Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.470
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 87(16): 647-661, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804873

RESUMEN

The present study aimed to determine the genoprotective activity and safety of Moringa oleifera leave and Tinospora cordifolia stem extracts against cyclophosphamide (CP)-induced genotoxicity utilizing Swiss albino mice. Animals were divided into 14 groups for subacute treatment with either M. oleifera or T. cordifolia extracts daily for 28 days. The extract doses selected were 100, 200 or 400 mg/kg b.w administered orally alone or combined with CP (50 mg/kg b.w. intraperitoneally daily for 5 days). Analyses performed included the comet assay, micronucleus test (MN) in bone marrow cells and sperm head abnormality assay (SHA). M. oleifera and T. cordifolia extracts induced no significant genotoxic effects on somatic and germ cells. In contrast, for all cells examined M. oleifera and T. cordifolia extracts inhibited DNA damage initiated by CP. Taken together data demonstrated that both plant extracts did not exhibit marked genotoxic effects but displayed potential chemoprotective properties against CP-induced genotoxicity in Swiss mice.


Asunto(s)
Ciclofosfamida , Daño del ADN , Pruebas de Micronúcleos , Moringa oleifera , Extractos Vegetales , Hojas de la Planta , Tinospora , Animales , Tinospora/química , Ratones , Ciclofosfamida/toxicidad , Moringa oleifera/química , Extractos Vegetales/farmacología , Masculino , Hojas de la Planta/química , Daño del ADN/efectos de los fármacos , Ensayo Cometa , Tallos de la Planta/química , Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Mutágenos/toxicidad , Antimutagênicos/farmacología
2.
J Toxicol Environ Health A ; 87(16): 662-673, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-38808737

RESUMEN

Pseudobombax marginatum, popularly known as "embiratanha," is widely used by traditional communities as anti-inflammatory and analgesic agent. This study aimed to determine the phytochemical profile as well as cytotoxicity, acute oral toxicity, genotoxicity, and mutagenicity attributed to exposure to aqueous (AqEx) and ethanolic (EtEx) extracts of embiratanha bark. Phytochemical screening was conducted using thin-layer chromatography (TLC). Cell viability was analyzed using MTT assay with human mammary gland adenocarcinoma (MDA-MB-231) and macrophage (J774A.1) cell lines, exposed to concentrations of 12.5, 25, 50, or 100 µg/ml of either extract. For acute oral toxicity, comet assay and micronucleus (MN) tests, a single dose of 2,000 mg/kg of either extract was administered orally to Wistar rats. TLC analysis identified classes of metabolites in the extracts, including cinnamic acid derivatives, flavonoids, hydrolyzable tannins, condensed tannins, coumarins, and terpenes/steroids. In the cytotoxicity assay, the varying concentrations of extracts derived from embiratanha induced no significant alterations in the viability of MDA-MB-231 cells. The lowest concentration of EtEx significantly increased macrophage J774A.1 viability. However, the higher concentrations of AqEx markedly lowered macrophage J774A.1 viability. Animals exhibited no toxicity in the parameters analyzed in acute oral toxicity, comet assay, and MN tests. Further, EtEx promoted a significant reduction in DNA damage index and DNA damage frequency utilizing the comet assay, while the group treated with AqEx exhibited no marked differences. Thus, data demonstrated that AqEx or EtEx of embiratanha may be considered safe at a dose of 2,000 mg/kg orgally under our experimental conditions tested.


Asunto(s)
Extractos Vegetales , Ratas Wistar , Extractos Vegetales/toxicidad , Extractos Vegetales/química , Animales , Humanos , Ratas , Línea Celular Tumoral , Masculino , Ensayo Cometa , Pruebas de Micronúcleos , Femenino , Supervivencia Celular/efectos de los fármacos , Fitoquímicos/toxicidad , Fitoquímicos/análisis , Ratones , Corteza de la Planta/química , Mutágenos/toxicidad , Pruebas de Mutagenicidad , Etanol/química
3.
Environ Mol Mutagen ; 65(3-4): 129-136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38717101

RESUMEN

Chronic exposure to high (20,000 ppm) concentrations of tert-butyl alcohol (TBA) in drinking water, equivalent to ~2100 mg/kg bodyweight per day, is associated with slight increases in the incidence of thyroid follicular cell adenomas and carcinomas in mice, with no other indications of carcinogenicity. In a recent toxicological review of TBA, the U.S. EPA determined that the genotoxic potential of TBA was inconclusive, largely based on non-standard studies such as in vitro comet assays. As such, the potential role of genotoxicity in the mode of action of thyroid tumors and therefore human relevance was considered uncertain. To address the potential role of genotoxicity in TBA-associated thyroid tumor formation, CD-1 mice were exposed up to a maximum tolerated dose of 1500 mg/kg-day via oral gavage for two consecutive days and DNA damage was assessed with the comet assay in the thyroid. Blood TBA levels were analyzed by headspace GC-MS to confirm systemic tissue exposure. At study termination, no significant increases (DNA breakage) or decreases (DNA crosslinks) in %DNA tail were observed in TBA exposed mice. In contrast, oral gavage of the positive control ethyl methanesulfonate significantly increased %DNA tail in the thyroid. These findings are consistent with most genotoxicity studies on TBA and provide mechanistic support for non-linear, threshold toxicity criteria for TBA. While the mode of action for the thyroid tumors remains unclear, linear low dose extrapolation methods for TBA appear more a matter of policy than science.


Asunto(s)
Ensayo Cometa , Daño del ADN , Glándula Tiroides , Alcohol terc-Butílico , Animales , Ensayo Cometa/métodos , Ratones , Alcohol terc-Butílico/toxicidad , Daño del ADN/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/patología , Neoplasias de la Tiroides/inducido químicamente , Neoplasias de la Tiroides/patología , Mutágenos/toxicidad , Masculino , Femenino
4.
Chemosphere ; 358: 142242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710409

RESUMEN

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment is posing a threat to ecosystems and human health. Benzo(a)pyrene (BaP) is considered a biomarker of PAH exposure and is classified as a Group 1 carcinogen. However, it was not known whether BaP is mutagenic, i.e. induces inherited germline mutations. In this study, we used a recently established method, which combines short-term mutation accumulation lines (MAL) with whole genome sequencing (WGS) to assess mutagenicity in the non-biting midge Chironomus riparius. The mutagenicity analysis was supplemented by an evaluation of the development of population fitness in three successive generations in the case of chronic exposure to BaP at a high concentration (100 µg/L). In addition, the level of ROS-induced oxidative stress was examined in vivo. Exposure to the higher BaP concentration led to an increase in germline mutations relative to the control, while the lower concentration showed no mentionable effect. Against expectations, BaP exposure decreased ROS-level compared to the control and is thus probably not responsible for the increased mutation rate. Likewise, the higher BaP concentration decreased fitness measured as population growth rate per day (PGR) significantly over all generations, without signs of rapid evolutionary adaptations. Our results thus highlighted that high BaP exposure may influence the evolutionary trajectory of organisms.


Asunto(s)
Benzo(a)pireno , Chironomidae , Estrés Oxidativo , Animales , Benzo(a)pireno/toxicidad , Chironomidae/efectos de los fármacos , Chironomidae/genética , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Secuenciación Completa del Genoma , Mutágenos/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pruebas de Mutagenicidad
5.
Environ Mol Mutagen ; 65(3-4): 116-120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651401

RESUMEN

The Ames test is required by regulatory agencies worldwide for assessing the mutagenic and carcinogenic potential of chemical compounds. This test uses several strains of bacteria to evaluate mutation induction: positive results in the assay are predictive of rodent carcinogenicity. As an initial step to understanding how well the assay may detect mutagens present as constituents of complex mixtures such as botanical extracts, a cross-sector working group examined the within-laboratory reproducibility of the Ames test using the extensive, publicly available National Toxicology Program (NTP) Ames test database comprising more than 3000 distinct test articles, most of which are individual chemicals. This study focused primarily on NTP tests conducted using the standard Organization for Economic Co-operation and Development Test Guideline 471 preincubation test protocol with 10% rat liver S9 for metabolic activation, although 30% rat S9 and 10 and 30% hamster liver S9 were also evaluated. The reproducibility of initial negative responses in all strains with and without 10% S9, was quite high, ranging from 95% to 99% with few exceptions. The within-laboratory reproducibility of initial positive responses for strains TA98 and TA100 with and without 10% rat liver S9 was ≥90%. Similar results were seen with hamster S9. As expected, the reproducibility of initial equivocal responses was lower, <50%. These results will provide context for determining the optimal design of recommended test protocols for use in screening both individual chemicals and complex mixtures, including botanicals.


Asunto(s)
Pruebas de Mutagenicidad , Animales , Pruebas de Mutagenicidad/métodos , Reproducibilidad de los Resultados , Ratas , Mutágenos/toxicidad , Cricetinae , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Hígado/efectos de los fármacos , Laboratorios/normas
6.
Toxicol Ind Health ; 40(6): 337-351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597775

RESUMEN

Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Gasolina , Pruebas de Micronúcleos , Exposición Profesional , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Gasolina/toxicidad , Adulto , Masculino , Turquía , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN/efectos de los fármacos , Persona de Mediana Edad , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/toxicidad , Ensayo Cometa , Biomarcadores , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Linfocitos/efectos de los fármacos , Femenino , Mutágenos/toxicidad , Benceno/toxicidad , Benceno/análisis
7.
J Hazard Mater ; 470: 134233, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603913

RESUMEN

Food additives are chemicals incorporated in food to enhance its flavor, color and prevent spoilage. Some of these are associated with substantial health hazards, including developmental disorders, increase cancer risk, and hormone disruption. Hence, this study aimed to comprehend the in-silico toxicology framework for evaluating mutagenic and xenoestrogenic potential of food additives and their association with breast cancer. A total of 2885 food additives were screened for toxicity based on Threshold of Toxicological Concern (TTC), mutagenicity endpoint prediction, and mutagenic structural alerts/toxicophores identification. Ten food additives were identified as having mutagenic potential based on toxicity screening. Furthermore, Protein-Protein Interaction (PPI) analysis identified ESR1, as a key hub gene in breast cancer. KEGG pathway analysis verified that ESR1 plays a significant role in breast cancer pathogenesis. Additionally, competitive interaction studies of the predicted potential mutagenic food additives with the estrogen receptor-α were evaluated at agonist and antagonist binding sites. Indole, Dichloromethane, Trichloroethylene, Quinoline, 6-methyl quinoline, Ethyl nitrite, and 4-methyl quinoline could act as agonists, and Paraldehyde, Azodicarbonamide, and 2-acetylfuranmay as antagonists. The systematic risk assessment framework reported in this study enables the exploration of mutagenic and xenoestrogenic potential associated with food additives for hazard identification and management.


Asunto(s)
Receptor alfa de Estrógeno , Aditivos Alimentarios , Mutágenos , Mutágenos/toxicidad , Aditivos Alimentarios/toxicidad , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Humanos , Medición de Riesgo , Simulación por Computador , Disruptores Endocrinos/toxicidad , Pruebas de Mutagenicidad , Neoplasias de la Mama/genética , Simulación del Acoplamiento Molecular
8.
Arch Toxicol ; 98(4): 1225-1236, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38427119

RESUMEN

So far, the majority of in vitro toxicological experiments are conducted after an acute 24 h treatment that does not represent a realistic human chemical exposure. Recently, new in vitro approaches have been proposed to study the chemical toxicological effect over several days in order to be more predictive of a representative exposure scenario. In this study, we investigated the genotoxic potential of chemicals (direct or bioactived clastogen, aneugen and apoptotic inducer) with the γH2AX and pH3 biomarkers, in the human liver-derived HepaRP cell line. We used different treatment durations, with or without a three-day recovery stage (release period), before genotoxicity measurement. Data were analysed with the Benchmark Dose approach. We observed that the detection of clastogenic compounds (notably for DNA damaging agents) was more sensitive after three days of repeated treatment compared to one or three treatments over 24 h. In contrast, aneugenic chemicals were detected as genotoxic in a similar manner whether after a 24 h exposure or a three-day repeated treatment. Globally, the release period decreases the genotoxicity measurement substantially. For DNA damaging agents, after high concentration treatments, γH2AX induction was always observed after a three-day release period. In contrast, for DNA topoisomerase inhibitors, no effect could be observed after the release period. In conclusion, in the HepaRP cell line, there are some important differences between a one-day acute and a three-day repeated treatment protocol, indicating that different cell treatment procedures may differentiate chemical genotoxic mechanisms of action more efficiently.


Asunto(s)
Histonas , Mutágenos , Humanos , Histonas/metabolismo , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Aneugénicos/toxicidad , Daño del ADN , ADN
9.
Toxicology ; 504: 153774, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490321

RESUMEN

N-nitrosonornicotine (NNN) and N-nitrosoanabasine (NAB) are both tobacco-specific nitrosamines bearing two heterocyclic amino groups, NAB bearing an extra -CH2- group (conferring a hexa- rather than penta-membered cycle) but with significantly decreased carcinogenicity. However, their activating enzymes and related mutagenicity remain unclear. In this study, the chemical-CYP interaction was analyzed by molecular docking, thus the binding energies and conformations of NNN for human CYP2A6, 2A13, 2B6, 2E1 and 3A4 appeared appropriate as a substrate, so did NAB for human CYP1B1, 2A6, 2A13 and 2E1. The micronucleus test in human hepatoma (HepG2) cells with each compound (62.5-1000 µM) exposing for 48 h (two-cell cycle) was negative, however, pretreatment with bisphenol AF (0.1-100 nM, CYPs inducer) and ethanol (0.2% v:v, CYP2E1 inducer) potentiated micronucleus formation by both compounds, while CITCO (1 µM, CYP2B6 inducer) selectively potentiated that by NNN. In C3A cells (endogenous CYPs enhanced over HepG2) both compounds induced micronucleus, which was abolished by 1-aminobenzotriazole (60 µM, CYPs inhibitor) while unaffected by 8-methoxypsoralen (1 µM, CYP2A inhibitor). Consistently, NNN and NAB induced micronucleus in V79-derived recombinant cell lines expressing human CYP2B6/2E1 and CYP1B1/2E1, respectively, while negative in those expressing other CYPs. By immunofluorescent assay both compounds selectively induced centromere-free micronucleus in C3A cells. In PIG-A assays in HepG2 cells NNN and NAB were weakly positive and simply negative, respectively; however, in C3A cells both compounds significantly induced gene mutations, NNN being slight more potent. Conclusively, both NNN and NAB are mutagenic and clastogenic, depending on metabolic activation by partially different CYP enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Pruebas de Micronúcleos , Nitrosaminas , Humanos , Nitrosaminas/toxicidad , Nitrosaminas/metabolismo , Células Hep G2 , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Simulación del Acoplamiento Molecular , Mutágenos/toxicidad , Nicotiana
10.
Environ Mol Mutagen ; 65(1-2): 47-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465801

RESUMEN

The etiology of bladder cancer among never smokers without occupational or environmental exposure to established urothelial carcinogens remains unclear. Urinary mutagenicity is an integrative measure that reflects recent exposure to genotoxic agents. Here, we investigated its potential association with bladder cancer in rural northern New England. We analyzed 156 bladder cancer cases and 247 cancer-free controls from a large population-based case-control study conducted in Maine, New Hampshire, and Vermont. Overnight urine samples were deconjugated enzymatically and the extracted organics were assessed for mutagenicity using the plate-incorporation Ames assay with the Salmonella frameshift strain YG1041 + S9. Logistic regression was used to estimate the odds ratios (OR) and 95% confidence intervals (CI) of bladder cancer in relation to having mutagenic versus nonmutagenic urine, adjusted for age, sex, and state, and stratified by smoking status (never, former, and current). We found evidence for an association between having mutagenic urine and increased bladder cancer risk among never smokers (OR = 3.8, 95% CI: 1.3-11.2) but not among former or current smokers. Risk could not be estimated among current smokers because nearly all cases and controls had mutagenic urine. Urinary mutagenicity among never-smoking controls could not be explained by recent exposure to established occupational and environmental mutagenic bladder carcinogens evaluated in our study. Our findings suggest that among never smokers, urinary mutagenicity potentially reflects genotoxic exposure profiles relevant to bladder carcinogenesis. Future studies are needed to replicate our findings and identify compounds and their sources that influence bladder cancer risk.


Asunto(s)
Mutágenos , Neoplasias de la Vejiga Urinaria , Humanos , Mutágenos/toxicidad , Vejiga Urinaria , Estudios de Casos y Controles , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/epidemiología , Neoplasias de la Vejiga Urinaria/genética , New England/epidemiología , Carcinógenos , Pruebas de Mutagenicidad
11.
Food Chem Toxicol ; 185: 114512, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342231

RESUMEN

Duplex sequencing (DS) is an error-corrected next-generation sequencing (NGS) method that can overcome notorious high error rate from the process of NGS and detect ultralow-frequency mutations. In this study, we evaluated the mutagenicity of aristolochic acid, a known genotoxic carcinogen, and methapyrilene, a known nongenotoxic carcinogen using DS. Four male Fisher 344 rats were treated with aristolochic acid, methapyrilene, or the vehicle control for 6 weeks, liver tissues were collected one day after the treatment, and the DNA was isolated for analysis. The mutation frequency for the aristolochic acid-treated group was significantly increased over the vehicle control (44-fold), whereas no significant difference in the mutation frequency was observed between the methapyrilene-treated and the control groups. The primary type of mutation induced by aristolochic acid was A:T > T:A transversion, which occurred frequently at ApT sites, whereas the major type of mutation in the control and methapyrilene-treated groups was G:C > A:T transition, which occurred frequently at CpG sites. These findings are consistent with previously published data obtained with other in vivo mutation assays. Thus, our results suggest that the DS mutation assay is a promising technology for assessing mutagenicity of chemicals in vivo.


Asunto(s)
Ácidos Aristolóquicos , Metapirileno , Ratas , Animales , Masculino , Mutágenos/toxicidad , Ácidos Aristolóquicos/toxicidad , Carcinógenos/toxicidad
12.
Mutat Res ; 828: 111851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38382175

RESUMEN

Bleomycin, commonly employed in treating Hodgkin's lymphoma and testicular cancer, is associated with significant pulmonary toxicity. While various studies have assessed the toxic impact of chemotherapeutic agents on aquatic and terrestrial environments, limited data exist on bleomycin's effects, especially concerning higher plants. To address this gap, we utilized the Allium cepa assays, renowned for evaluating chemical and biochemical agents' toxic effects, to investigate bleomycin's impact on the terrestrial ecosystem. Our study aimed to assess bleomycin's cyto-genotoxic effects on A. cepa root tip cells at minimal concentrations (10-40 µg mL-1) and varied exposure durations (2, 4, 6, and 24 h). Analysis of nuclear and mitotic abnormalities in bleomycin-treated A. cepa root tip cells, alongside an acridine orange-ethidium bromide double staining assay, illuminated its influence on cell viability. Additionally, agarose gel electrophoresis determined the drug's potential for DNA degradation, unveiling the underlying mechanisms of cyto-genotoxicity. Results also demonstrated a decline in the mitotic index with increased bleomycin concentrations and exposure time, elevated frequencies of various cyto-genotoxic abnormalities, including sticky chromosomes, chromatid breaks, laggards, bridges, polar deviations, nuclear lesions, and hyperchromasia. The study indicated the potential risks of bleomycin even at low concentrations and brief exposures, highlighting its severe adverse effects on genetic material of plant, potentially contributing to cell death. Consequently, this investigation unveils bleomycin's cyto-genotoxic effects on higher plant system, underscoring its threat to terrestrial ecosystems, particularly upon chronic and unmonitored exposure.


Asunto(s)
Bleomicina , Meristema , Cebollas , Bleomicina/toxicidad , Cebollas/efectos de los fármacos , Cebollas/genética , Meristema/efectos de los fármacos , Meristema/genética , Ciclo Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Antibióticos Antineoplásicos/toxicidad , Mutágenos/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Índice Mitótico
13.
Toxicol Mech Methods ; 34(5): 584-595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347751

RESUMEN

High Fructose Corn Syrup (HFCS) and Fructose (FR) are widely used sweeteners in many foods and beverages. This study aimed at investigating the cytotoxic effects of HFCS (5%-30%) and FR (62.5-2000 µg/mL) using MTT assay in Human Hepatocellular Carcinoma (HepG2) cells, and genotoxic effects of using Chromosome Aberrations (CAs), Sister Chromatid Exchanges (SCEs), Micronuclei (MN) and comet assays in human lymphocytes. HFCS significantly reduced the cell viability in HepG2 cells at between 7.5% and 30% for 24 and 48 h. 30% HFCS caused a very significant toxic effect. FR had a cytotoxic effect in HepG2 cells at all treatments. However, as fructose concentration decreased, the cell viability decreased. HFCS (10%-20%) and FR (250-2000 µg/mL) decreased the mitotic index at higher concentrations. IC50 value was found to be a 15% for 48 h. IC50 value of FR was detected as 62.5 µg/mL for 24 h and 48 h. HFCS significantly increased CAs frequency at 15% and 20%. FR significantly increased the frequency of CAs at 250, 1000, and 2000 µg/mL for 48 h. Both sweeteners increased the frequency of SCEs at all concentrations. HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency at higher concentrations. HFCS caused DNA damage in comet assay at 10% -30%. FR increased tail intensity and moment at 125-2000 µg/mL and tail length at 62.5, 250 and 500 µg/mL. Therefore, HFCS and FR are clearly seen to be cytotoxic and genotoxic, especially at higher concentrations.


HFCS and FR exhibited cytotoxic effect at HepG2 and human lymphocytes at higher concentrations.Both sweeteners increased the frequencies of CAs and SCEs at higher concentrations.HFCS caused DNA damage at 10% -30% concentrations.HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency.


Asunto(s)
Supervivencia Celular , Ensayo Cometa , Fructosa , Jarabe de Maíz Alto en Fructosa , Edulcorantes , Humanos , Edulcorantes/toxicidad , Jarabe de Maíz Alto en Fructosa/toxicidad , Jarabe de Maíz Alto en Fructosa/efectos adversos , Fructosa/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Daño del ADN/efectos de los fármacos , Intercambio de Cromátides Hermanas/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/patología , Aberraciones Cromosómicas/inducido químicamente , Pruebas de Micronúcleos , Relación Dosis-Respuesta a Droga , Mutágenos/toxicidad , Masculino , Medición de Riesgo
14.
Environ Mol Mutagen ; 65(1-2): 25-46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333939

RESUMEN

Previously, we introduced an alternative adherent A375 cell line for clastogenicity and aneugenicity testing using a high content imaging platform. To further characterize the performance of A375 cells, we investigated the sensitivity and specificity of A375 and TK6 cells by directly comparing micronucleus (MN) induction, cytotoxicity (relative cell counts, viability, and apoptosis), clastogenicity (γH2AX), and aneuploidy markers (pH 3, MPM-2, and polyploidy) using flow cytometric methods. We evaluated 14 compounds across different mechanisms (non-genotoxic apoptosis inducers, clastogens, and aneugens with either tubulin binding or aurora kinase inhibiting phenotypes) at 4-h and 24-h post treatment. Both aneugens and clastogens tested positive for micronucleus induction in both cell lines. Apoptosis continued to be a confounding factor for flow cytometry-based micronuclei assessment in TK6 cells as evidenced by positive responses by the three cytotoxicants. Conversely, A375 cells were not affected by apoptosis-related false positive signals and did not produce a positive response in the in vitro micronucleus assay. Benchmark dose response (BMD) analysis showed that the induction of micronuclei and biomarkers occurred at similar concentrations in both cell lines for clastogens and aneugens. By showing that A375 cells have similar sensitivity to TK6 cells but a greater specificity, these results provide additional support for A375 cells to be used as an alternative adherent cell line for in vitro genetic toxicology assessment.


Asunto(s)
Aneugénicos , Mutágenos , Aneugénicos/toxicidad , Citometría de Flujo , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad , Biomarcadores/metabolismo , Daño del ADN
15.
Chem Res Toxicol ; 37(2): 181-198, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38316048

RESUMEN

A thorough literature review was undertaken to understand how the pathways of N-nitrosamine transformation relate to mutagenic potential and carcinogenic potency in rodents. Empirical and computational evidence indicates that a common radical intermediate is created by CYP-mediated hydrogen abstraction at the α-carbon; it is responsible for both activation, leading to the formation of DNA-reactive diazonium species, and deactivation by denitrosation. There are competing sites of CYP metabolism (e.g., ß-carbon), and other reactive species can form following initial bioactivation, although these alternative pathways tend to decrease rather than enhance carcinogenic potency. The activation pathway, oxidative dealkylation, is a common reaction in drug metabolism and evidence indicates that the carbonyl byproduct, e.g., formaldehyde, does not contribute to the toxic properties of N-nitrosamines. Nitric oxide (NO), a side product of denitrosation, can similarly be discounted as an enhancer of N-nitrosamine toxicity based on carcinogenicity data for substances that act as NO-donors. However, not all N-nitrosamines are potent rodent carcinogens. In a significant number of cases, there is a potency overlap with non-N-nitrosamine carcinogens that are not in the Cohort of Concern (CoC; high-potency rodent carcinogens comprising aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds), while other N-nitrosamines are devoid of carcinogenic potential. In this context, mutagenicity is a useful surrogate for carcinogenicity, as proposed in the ICH M7 (R2) (2023) guidance. Thus, in the safety assessment and control of N-nitrosamines in medicines, it is important to understand those complementary attributes of mechanisms of mutagenicity and structure-activity relationships that translate to elevated potency versus those which are associated with a reduction in, or absence of, carcinogenic potency.


Asunto(s)
Carcinógenos , Nitrosaminas , Humanos , Animales , Carcinógenos/toxicidad , Nitrosaminas/toxicidad , Nitrosaminas/metabolismo , Mutágenos/toxicidad , Roedores/metabolismo , Carcinogénesis , Carbono , Pruebas de Mutagenicidad
16.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255794

RESUMEN

Hydroxyhydroquinone (HHQ) is an oxidative component produced by roasting coffee beans and has been reported to generate relatively large amounts of reactive oxygen species (ROS). In this study, we used senescence-accelerated mouse prone 8 (SAMP8) mice to determine whether HHQ consumption increases oxidative-stress-induced injury, because in SAMP8 mice, the activity of 8-oxoguanine DNA glycosylase 1, which repairs oxidative modifications in DNA, is decreased. The results showed that two out of twelve (16.7%) HHQ-treated mice presented polyuria and glucosuria around 2 months after the start of treatment, indicating that HHQ may act as a mutagen against SAMP8 mice, which is sensitive to oxidative damage. No abnormalities were observed in the chlorogenic acid (coffee polyphenol, CPP)-treated group. The concentration of hydrogen peroxide in the serum of SAMP8 mice was significantly higher than that in SAMR1 (senescence-resistant) control mice, and the concentration was further increased in the HHQ-treated group. CPP, when coexisting with HHQ at the rate contained in roasted coffee, decreased the amount of hydrogen peroxide in the serum of SAMP8 mice. Although CPP can act both oxidatively and antioxidatively as a polyphenol, CPP acts more antioxidatively when coexisting with HHQ. Thus, the oxidative effect of HHQ was shown to be counteracted by CPP.


Asunto(s)
Ácido Clorogénico , Hidroquinonas , Polifenoles , Animales , Ratones , Ácido Clorogénico/farmacología , Polifenoles/farmacología , Mutágenos/toxicidad , Peróxido de Hidrógeno , Estrés Oxidativo , ADN
17.
Mutagenesis ; 39(2): 96-118, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38183622

RESUMEN

The N-nitrosamine, N-nitrosodimethylamine (NDMA), is an environmental mutagen and rodent carcinogen. Small levels of NDMA have been identified as an impurity in some commonly used drugs, resulting in several product recalls. In this study, NDMA was evaluated in an OECD TG-488 compliant Muta™Mouse gene mutation assay (28-day oral dosing across seven daily doses of 0.02-4 mg/kg/day) using an integrated design that assessed mutation at the transgenic lacZ locus in various tissues and at the endogenous Pig-a gene-locus, along with micronucleus frequencies in peripheral blood. Liver pathology was determined together with NDMA exposure in blood and liver. The additivity of mutation induction was assessed by including two acute single-dose treatment groups (i.e. 5 and 10 mg/kg dose on Day 1), which represented the same total dose as two of the repeat dose treatment groups. NDMA did not induce statistically significant increases in mean lacZ mutant frequency (MF) in bone marrow, spleen, bladder, or stomach, nor in peripheral blood (Pig-a mutation or micronucleus induction) when tested up to 4 mg/kg/day. There were dose-dependent increases in mean lacZ MF in the liver, lung, and kidney following 28-day repeat dosing or in the liver and kidney after a single dose (10 mg/kg). No observed genotoxic effect levels (NOGEL) were determined for the positive repeat dose-response relationships. Mutagenicity did not exhibit simple additivity in the liver since there was a reduction in MF following NDMA repeat dosing compared with acute dosing for the same total dose. Benchmark dose modelling was used to estimate point of departure doses for NDMA mutagenicity in Muta™Mouse and rank order target organ tissue sensitivity (liver > kidney or lung). The BMD50 value for liver was 0.32 mg/kg/day following repeat dosing (confidence interval 0.21-0.46 mg/kg/day). In addition, liver toxicity was observed at doses of ≥ 1.1 mg/kg/day NDMA and correlated with systemic and target organ exposure. The integration of these results and their implications for risk assessment are discussed.


Asunto(s)
Dimetilnitrosamina , Mutágenos , Dimetilnitrosamina/toxicidad , Mutación , Mutágenos/toxicidad , Daño del ADN , Mutagénesis
18.
Toxicon ; 239: 107608, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38211806

RESUMEN

The health risks caused by aflatoxins, as one of the most important contaminants of human food and feed and the main cause of cancer, especially hepatocellular carcinoma (HCC) were investigated. The aim of the study was to assess the antimutagenic effects of Bifidobacterium lactis (B. lactis) probiotic against aflatoxin B1 (AFB1). The study was conducted with 27 treatments and three replications. The independent variables were aflatoxin concentrations at three levels of 5, 15, and 25 ng/g and probiotic content in three forms of cellular sedimentation (CS), cell-free supernatant (CFS), and cell suspension. The antimutagenic activity of B. lactis against AFB1 was measured. The lowest score of antimutagenic activity of B. lactis was observed in bacterial cellular sediment treatment at 107 CFU/g and 25 ng/g of AFB1 (20.8 ± 3.80%) and the highest score was achieved with cell suspension at 109 CFU/g and 5 ng/g of AFB1 (74.9 ± 7.11%). In addition, the lack of mutagenicity of probiotics was confirmed. Therefore, probiotics not only alleviate aflatoxin in food matrices and benefit the consumer, but also notably decrease mutagenicity of AFB1.


Asunto(s)
Aflatoxinas , Bifidobacterium animalis , Carcinoma Hepatocelular , Neoplasias Hepáticas , Probióticos , Humanos , Aflatoxina B1/toxicidad , Mutágenos/toxicidad , Probióticos/farmacología
19.
J Toxicol Environ Health A ; 87(5): 185-198, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38073488

RESUMEN

Tellimagrandin-I (TL) and camptothin A (CA) are ellagitannins widely found in diverse plant species. Numerous studies demonstrated their significant biological activities, which include antitumor, antioxidant, and hepatoprotective properties. Despite this protective profile, the effects of TL and CA on DNA have not been comprehensively investigated. Thus, the aim of this study was to determine the mutagenic and antimutagenic effects attributed to TL and CA exposure on Salmonella enterica serovar Typhimurium strains using the Ames test. In addition, the cytotoxic and genotoxic effects were examined on human lymphocytes, employing both trypan blue exclusion and CometChip assay. The antigenotoxic effect was determined following TL and CA exposure in the presence of co-treatment with doxorubicin (DXR). Our results from the Ames test indicated that TL or CA did not display marked mutagenic activity. However, TL or CA demonstrated an ability to protect DNA against the damaging effects of the mutagens 4-nitroquinoline-1-oxide and sodium azide, thereby exhibiting antimutagenic properties. In relation to human lymphocytes, TL or CA did not induce significant cytotoxic or genotoxic actions on these cells. Further, these ellagitannins exhibited an ability to protect DNA from damage induced by DOX during co-treatment, indicating their potential beneficial usefulness as antigenotoxic agents. In conclusion, the protective effects of TL or CA against mutagens, coupled with their absence of genotoxic and cytotoxic effects on human lymphocytes, emphasize their potential therapeutic value in chemopreventive strategies.


Asunto(s)
Antimutagênicos , Salmonella enterica , Humanos , Salmonella typhimurium/genética , Salmonella enterica/genética , Taninos Hidrolizables/farmacología , Serogrupo , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Antimutagênicos/farmacología , Extractos Vegetales/farmacología , Carcinógenos/farmacología , ADN/farmacología , Linfocitos
20.
Environ Mol Mutagen ; 65 Suppl 1: 9-13, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37303259

RESUMEN

Dietary exposure to aflatoxin B1 (AFB1) is a recognized risk factor for developing hepatocellular carcinoma. The mutational signature of AFB1 is characterized by high-frequency base substitutions, predominantly G>T transversions, in a limited subset of trinucleotide sequences. The 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) has been implicated as the primary DNA lesion responsible for AFB1-induced mutations. This study evaluated the mutagenic potential of AFB1-FapyGua in four sequence contexts, including hot- and cold-spot sequences as apparent in the mutational signature. Vectors containing site-specific AFB1-FapyGua lesions were replicated in primate cells and the products of replication were isolated and sequenced. Consistent with the role of AFB1-FapyGua in AFB1-induced mutagenesis, AFB1-FapyGua was highly mutagenic in all four sequence contexts, causing G>T transversions and other base substitutions at frequencies of ~80%-90%. These data suggest that the unique mutational signature of AFB1 is not explained by sequence-dependent fidelity of replication past AFB1-FapyGua lesions.


Asunto(s)
Neoplasias Hepáticas , Mutágenos , Animales , Mutágenos/toxicidad , Aflatoxina B1/toxicidad , Aductos de ADN/genética , Guanina , Mutagénesis , Neoplasias Hepáticas/patología , Imidazoles/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA