Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.178
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3940, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750036

RESUMEN

Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.


Asunto(s)
Desdiferenciación Celular , Diferenciación Celular , Células Epiteliales , Hepatocitos , Animales , Hepatocitos/citología , Hepatocitos/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ratones , Organoides/citología , Organoides/metabolismo , Transición Epitelial-Mesenquimal , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Células Cultivadas , Transducción de Señal , Vimentina/metabolismo , Vía de Señalización Hippo , Hígado/citología , Hígado/metabolismo , Ratones Endogámicos C57BL , Masculino , Técnicas de Cultivo de Célula/métodos
2.
Stem Cell Res Ther ; 15(1): 155, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816841

RESUMEN

In the past decade, intestinal organoid technology has paved the way for reproducing tissue or organ morphogenesis during intestinal physiological processes in vitro and studying the pathogenesis of various intestinal diseases. Intestinal organoids are favored in drug screening due to their ability for high-throughput in vitro cultivation and their closer resemblance to patient genetic characteristics. Furthermore, as disease models, intestinal organoids find wide applications in screening diagnostic markers, identifying therapeutic targets, and exploring epigenetic mechanisms of diseases. Additionally, as a transplantable cellular system, organoids have played a significant role in the reconstruction of damaged epithelium in conditions such as ulcerative colitis and short bowel syndrome, as well as in intestinal material exchange and metabolic function restoration. The rise of interdisciplinary approaches, including organoid-on-chip technology, genome editing techniques, and microfluidics, has greatly accelerated the development of organoids. In this review, VOSviewer software is used to visualize hot co-cited journal and keywords trends of intestinal organoid firstly. Subsequently, we have summarized the current applications of intestinal organoid technology in disease modeling, drug screening, and regenerative medicine. This will deepen our understanding of intestinal organoids and further explore the physiological mechanisms of the intestine and drug development for intestinal diseases.


Asunto(s)
Organoides , Organoides/metabolismo , Organoides/citología , Humanos , Intestinos/citología , Animales , Medicina Regenerativa/métodos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología
3.
Stem Cell Res Ther ; 15(1): 125, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679715

RESUMEN

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for leukemia and a range of non-malignant disorders. The success of the therapy is hampered by occurrence of acute graft-versus-host disease (aGvHD); an inflammatory response damaging recipient organs, with gut, liver, and skin being the most susceptible. Intestinal GvHD injury is often a life-threatening complication in patients unresponsive to steroid treatment. Allogeneic mesenchymal stromal/stem cell (MSC) infusions are a promising potential treatment for steroid-resistant aGvHD. Data from our institution and others demonstrate rescue of approximately 40-50% of aGvHD patients with MSCs in Phase I, II studies and minor side effects. Although promising, better understanding of MSC mode of action and patient response to MSC-based therapy is essential to improve this lifesaving treatment. METHODS: Single cell human small intestine organoids were embedded in Matrigel, grown for 5 days and treated with busulfan for 48 h. Organoids damaged by treatment with busulfan or control organoids were co-cultured with 5000, 10,000, and 50,000 MSCs for 24 h, 48 h or 7 days and the analyses such as surface area determination, proliferation and apoptosis assessment, RNA sequencing and proteomics were performed. RESULTS: Here, we developed a 3D co-culture model of human small intestinal organoids and MSCs, which allows to study the regenerative effects of MSCs on intestinal epithelium in a more physiologically relevant setting than existing in vitro systems. Using this model we mimicked chemotherapy-mediated damage of the intestinal epithelium. The treatment with busulfan, the chemotherapeutic commonly used as conditioning regiment before the HSCT, affected pathways regulating epithelial to mesenchymal transition, proliferation, and apoptosis in small intestinal organoids, as shown by transcriptomic and proteomic analysis. The co-culture of busulfan-treated intestinal organoids with MSCs reversed the effects of busulfan on the transcriptome and proteome of intestinal epithelium, which we also confirmed by functional evaluation of proliferation and apoptosis. CONCLUSIONS: Collectively, we demonstrate that our in vitro co-culture system is a new valuable tool to facilitate the investigation of the molecular mechanisms behind the therapeutic effects of MSCs on damaged intestinal epithelium. This could benefit further optimization of the use of MSCs in HSCT patients.


Asunto(s)
Mucosa Intestinal , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Regeneración/efectos de los fármacos , Organoides/metabolismo , Técnicas de Cocultivo , Enfermedad Injerto contra Huésped/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Busulfano/farmacología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
4.
Nature ; 628(8009): 854-862, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570678

RESUMEN

The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.


Asunto(s)
Mucosa Intestinal , Membrana Mucosa , Linfocitos T Reguladores , Animales , Femenino , Masculino , Ratones , Antígenos CD/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica , Helicobacter hepaticus/inmunología , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Tolerancia Inmunológica/inmunología , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Cadenas alfa de Integrinas/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/inmunología , Análisis de Expresión Génica de una Sola Célula , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/citología , Transcriptoma
5.
Nature ; 629(8012): 669-678, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600382

RESUMEN

Interleukin 22 (IL-22) has a non-redundant role in immune defence of the intestinal barrier1-3. T cells, but not innate lymphoid cells, have an indispensable role in sustaining the IL-22 signalling that is required for the protection of colonic crypts against invasion during infection by the enteropathogen Citrobacter rodentium4 (Cr). However, the intestinal epithelial cell (IEC) subsets targeted by T cell-derived IL-22, and how T cell-derived IL-22 sustains activation in IECs, remain undefined. Here we identify a subset of absorptive IECs in the mid-distal colon that are specifically targeted by Cr and are differentially responsive to IL-22 signalling. Major histocompatibility complex class II (MHCII) expression by these colonocytes was required to elicit sustained IL-22 signalling from Cr-specific T cells, which was required to restrain Cr invasion. Our findings explain the basis for the regionalization of the host response to Cr and demonstrate that epithelial cells must elicit MHCII-dependent help from IL-22-producing T cells to orchestrate immune protection in the intestine.


Asunto(s)
Citrobacter rodentium , Colon , Células Epiteliales , Mucosa Intestinal , Linfocitos T , Animales , Femenino , Masculino , Ratones , Citrobacter rodentium/inmunología , Colon/citología , Colon/inmunología , Colon/microbiología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Interleucina-22/inmunología , Interleucina-22/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/citología , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
6.
Poult Sci ; 103(5): 103582, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457989

RESUMEN

Small peptides are nutrients and bioactive molecules that have dual regulatory effects on nutrition and physiology. They are of great significance for maintaining the intestinal health and production performance of broilers. We here cultured the primary small intestinal epithelial cells (IEC) of chicken in a medium containing L-Leu (Leu) and L-Leu-L-Leu (Leu-Leu) for 24 h. The untreated cells were considered as the control group. The growth, proliferation, and apoptosis of IEC were examined. By combining RNA-seq and label-free sequencing technology, candidate genes, proteins, and pathways related to the growth, proliferation, and apoptosis of IEC were screened. Immunofluorescence detection revealed that the purity of the isolated primary IEC was >90%. The Leu-Leu group significantly promoted IEC growth and proliferation and significantly inhibited IEC apoptosis, and the effect was better than those of the Leu and control groups. Using transcriptome sequencing, four candidate genes, CCL20, IL8L1, IL8, and IL6, were screened in the Leu group, and one candidate gene, IL8, was screened in the Leu-Leu group. Two candidate genes, IL6 and RGN, were screened in the Leu-Leu group compared with the Leu group. Nonquantitative proteomic marker sequencing results revealed that through the screening of candidate proteins and pathways, found one growth-related candidate protein PGM3 and three proliferation-related candidate proteins RPS17, RPS11, and RPL23, and two apoptosis-related candidate proteins GPX4 and PDPK1 were found in the Leu-Leu group compared with Leu group. In short, Leu-Leu could promote IEC growth and proliferation and inhibit IEC apoptosis. On combining transcriptome and proteome sequencing technologies, multiple immune- and energy-related regulatory signal pathways were found to be related to IEC growth, proliferation, and apoptosis. Three candidate genes of IL8, IL6, and RGN were identified, and six candidate proteins of PGM3, RPS17, RPS11, RPL23, GPX4, and PDPK1 were involved in IEC growth, proliferation, and apoptosis. The results provide valuable data for preliminarily elucidating small peptide-mediated IEC regulation pathways, improving the small peptide nutrition theoretical system, and establishing small peptide nutrition regulation technology.


Asunto(s)
Apoptosis , Proliferación Celular , Pollos , Células Epiteliales , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/citología , Intestino Delgado/citología , Intestino Delgado/efectos de los fármacos , Proteínas Aviares/genética , Proteínas Aviares/metabolismo
7.
Nature ; 627(8003): 399-406, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448581

RESUMEN

Immune cells rely on transient physical interactions with other immune and non-immune populations to regulate their function1. To study these 'kiss-and-run' interactions directly in vivo, we previously developed LIPSTIC (labelling immune partnerships by SorTagging intercellular contacts)2, an approach that uses enzymatic transfer of a labelled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ T helper cells and antigen-presenting cells, however. Here we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the steady-state cellular partners of regulatory T cells and identify germinal centre-resident T follicular helper cells on the basis of their ability to interact cognately with germinal centre B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalogue of the immune populations that physically interact with intestinal epithelial cells at the steady state and profile the evolution of the interactome of lymphocytic choriomeningitis virus-specific CD8+ T cells in multiple organs following systemic infection. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.


Asunto(s)
Linfocitos B , Linfocitos T CD8-positivos , Comunicación Celular , Células Dendríticas , Células Epiteliales , Células T Auxiliares Foliculares , Linfocitos T Reguladores , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Comunicación Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Ligandos , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Células T Auxiliares Foliculares/citología , Células T Auxiliares Foliculares/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Centro Germinal/citología , Análisis de Expresión Génica de una Sola Célula , Células Epiteliales/citología , Células Epiteliales/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Especificidad de Órganos
8.
Cell Prolif ; 57(6): e13602, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38386338

RESUMEN

Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.


Asunto(s)
Homeostasis , Mucosa Intestinal , Nutrientes , Células Madre , Humanos , Células Madre/metabolismo , Células Madre/citología , Animales , Nutrientes/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Proliferación Celular , Diferenciación Celular , Intestinos/citología , Vitamina D/metabolismo
9.
J Biol Chem ; 299(11): 105280, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742924

RESUMEN

The hypoxia-inducible factor (HIF) is a master regulator of the cellular transcriptional response to hypoxia. While the oxygen-sensitive regulation of HIF-1α subunit stability via the ubiquitin-proteasome pathway has been well described, less is known about how other oxygen-independent post-translational modifications impact the HIF pathway. SUMOylation, the attachment of SUMO (small ubiquitin-like modifier) proteins to a target protein, regulates the HIF pathway, although the impact of SUMO on HIF activity remains controversial. Here, we examined the effects of SUMOylation on the expression pattern of HIF-1α in response to pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) in intestinal epithelial cells. We evaluated the effects of SUMO-1, SUMO-2, and SUMO-3 overexpression and inhibition of SUMOylation using a novel selective inhibitor of the SUMO pathway, TAK-981, on the sensitivity of HIF-1α in Caco-2 intestinal epithelial cells. Our findings demonstrate that treatment with TAK-981 decreases global SUMO-1 and SUMO-2/3 modification and enhances HIF-1α protein levels, whereas SUMO-1 and SUMO-2/3 overexpression results in decreased HIF-1α protein levels in response to DMOG. Reporter assay analysis demonstrates reduced HIF-1α transcriptional activity in cells overexpressing SUMO-1 and SUMO-2/3, whereas pretreatment with TAK-981 increased HIF-1α transcriptional activity in response to DMOG. In addition, HIF-1α nuclear accumulation was decreased in cells overexpressing SUMO-1. Importantly, we showed that HIF-1α is not directly SUMOylated, but that SUMOylation affects HIF-1α stability and activity indirectly. Taken together, our results indicate that SUMOylation indirectly suppresses HIF-1α protein stability, transcriptional activity, and nuclear accumulation in intestinal epithelial cells.


Asunto(s)
Células Epiteliales , Subunidad alfa del Factor 1 Inducible por Hipoxia , Sumoilación , Humanos , Células CACO-2 , Células Epiteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sumoilación/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
10.
Nature ; 619(7970): 572-584, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468586

RESUMEN

The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.


Asunto(s)
Intestinos , Análisis de la Célula Individual , Humanos , Diferenciación Celular/genética , Cromatina/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Mucosa Intestinal/citología , Intestinos/citología , Intestinos/inmunología , Análisis de Expresión Génica de una Sola Célula
11.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511208

RESUMEN

The high-pathogenicity island (HPI) was initially identified in Yersinia and can be horizontally transferred to Escherichia coli to produce yersiniabactin (Ybt), which enhances the pathogenicity of E. coli by competing with the host for Fe3+. Pyroptosis is gasdermin-induced necrotic cell death. It involves the permeabilization of the cell membrane and is accompanied by an inflammatory response. It is still unclear whether Ybt HPI can cause intestinal epithelial cells to undergo pyroptosis and contribute to gut inflammation during E. coli infection. In this study, we infected intestinal epithelial cells of mice with E. coli ZB-1 and the Ybt-deficient strain ZB-1Δirp2. Our findings demonstrate that Ybt-producing E. coli is more toxic and exacerbates gut inflammation during systemic infection. Mechanistically, our results suggest the involvement of the NLRP3/caspase-1/GSDMD pathway in E. coli infection. Ybt promotes the assembly and activation of the NLRP3 inflammasome, leading to GSDMD cleavage into GSDMD-N and promoting the pyroptosis of intestinal epithelial cells, ultimately aggravating gut inflammation. Notably, NLRP3 knockdown alleviated these phenomena, and the binding of free Ybt to NLRP3 may be the trigger. Overall, our results show that Ybt HPI enhances the pathogenicity of E. coli and induces pyroptosis via the NLRP3 pathway, which is a new mechanism through which E. coli promotes gut inflammation. Furthermore, we screened drugs targeting NLRP3 from an existing drug library, providing a list of potential drug candidates for the treatment of gut injury caused by E. coli.


Asunto(s)
Células Epiteliales , Infecciones por Escherichia coli , Escherichia coli , Mucosa Intestinal , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Ratones , Enterocitos/metabolismo , Enterocitos/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología
12.
J Virol ; 96(18): e0096222, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36073923

RESUMEN

Intestinal stem cells (ISCs) play an important role in tissue repair after injury. A recent report delineates the effect of transmissible gastroenteritis virus (TGEV) infection on the small intestine of recovered pigs. However, the mechanism behind the epithelium regeneration upon TGEV infection remains unclear. To address this, we established a TGEV infection model based on the porcine intestinal organoid monolayer. The results illustrated that the porcine intestinal organoid monolayer was susceptible to TGEV. In addition, the TGEV infection initiated the interferon and inflammatory responses following the loss of absorptive enterocytes and goblet cells. However, TGEV infection did not disturb epithelial integrity but induced the proliferation of ISCs. Furthermore, TGEV infection activated the Wnt/ß-catenin pathway by upregulating the accumulation and nuclear translocation of ß-catenin, as well as promoting the expression of Wnt target genes, such as C-myc, Cyclin D1, Mmp7, Lgr5, and Sox9, which were associated with the self-renewal of ISCs. Collectively, these data demonstrated that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. IMPORTANCE The intestinal epithelium is a physical barrier to enteric viruses and commensal bacteria. It plays an essential role in maintaining the balance between the host and intestinal microenvironment. In addition, intestinal stem cells (ISCs) are responsible for tissue repair after injury. Therefore, prompt self-renewal of intestinal epithelium will facilitate the rebuilding of the physical barrier and maintain gut health. In the manuscript, we found that the transmissible gastroenteritis virus (TGEV) infection did not disturb epithelial integrity but induced the proliferation of ISCs and facilitated epithelium regeneration. Detailed mechanism investigations revealed that the TGEV infection activated the Wnt/ß-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. These findings will contribute to understanding the mechanism of intestinal epithelial regeneration and reparation upon viral infection.


Asunto(s)
Células Madre , Virus de la Gastroenteritis Transmisible , Animales , Ciclina D1/metabolismo , Interferones/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/virología , Metaloproteinasa 7 de la Matriz , Células Madre/citología , Células Madre/virología , Porcinos , Virus de la Gastroenteritis Transmisible/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
13.
Nat Commun ; 13(1): 715, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132078

RESUMEN

Organs are anatomically compartmentalised to cater for specialised functions. In the small intestine (SI), regionalisation enables sequential processing of food and nutrient absorption. While several studies indicate the critical importance of non-epithelial cells during development and homeostasis, the extent to which these cells contribute to regionalisation during morphogenesis remains unexplored. Here, we identify a mesenchymal-epithelial crosstalk that shapes the developing SI during late morphogenesis. We find that subepithelial mesenchymal cells are characterised by gradients of factors supporting Wnt signalling and stimulate epithelial growth in vitro. Such a gradient impacts epithelial gene expression and regional villus formation along the anterior-posterior axis of the SI. Notably, we further provide evidence that Wnt signalling directly regulates epithelial expression of Sonic Hedgehog (SHH), which, in turn, acts on mesenchymal cells to drive villi formation. Taken together our results uncover a mechanistic link between Wnt and Hedgehog signalling across different cellular compartments that is central for anterior-posterior regionalisation and correct formation of the SI.


Asunto(s)
Proteínas Hedgehog/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/embriología , Células Madre Mesenquimatosas/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Mucosa Intestinal/citología , Mucosa Intestinal/embriología , Intestino Delgado/citología , Intestino Delgado/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Morfogénesis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Vía de Señalización Wnt/genética
14.
Commun Biol ; 5(1): 112, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132135

RESUMEN

Thyroid hormone (T3) regulates adult intestine development through T3 receptors (TRs). It is difficult to study TR function during postembryonic intestinal maturation in mammals due to maternal influence. We chose intestinal remodeling during Xenopus tropicalis metamorphosis as a model to study TR function in adult organ development. By using ChIP (chromatin immunoprecipitation)-Seq, we identified over 3000 TR-bound genes in the intestine of premetamorphic wild type or TRα (the major TR expressed during premetamorphosis)-knockout tadpoles. Surprisingly, cell cycle-related GO (gene ontology) terms and biological pathways were highly enriched among TR target genes even though the first major event during intestinal metamorphosis is larval epithelial cell death, and TRα knockout drastically reduced this enrichment. More importantly, treatment of tadpoles with cell cycle inhibitors blocked T3-induced intestinal remodeling, especially larval epithelial cell death, suggesting that TRα-dependent activation of cell cycle is important for T3-induced apoptosis during intestinal remodeling.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Muerte Celular/fisiología , Células Epiteliales/fisiología , Mucosa Intestinal/citología , Receptores alfa de Hormona Tiroidea/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Proteína Quinasa CDC2/genética , Muerte Celular/genética , Eliminación de Gen , Regulación de la Expresión Génica/fisiología , Mucosa Intestinal/fisiología , Larva/fisiología , Receptores alfa de Hormona Tiroidea/genética , Hormonas Tiroideas/genética , Xenopus
15.
Nat Commun ; 13(1): 693, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121734

RESUMEN

Intracellular pathogens are challenged with limited space and resources while replicating in a single host cell. Mechanisms for direct invasion of neighboring host cells have been discovered in cell culture, but we lack an understanding of how bacteria directly spread between host cells in vivo. Here, we describe the discovery of intracellular bacteria that use filamentation for spreading between the intestinal epithelial cells of a natural host, the rhabditid nematode Oscheius tipulae. The bacteria, which belong to the new species Bordetella atropi, can infect the nematodes following a fecal-oral route, and reduce host life span and fecundity. Filamentation requires UDP-glucose biosynthesis and sensing, a highly conserved pathway that is used by other bacteria to detect rich conditions and inhibit cell division. Our results indicate that B. atropi uses a pathway that normally regulates bacterial cell size to trigger filamentation inside host cells, thus facilitating cell-to-cell dissemination.


Asunto(s)
Bordetella/crecimiento & desarrollo , Mucosa Intestinal/citología , Rhabditoidea/citología , Animales , Bordetella/clasificación , Bordetella/patogenicidad , División Celular/genética , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Genoma Bacteriano/genética , Interacciones Huésped-Patógeno , Hibridación Fluorescente in Situ , Mucosa Intestinal/microbiología , Espacio Intracelular/microbiología , Redes y Vías Metabólicas/genética , Microscopía Electrónica de Transmisión , Filogenia , ARN Ribosómico 16S/genética , Rhabditoidea/genética , Rhabditoidea/microbiología , Análisis de Secuencia de ADN , Virulencia
16.
PLoS One ; 17(2): e0262855, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35108315

RESUMEN

The incidence of nonalcoholic fatty liver disease (NAFLD) in postmenopausal women has increased significantly. Estrogen plays a very important role in NAFLD, but whether NAFLD in premenopausal women was caused by estrogen deficiency was unknown. Thus, it is of great clinical significance to explore the mechanism of NAFLD in premenopausal women. Gut microbiota and its metabolites short chain fatty acids (SCFA) have been shown to play important roles in the development of NAFLD. In this study, we investigated the impact of gut microbiota and SCFA in NAFLD patients and mice caused by estrogen deficiency. We showed that premenopause NAFLD patients had much lower estrogen levels. Estrogen deficient mice, due to ovariectomy (OVX), suffered more severe liver steatosis with an elevated body weight, abdominal fat weight, serum triglycerides and deterioration in hepatic steatosis. Altered gut microbiota composition and decreased butyrate content were found in NAFLD patients and in OVX mice. Furthermore, fecal microbiota transplantation (FMT) or supplementing with butyrate alleviated NAFLD in OVX mice. The production of antimicrobial peptides (AMP) Reg3É£, ß-defensins and the expression of intestinal epithelial tight junction, including ZO-1 and Occluding-5, were decreased in the OVX mice compared to control mice. Upregulation of PPAR-É£ and VLDLR, downregulation of PPAR-ɑ indicated that OVX mice suffered from abnormal lipid metabolism. These data indicate that changes in the gut microbiota and SCFA caused by estrogen reduction, together with a disorder in AMP production and lipid metabolism, promote NAFLD, thus provide SCFAs derived from microbiota as new therapeutic targets for the clinical prevention and treatment of NAFLD.


Asunto(s)
Butiratos/metabolismo , Estrógenos/metabolismo , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico/patología , Adulto , Animales , Defensinas/genética , Defensinas/metabolismo , Modelos Animales de Enfermedad , Estrógenos/deficiencia , Ácidos Grasos Volátiles/metabolismo , Trasplante de Microbiota Fecal , Femenino , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Ovariectomía , Premenopausia , Triglicéridos/sangre , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
17.
Nat Commun ; 13(1): 874, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169117

RESUMEN

IL-18 is emerging as an IL-22-induced and epithelium-derived cytokine which contributes to host defence against intestinal infection and inflammation. In contrast to its known role in Goblet cells, regulation of barrier function at the molecular level by IL-18 is much less explored. Here we show that IL-18 is a bona fide IL-22-regulated gate keeper for intestinal epithelial barrier. IL-22 promotes crypt immunity both via induction of phospho-Stat3 binding to the Il-18 gene promoter and via Il-18 independent mechanisms. In organoid culture, while IL-22 primarily increases organoid size and inhibits expression of stem cell genes, IL-18 preferentially promotes organoid budding and induces signature genes of Lgr5+ stem cells via Akt-Tcf4 signalling. During adherent-invasive E. coli (AIEC) infection, systemic administration of IL-18 corrects compromised T-cell IFNγ production and restores Lysozyme+ Paneth cells in Il-22-/- mice, but IL-22 administration fails to restore these parameters in Il-18-/- mice, thereby placing IL-22-Stat3 signalling upstream of the IL-18-mediated barrier defence function. IL-18 in return regulates Stat3-mediated anti-microbial response in Paneth cells, Akt-Tcf4-triggered expansion of Lgr5+ stem cells to facilitate tissue repair, and AIEC clearance by promoting IFNγ+ T cells.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Inmunidad Mucosa/inmunología , Interleucina-18/inmunología , Interleucinas/inmunología , Mucosa Intestinal/inmunología , Animales , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/patología , Disbiosis/microbiología , Escherichia coli/inmunología , Interferón gamma/inmunología , Interleucina-18/genética , Mucosa Intestinal/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Muramidasa/metabolismo , Organoides , Células de Paneth/inmunología , Regiones Promotoras Genéticas/genética , Factor de Transcripción STAT3/metabolismo , Uniones Estrechas/inmunología , Interleucina-22
18.
J Radiat Res ; 63(2): 149-157, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021216

RESUMEN

Intestinal stem cells (ISCs) are essential for the regeneration of intestinal cells upon radiation or chemical agent damage. As for radiation-induced damage, the expression of AIM2, YAP, TLR3, PUMA or BVES can aggravate ISCs depletion, while the stimulation of TLR5, HGF/MET signaling, Ass1 gene, Slit/Robo signaling facilitate the radio-resistance of ISCs. Upon chemical agent treatment, the activation of TRAIL or p53/PUMA pathway exacerbate injury on ISCs, while the increased levels of IL-22, ß-arrestin1 can ease the damage. The transformation between reserve ISCs (rISCs) maintaining quiescent states and active ISCs (aISCs) that are highly proliferative has obtained much attention in recent years, in which ISCs expressing high levels of Hopx, Bmi1, mTert, Krt19 or Lrig1 are resistant to radiation injury, and SOX9, MSI2, clusterin, URI are essential for rISCs maintenance. The differentiated cells like Paneth cells and enteroendocrine cells can also obtain stemness driven by radiation injury mediated by Wnt or Notch signaling. Besides, Mex3a-expressed ISCs can survive and then proliferate into intestinal epithelial cells upon chemical agent damage. In addition, the modulation of symbiotic microbes harboring gastrointestinal (GI) tract is also a promising strategy to protect ISCs against radiation damage. Overall, the strategies targeting mechanisms modulating ISCs activities are conducive to alleviating GI injury of patients receiving chemoradiotherapy or victims of nuclear or chemical accident.


Asunto(s)
Mucosa Intestinal , Células Madre , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos , Mucosa Intestinal/citología , Intestinos/citología , Proteínas Musculares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Células Madre/efectos de los fármacos , Células Madre/efectos de la radiación
19.
J Immunol ; 208(3): 745-752, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35031577

RESUMEN

Cystic fibrosis (CF) is an inherited life-threatening disease accompanied by repeated lung infections and multiorgan inflammation that affects tens of thousands of people worldwide. The causative gene, cystic fibrosis transmembrane conductance regulator (CFTR), is mutated in CF patients. CFTR functions in epithelial cells have traditionally been thought to cause the disease symptoms. Recent work has shown an additional defect: monocytes from CF patients show a deficiency in integrin activation and adhesion. Because monocytes play critical roles in controlling infections, defective monocyte function may contribute to CF progression. In this study, we demonstrate that monocytes from CFTRΔF508 mice (CF mice) show defective adhesion under flow. Transplanting CF mice with wild-type (WT) bone marrow after sublethal irradiation replaced most (60-80%) CF monocytes with WT monocytes, significantly improved survival, and reduced inflammation. WT/CF mixed bone marrow chimeras directly demonstrated defective CF monocyte recruitment to the bronchoalveolar lavage and the intestinal lamina propria in vivo. WT mice reconstituted with CF bone marrow also show lethality, suggesting that the CF defect in monocytes is not only necessary but also sufficient to cause disease. We also show that monocyte-specific knockout of CFTR retards weight gains and exacerbates dextran sulfate sodium-induced colitis. Our findings show that providing WT monocytes by bone marrow transfer rescues mortality in CF mice, suggesting that similar approaches may mitigate disease in CF patients.


Asunto(s)
Adhesión Celular/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/terapia , Monocitos/inmunología , Monocitos/trasplante , Animales , Trasplante de Médula Ósea , Líquido del Lavado Bronquioalveolar/citología , Colitis/patología , Fibrosis Quística/patología , Integrinas/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Ratones , Ratones Endogámicos C57BL
20.
Cell Rep ; 38(1): 110179, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986353

RESUMEN

G protein-coupled receptors (GPCRs) in intestinal enteroendocrine cells (EECs) respond to nutritional, neural, and microbial cues and modulate the release of gut hormones. Here we show that Gpr17, an orphan GPCR, is co-expressed in glucagon-like peptide-1 (GLP-1)-expressing EECs in human and rodent intestinal epithelium. Acute genetic ablation of Gpr17 in intestinal epithelium improves glucose tolerance and glucose-stimulated insulin secretion (GSIS). Importantly, inducible knockout (iKO) mice and Gpr17 null intestinal organoids respond to glucose or lipid ingestion with increased secretion of GLP-1, but not the other incretin glucose-dependent insulinotropic polypeptide (GIP). In an in vitro EEC model, overexpression or agonism of Gpr17 reduces voltage-gated calcium currents and decreases cyclic AMP (cAMP) production, and these are two critical factors regulating GLP-1 secretion. Together, our work shows that intestinal Gpr17 signaling functions as an inhibitory pathway for GLP-1 secretion in EECs, suggesting intestinal GPR17 is a potential target for diabetes and obesity intervention.


Asunto(s)
Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Mucosa Intestinal/metabolismo , Proteínas del Tejido Nervioso/genética , Receptores Acoplados a Proteínas G/genética , Animales , Glucemia/análisis , Calcio/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Diabetes Mellitus/patología , Femenino , Polipéptido Inhibidor Gástrico/metabolismo , Prueba de Tolerancia a la Glucosa , Células HEK293 , Células HeLa , Humanos , Incretinas/metabolismo , Insulina/metabolismo , Secreción de Insulina/fisiología , Mucosa Intestinal/citología , Masculino , Ratones , Ratones Noqueados , Obesidad/patología , Receptores de la Hormona Gastrointestinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA