallions used for artificial insemination, obtained from four equine reproduction centers distributed throughout Portugal, over a period of 14 years (2008-2021), were included in the study. The seminal traits analyzed, and the corresponding means and standard deviations, were gel-free volume (56.95 ± 28.76 mL), concentration (186.48 ± 104.68 × 106), motility (64.1 ± 16.9%), total number of spermatozoa (TNS) (9.271 ± 4.956 × 109) and total number of motile spermatozoa per ejaculate (TNMS) (5.897 ± 3.587 × 109). These results are in the normal range of values described for other breeds. In the stallions analyzed, the mean value for the inbreeding coefficient was 7.93 ± 5.29%, and for age it was 12.70 ± 6.83 years. A significant decline in sperm concentration, motility, TNS, and TNMS was observed as inbreeding increased. The season also influenced sperm concentration, motility, TNS and TNMS, with the highest values observed during the breeding season. When considering the impact of age on Lusitano seminal parameters, results showed a nonlinear relationship, with a positive effect until 18 years of age for volume, motility, TNS and TNMS and a negative effect after this age, with a slow decrease. However, age had a markedly negative effect on sperm concentration. The interval between semen collections only affected (P < 0.05) sperm motility, with a regression coefficient of +1.89 ± 2.17% per additional day. Genetic parameters were estimated with an Animal Model, and the estimated heritability (repeatability) was 0.27 (0.35) for volume, 0.02 (0.38) for sperm concentration, 0.24 (0.44) for motility, 0.29 (0.39) for TNS and 0.41 (0.41) for TNMS. These results suggest that it is possible to improve semen quality by selection and that the properties of semen produced by a stallion tend to remain consistent throughout its lifetime. Furthermore, the impact of inbreeding should be taken into consideration when selecting Lusitano stallions for fertility.


Asunto(s)
Endogamia , Análisis de Semen , Masculino , Animales , Caballos/genética , Análisis de Semen/veterinaria , Semen , Motilidad Espermática/genética , Recuento de Espermatozoides/veterinaria
17.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047838

RESUMEN

Obesity is a pathophysiological disorder associated with adiposity accumulation, oxidative stress, and chronic inflammation state that is progressively increasing in younger population worldwide, negatively affecting male reproductive skills. An emerging topic in the field of male reproduction is circRNAs, covalently closed RNA molecules produced by backsplicing, actively involved in a successful spermatogenesis and in establishing high-quality sperm parameters. However, a direct correlation between obesity and impaired circRNA cargo in spermatozoa (SPZ) remains unclear. In the current work, using C57BL6/J male mice fed with a high-fat diet (HFD, 60% fat) as experimental model of oxidative stress, we investigated the impact of HFD on sperm morphology and motility as well as on spermatic circRNAs. We performed a complete dataset of spermatic circRNA content by a microarray strategy, and differentially expressed (DE)-circRNAs were identified. Using a circRNA/miRNA/target network (ceRNET) analysis, we identified circRNAs potentially involved in oxidative stress and sperm motility pathways. Interestingly, we demonstrated an enhanced skill of HFD sperm in backsplicing activity together with an inefficient epididymal circRNA biogenesis. Fused protein in sarcoma (FUS) and its ability to recruit quaking (QKI) could be involved in orchestrating such mechanism.


Asunto(s)
Epidídimo , ARN Circular , Masculino , Animales , Ratones , ARN Circular/genética , ARN Circular/metabolismo , Semen , Motilidad Espermática/genética , Espermatozoides/metabolismo , Obesidad/genética , Obesidad/complicaciones
18.
Dev Growth Differ ; 65(3): 144-152, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36856665

RESUMEN

Sperm motility-initiating substance (SMIS) is an oviductal protein critical for internal fertilization in urodeles. It contributes to the establishment of various reproductive modes in amphibians and is thus a unique research model for the gene evolution of gamete-recognizing ligands that have diversified among animal species. In this study, a paralogous SMIS gene, smis2, was identified via the RNA sequencing of the oviduct of the newt, Cynops pyrrhogaster. The base sequence of the smis2 gene was homologous (˃90%) to that of the original smis gene (smis1), and deduced amino acid sequences of both genes conserved six cysteine residues essential for the cysteine knot motif. Furthermore, smis2 complementary DNA was identified in the oviduct of Cynops ensicauda, and the base substitution patterns also suggested that the smis gene was duplicated in the Salamandridae. Nonsynonymous/synonymous substitution ratios of smis1 and smis2 genes were 0.79 and 2.6, respectively, suggesting that smis2 gene evolution was independently driven by positive selection. Amino acid substitutions were concentrated in the cysteine knot motif of SMIS2. The smis2 gene was expressed in some organs in addition to the oviduct; in contrast, SMIS1 was only expressed in the oviduct. The SMIS2 protein was suggested to be produced and secreted at least in the oviduct and redundantly act in sperm. These results suggest that smis1 plays the original role in the oviduct, whereas smis2 may undergo neofunctionalization, which rarely occurs in gene evolution.


Asunto(s)
Cisteína , Motilidad Espermática , Animales , Masculino , Motilidad Espermática/genética , Cisteína/metabolismo , Semen , Fertilización , Salamandridae/genética , Salamandridae/metabolismo
19.
Cell Death Dis ; 14(2): 127, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792588

RESUMEN

The axonemal dynein arms (outer (ODA) and inner dynein arms (IDAs)) are multiprotein structures organized by light, intermediate, light intermediate (LIC), and heavy chain proteins. They hydrolyze ATP to promote ciliary and flagellar movement. Till now, a variety of dynein protein deficiencies have been linked with asthenospermia (ASZ), highlighting the significance of these structures in human sperm motility. Herein, we detected bi-allelic DNALI1 mutations [c.663_666del (p.Glu221fs)], in an ASZ patient, which resulted in the complete loss of the DNALI1 in the patient's sperm. We identified loss of sperm DNAH1 and DNAH7 rather than DNAH10 in both DNALI1663_666del patient and Dnali1-/- mice, demonstrating that mammalian DNALI1 is a LIC protein of a partial IDA subspecies. More importantly, we revealed that DNALI1 loss contributed to asymmetries in the most fibrous sheath (FS) of the sperm flagellum in both species. Immunoprecipitation revealed that DNALI1 might interact with the cytoplasmic dynein complex proteins in the testes. Furthermore, DNALI1 loss severely disrupted the transport and assembly of the FS proteins, especially AKAP3 and AKAP4, during flagellogenesis. Hence, DNALI1 may possess a non-classical molecular function, whereby it regulates the cytoplasmic dynein complex that assembles the flagella. We conclude that a DNALI deficiency-induced IDAs injury and an asymmetric FS-driven tail rigid structure alteration may simultaneously cause flagellum immotility. Finally, intracytoplasmic sperm injection (ICSI) can effectively resolve patient infertility. Collectively, we demonstrate that DNALI1 is a newly causative gene for AZS in both humans and mice, which possesses multiple crucial roles in modulating flagellar assembly and motility.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Animales , Humanos , Masculino , Ratones , Proteínas de Anclaje a la Quinasa A/metabolismo , Astenozoospermia/genética , Astenozoospermia/complicaciones , Astenozoospermia/metabolismo , Dineínas Axonemales/genética , Dineínas Axonemales/metabolismo , Dineínas Citoplasmáticas/metabolismo , Dineínas/genética , Dineínas/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Mamíferos , Mutación , Proteínas/metabolismo , Semen/metabolismo , Motilidad Espermática/genética , Cola del Espermatozoide/metabolismo
20.
J Med Genet ; 60(2): 154-162, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35534203

RESUMEN

BACKGROUND: Asthenozoospermia is a major factor contributing to male infertility. The mitochondrial sheath (MS), an important organelle in the midpiece of spermatozoa, is crucial to sperm motility. ARMC12 is a mitochondrial peripheral membrane protein. Deletion of Armc12 impairs the arrangement of MS and causes infertility in mice. However, the role of ARMC12 in human asthenozoospermia remains unknown. OBJECTIVE: To study the genetic defects in patients with asthenozoospermia. METHODS: A total of 125 patients with asthenozoospermia and 120 men with proven fertility were recruited. Whole-exome sequencing and Sanger sequencing were performed for genetic analysis. Papanicolaou staining, HE staining, immunofluorescent staining, transmission electron microscopy and field emission scanning electron microscopy were employed to observe the morphological and structural defects of the spermatozoa and testes. Armc12-knockout mice were generated using the CRISPR-Cas9 system. Intracytoplasmic sperm injection was used to treat the patients. RESULTS: Biallelic ARMC12 mutations were identified in three patients, including homozygous mutations in two siblings from a consanguineous family and compound heterozygous mutations in one sporadic patient. ARMC12 is mainly expressed in the midpiece of elongated and late spermatids in the human testis. The patients' spermatozoa displayed multiple midpiece defects, including absent MS and central pair, scattered or forked axoneme and incomplete plasma membrane. Spermatozoa from Armc12-/- mice showed parallel defects in the midpiece. Moreover, two patients were treated with intracytoplasmic sperm injection and achieved good outcomes. CONCLUSION: Our findings prove for the first time that defects in ARMC12 cause asthenozoospermia and multiple midpiece defects in humans.


Asunto(s)
Proteínas del Dominio Armadillo , Astenozoospermia , Infertilidad Masculina , Animales , Humanos , Masculino , Ratones , Astenozoospermia/genética , Infertilidad Masculina/genética , Ratones Noqueados , Mutación , Semen , Motilidad Espermática/genética , Espermatozoides , Testículo , Proteínas del Dominio Armadillo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA