Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Clinics (Sao Paulo) ; 78: 100159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36774732

RESUMEN

OBJECTIVE: Amygdala has been demonstrated as one of the brain sites involved in the control of cardiorespiratory functioning. The structural and physiological alterations induced by epileptic activity are also present in the amygdala and reflect functional changes that may be directly associated with a sudden unexpected death. Seizures are always associated with neuronal damage and changes in the expression of cation-chloride cotransporters and Na/K pumps. In this study, the authors aimed to investigate if these changes are present in the amygdala after induction of status epilepticus with pilocarpine, which may be directly correlated with Sudden Unexpected Death in Epilepsy (SUDEP). METHODS: Pilocarpine-treated wistar rats 60 days after Status Epilepticus (SE) were compared with control rats. Amygdala nuclei of brain slices immunostained for NKCC1, KCC2 and α1-Na+/K+-ATPase, were quantified by optical densitometry. RESULTS: The amygdaloid complex of the animals submitted to SE had no significant difference in the NKCC1 immunoreactivity, but KCC2 immunoreactivity reduced drastically in the peri-somatic sites and in the dendritic-like processes. The α1-Na+/K+-ATPase peri-somatic immunoreactivity was intense in the rats submitted to pilocarpine SE when compared with control rats. The pilocarpine SE also promoted intense GFAP staining, specifically in the basolateral and baso-medial nuclei with astrogliosis and cellular debris deposition. INTERPRETATION: The findings revealed that SE induces lesion changes in the expression of KCC2 and α1-Na+/K+-ATPase meaning intense change in the chloride regulation in the amygdaloid complex. These changes may contribute to cardiorespiratory dysfunction leading to SUDEP.


Asunto(s)
Amígdala del Cerebelo , Estado Epiléptico , Muerte Súbita e Inesperada en la Epilepsia , Animales , Ratas , Adenosina Trifosfatasas/metabolismo , Amígdala del Cerebelo/patología , Cloruros/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Homeostasis , Pilocarpina/efectos adversos , Ratas Wistar , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Muerte Súbita e Inesperada en la Epilepsia/patología , Simportadores/metabolismo
2.
Nat Commun ; 13(1): 161, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013317

RESUMEN

Dravet syndrome is a severe epileptic encephalopathy caused primarily by haploinsufficiency of the SCN1A gene. Repetitive seizures can lead to endurable and untreatable neurological deficits. Whether this severe pathology is reversible after symptom onset remains unknown. To address this question, we generated a Scn1a conditional knock-in mouse model (Scn1a Stop/+) in which Scn1a expression can be re-activated on-demand during the mouse lifetime. Scn1a gene disruption leads to the development of seizures, often associated with sudden unexpected death in epilepsy (SUDEP) and behavioral alterations including hyperactivity, social interaction deficits and cognitive impairment starting from the second/third week of age. However, we showed that Scn1a gene re-activation when symptoms were already manifested (P30) led to a complete rescue of both spontaneous and thermic inducible seizures, marked amelioration of behavioral abnormalities and normalization of hippocampal fast-spiking interneuron firing. We also identified dramatic gene expression alterations, including those associated with astrogliosis in Dravet syndrome mice, that, accordingly, were rescued by Scn1a gene expression normalization at P30. Interestingly, regaining of Nav1.1 physiological level rescued seizures also in adult Dravet syndrome mice (P90) after months of repetitive attacks. Overall, these findings represent a solid proof-of-concept highlighting that disease phenotype reversibility can be achieved when Scn1a gene activity is efficiently reconstituted in brain cells.


Asunto(s)
Disfunción Cognitiva/genética , Epilepsias Mioclónicas/genética , Hipocampo/metabolismo , Interneuronas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/genética , Muerte Súbita e Inesperada en la Epilepsia/prevención & control , Potenciales de Acción/fisiología , Animales , Cerebelo/metabolismo , Cerebelo/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/prevención & control , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/fisiopatología , Epilepsias Mioclónicas/prevención & control , Técnicas de Sustitución del Gen , Terapia Genética/métodos , Hipocampo/fisiopatología , Humanos , Interneuronas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/deficiencia , Muerte Súbita e Inesperada en la Epilepsia/patología
3.
Epilepsia ; 61(4): 787-797, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32243580

RESUMEN

OBJECTIVE: The "adenosine hypothesis of SUDEP" (sudden unexpected death in epilepsy) predicts that a seizure-induced adenosine surge combined with impaired metabolic clearance can foster lethal apnea or cardiac arrest. Changes in adenosine receptor density and adenosine kinase (ADK) occur in surgical epilepsy patients. Our aim was to correlate the distribution of ADK and adenosine A2A and A1 receptors (A2A R and A1 R) in surgical tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE/HS) with SUDEP risk factors. METHODS: In 75 cases, patients were stratified into high-risk (n = 16), medium-risk (n = 11) and low-risk (n = 48) categories according to the frequency of generalized seizures before surgery. Using whole-slide scanning Definiens image analysis we quantified the labeling index (LI) for ADK, A2A R, and A1 R in seven regions of interest: temporal cortex, temporal lobe white matter, CA1, CA4, dentate gyrus, subiculum, and amygdala and relative to glial and neuronal densities with glial fibrillary acidic protein (GFAP) and neuronal nuclear antigen (NeuN). RESULTS: A1 R showed predominant neuronal, A2A R astroglial, and ADK nuclear labeling in all regions but with significant variation. Compared with the low-risk group, the high-risk group had significantly lower A2A R LI in the temporal cortex. In HS cases with severe neuronal cell loss and gliosis predominantly in the CA1 and CA4 regions, significantly higher A1 R was present in the amygdala in high-risk than in low-risk cases. There was no significant difference in neuronal loss or gliosis between the risk groups or differences for ADK labeling. SIGNIFICANCE: Reduced cortical A2A R suggests glial dysfunction and impaired adenosine modulation in response to seizures in patients at higher risk for SUDEP. Increased neuronal A1 R in the high-risk group could contribute to periictal amygdala dysfunction in SUDEP.


Asunto(s)
Adenosina Quinasa/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Muerte Súbita e Inesperada en la Epilepsia , Adulto , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Hipocampo/patología , Humanos , Masculino , Factores de Riesgo , Esclerosis/patología , Muerte Súbita e Inesperada en la Epilepsia/etiología , Muerte Súbita e Inesperada en la Epilepsia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA