Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.901
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bull Exp Biol Med ; 176(5): 645-648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38727954

RESUMEN

Using the method of dominant lethal mutations, we assessed the frequency of the death of Drosophila melanogaster embryos under combined exposure to ionizing γ-radiation and non-ionizing pulsed magnetic field at various doses and modes of exposure. Mutagenic effect of combined exposure is antagonistic in nature. The antagonism is more pronounced when the following mode of exposure was used: exposure to non-ionizing pulsed magnetic field for 5 h followed by exposure to γ-radiation at doses of 3, 10, and 60 Gy. In case of reverse sequence of exposures, the antagonistic effect was statistically significant after exposure to γ-radiation at doses of 3 and 10 Gy, whereas at a dose of 20 Gy, a synergistic interaction was noted.


Asunto(s)
Drosophila melanogaster , Rayos gamma , Animales , Drosophila melanogaster/efectos de la radiación , Drosophila melanogaster/genética , Rayos gamma/efectos adversos , Radiación Electromagnética , Relación Dosis-Respuesta en la Radiación , Campos Electromagnéticos/efectos adversos , Embrión no Mamífero/efectos de la radiación , Radiación Ionizante , Mutación/efectos de la radiación , Mutagénesis/efectos de la radiación
3.
Viruses ; 16(5)2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38793569

RESUMEN

Tomato (Solanum lycopersicum) is the most important vegetable and fruit crop in the family Solanaceae worldwide. Numerous pests and pathogens, especially viruses, severely affect tomato production, causing immeasurable market losses. In Taiwan, the cultivation of tomato crops is mainly threatened by insect-borne viruses, among which pepper veinal mottle virus (PVMV) is one of the most prevalent. PVMV is a member of the genus Potyvirus of the family Potyviridae and is non-persistently transmitted by aphids. Its infection significantly reduces tomato fruit yield and quality. So far, no PVMV-resistant tomato lines are available. In this study, we performed nitrite-induced mutagenesis of the PVMV tomato isolate Tn to generate attenuated PVMV mutants. PVMV Tn causes necrotic lesions in Chenopodium quinoa leaves and severe mosaic and wilting in Nicotiana benthamiana plants. After nitrite treatment, three attenuated PVMV mutants, m4-8, m10-1, and m10-11, were selected while inducing milder responses to C. quinoa and N. benthamiana with lower accumulation in tomato plants. In greenhouse tests, the three mutants showed different degrees of cross-protection against wild-type PVMV Tn. m4-8 showed the highest protective efficacy against PVMV Tn in N. benthamiana and tomato plants, 100% and 97.9%, respectively. A whole-genome sequence comparison of PVMV Tn and m4-8 revealed that 20 nucleotide substitutions occurred in the m4-8 genome, resulting in 18 amino acid changes. Our results suggest that m4-8 has excellent potential to protect tomato crops from PVMV. The application of m4-8 in protecting other Solanaceae crops, such as peppers, will be studied in the future.


Asunto(s)
Nicotiana , Enfermedades de las Plantas , Potyvirus , Solanum lycopersicum , Solanum lycopersicum/virología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , Potyvirus/genética , Potyvirus/fisiología , Nicotiana/virología , Productos Agrícolas/virología , Resistencia a la Enfermedad , Genoma Viral , Chenopodium quinoa/virología , Mutación , Hojas de la Planta/virología , Taiwán , Mutagénesis
4.
Transfusion ; 64(6): 1097-1108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38716879

RESUMEN

BACKGROUND: N-(-9 acridinyl)-b-alanine hydrochloride (S-300) is the main byproduct of red blood cell (RBC) amustaline/glutathione(GSH) pathogen reduction, currently undergoing phase III US clinical trials following successful European studies(1-3). Phosphatidylinositol glycan, class A (Pig-a) X-linked gene mutagenesis is a validated mammalian in vivo mutation assay for genotoxicity, assessed as clonal loss of glycosylphosphatidylinositol-linked CD59 cell-surface molecules on reticulocytes (RETs) and RBCs. METHODS: Male Sprague-Dawley rats received continuous infusion of S-300 up to the maximum feasible dose (240 mg/kg/day-limited by solubility and volume) for 28 days. Positive controls received a known mutagen by oral gavage on Days 1-3. Plasma levels of S-300 were assessed by HPLC before, during and after infusion. CD59-negative RBCs and RETs were enumerated in pre-dose and Day 28 samples, using a flow cytometric method. Outcome was evaluated by predetermined criteria using concurrent and historical controls. Toxicity was assessed by laboratory measures and necropsy. RESULTS: S-300 reached maximum, dose-dependent levels (3-15 µmol/L) within 2-8 h that were sustained for 672 h and undetectable 2 h after infusion. Circulating RET levels indicated a lack of hematopoietic toxicity. Necropsy revealed minimal-mild observations related to poor S-300 solubility at high concentrations. Pig-a assessment met the preset acceptability criteria and revealed no increase in mutant RBCs or RETs. CONCLUSIONS: Maximum feasible S-300 exposure of rats by continuous infusion for 28 days was not genotoxic as assessed by an Organization for Economic Cooperation and Development-compliant, mammalian, in vivo Pig-a gene mutation assay that meets the requirements of International Conference on Harmonization (ICH) S2(R1) and FDA guidances on genotoxicity testing.


Asunto(s)
Pruebas de Mutagenicidad , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Pruebas de Mutagenicidad/métodos , Antígenos CD59/genética , Reticulocitos/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Proteínas de la Membrana/genética , Mutagénesis/efectos de los fármacos , Mutágenos/toxicidad
5.
Cancer Cell ; 42(4): 497-501, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38593778

RESUMEN

APOBEC3 cytidine deaminases have emerged as key drivers of mutagenesis in a wide spectrum of tumor types and are now appreciated to play a causal role in driving tumor evolution and drug resistance. As efforts to develop APOBEC3 inhibitors progress, understanding the timing and consequences of APOBEC3-mediated mutagenesis in distinct clinical contexts will be critical for guiding the development of anti-cancer therapeutic strategies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Mutagénesis , Citidina Desaminasa/genética , Desaminasas APOBEC
6.
Chem Rev ; 124(9): 6051-6077, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38686960

RESUMEN

Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.


Asunto(s)
Aminoácidos , Mutagénesis , Biblioteca de Péptidos , Aminoácidos/química , Aminoácidos/genética , Péptidos/química , Péptidos/metabolismo , Péptidos/genética
7.
Cancer Sci ; 115(6): 1808-1819, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572512

RESUMEN

Rev1 has two important functions in the translesion synthesis pathway, including dCMP transferase activity, and acts as a scaffolding protein for other polymerases involved in translesion synthesis. However, the role of Rev1 in mutagenesis and tumorigenesis in vivo remains unclear. We previously generated Rev1-overexpressing (Rev1-Tg) mice and reported that they exhibited a significantly increased incidence of intestinal adenoma and thymic lymphoma (TL) after N-methyl-N-nitrosourea (MNU) treatment. In this study, we investigated mutagenesis of MNU-induced TL tumorigenesis in wild-type (WT) and Rev1-Tg mice using diverse approaches, including whole-exome sequencing (WES). In Rev1-Tg TLs, the mutation frequency was higher than that in WT TL in most cases. However, no difference in the number of nonsynonymous mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) genes was observed, and mutations involved in Notch1 and MAPK signaling were similarly detected in both TLs. Mutational signature analysis of WT and Rev1-Tg TLs revealed cosine similarity with COSMIC mutational SBS5 (aging-related) and SBS11 (alkylation-related). Interestingly, the total number of mutations, but not the genotypes of WT and Rev1-Tg, was positively correlated with the relative contribution of SBS5 in individual TLs, suggesting that genetic instability could be accelerated in Rev1-Tg TLs. Finally, we demonstrated that preleukemic cells could be detected earlier in Rev1-Tg mice than in WT mice, following MNU treatment. In conclusion, Rev1 overexpression accelerates mutagenesis and increases the incidence of MNU-induced TL by shortening the latency period, which may be associated with more frequent DNA damage-induced genetic instability.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Metilnitrosourea , Ratones Transgénicos , Mutagénesis , Nucleotidiltransferasas , Neoplasias del Timo , Animales , Metilnitrosourea/toxicidad , Ratones , Neoplasias del Timo/genética , Neoplasias del Timo/inducido químicamente , Neoplasias del Timo/patología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Linfoma/genética , Linfoma/inducido químicamente , Linfoma/patología , Mutación , Secuenciación del Exoma
8.
Nat Genet ; 56(5): 913-924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627597

RESUMEN

How chronic mutational processes and punctuated bursts of DNA damage drive evolution of the cancer genome is poorly understood. Here, we demonstrate a strategy to disentangle and quantify distinct mechanisms underlying genome evolution in single cells, during single mitoses and at single-strand resolution. To distinguish between chronic (reactive oxygen species (ROS)) and acute (ultraviolet light (UV)) mutagenesis, we microfluidically separate pairs of sister cells from the first mitosis following burst UV damage. Strikingly, UV mutations manifest as sister-specific events, revealing mirror-image mutation phasing genome-wide. In contrast, ROS mutagenesis in transcribed regions is reduced strand agnostically. Successive rounds of genome replication over persisting UV damage drives multiallelic variation at CC dinucleotides. Finally, we show that mutation phasing can be resolved to single strands across the entire genome of liver tumors from F1 mice. This strategy can be broadly used to distinguish the contributions of overlapping cancer relevant mutational processes.


Asunto(s)
Daño del ADN , Reparación del ADN , Mitosis , Mutagénesis , Rayos Ultravioleta , Animales , Ratones , Reparación del ADN/genética , Rayos Ultravioleta/efectos adversos , Daño del ADN/genética , Mitosis/genética , Especies Reactivas de Oxígeno/metabolismo , Mutación , Humanos
9.
Elife ; 122024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536879

RESUMEN

Recombinant adeno-associated viruses (rAAVs) are the predominant gene therapy vector. Several rAAV vectored therapies have achieved regulatory approval, but production of sufficient rAAV quantities remains difficult. The AAV Rep proteins, which are essential for genome replication and packaging, represent a promising engineering target for improvement of rAAV production but remain underexplored. To gain a comprehensive understanding of the Rep proteins and their mutational landscape, we assayed the effects of all 39,297 possible single-codon mutations to the AAV2 rep gene on AAV2 production. Most beneficial variants are not observed in nature, indicating that improved production may require synthetic mutations. Additionally, the effects of AAV2 rep mutations were largely consistent across capsid serotypes, suggesting that production benefits are capsid independent. Our results provide a detailed sequence-to-function map that enhances our understanding of Rep protein function and lays the groundwork for Rep engineering and enhancement of large-scale gene therapy production.


Asunto(s)
Proteínas de la Cápside , Vectores Genéticos , Vectores Genéticos/genética , Mutación , Proteínas de la Cápside/genética , Cápside , Mutagénesis , Dependovirus/genética
10.
Arch Toxicol ; 98(5): 1241-1252, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38478087

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic persistent chemicals, which are used in many industrial and commercial applications. Hundreds of different PFAS have been identified in the environment and they are commonly found also in human blood. Due to the chemical stability and extensive use, PFAS pose a risk for human health and wildlife. Mounting evidence indicates that PFAS-exposure adversely affects many organs including liver, kidney, and reproductive tissues and induces tumors in laboratory rodents. Epidemiological studies show association between PFAS-exposure and some tumors also in humans. Effects of PFAS-exposure are complex and obviously do not depend only on the concentration and the structure of PFAS, but also on age and sex of the exposed individuals. It has been difficult to show a causal link between PFAS-exposure and tumors. Moreover, molecular mechanisms of the PFAS effects in different tissues are poorly understood. PFAS are not directly mutagenic and they do not induce formation of DNA binding metabolites, and thus are assumed to act more through non-genotoxic mechanisms. In this review, we discuss the involvement of PFAS-compounds in tumor development in tissues where PFAS exposure has been associated with cancer in epidemiological and animal studies (liver, kidney, testicle and breast). We will focus on molecular pathways and mechanisms related to tumor formation following PFAS-exposure.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Neoplasias , Animales , Humanos , Neoplasias/inducido químicamente , Mutagénesis , Riñón , Hígado , Fluorocarburos/toxicidad
11.
Cell Genom ; 4(4): 100528, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38552621

RESUMEN

Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) enzymes mutate specific DNA sequences and hairpin-loop structures, challenging the distinction between passenger and driver hotspot mutations. Here, we characterized 115 whole genomes of metastatic urothelial carcinoma (mUC) to identify APOBEC mutagenic hotspot drivers. APOBEC-associated mutations were detected in 92% of mUCs and were equally distributed across the genome, while APOBEC hotspot mutations (ApoHMs) were enriched in open chromatin. Hairpin loops were frequent targets of didymi (twins in Greek), two hotspot mutations characterized by the APOBEC SBS2 signature, in conjunction with an uncharacterized mutational context (Ap[C>T]). Next, we developed a statistical framework that identified ApoHMs as drivers in coding and non-coding genomic regions of mUCs. Our results and statistical framework were validated in independent cohorts of 23 non-metastatic UCs and 3,744 samples of 17 metastatic cancers, identifying cancer-type-specific drivers. Our study highlights the role of APOBEC in cancer development and may contribute to developing novel targeted therapy options for APOBEC-driven cancers.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Carcinoma de Células Transicionales/genética , Neoplasias de la Vejiga Urinaria/genética , Mutagénesis/genética , Mutación/genética , Mapeo Cromosómico
12.
J Am Chem Soc ; 146(11): 7803-7810, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38445613

RESUMEN

N6-methyladenosine (m6A) is an important modified nucleoside in cellular RNA associated with multiple cellular processes and is implicated in diseases. The enzymes associated with the dynamic installation and removal of m6A are heavily investigated targets for drug research, which requires detailed knowledge of the recognition modes of m6A by proteins. Here, we use atomic mutagenesis of m6A to systematically investigate the mechanisms of the two human m6A demethylase enzymes FTO and ALKBH5 and the binding modes of YTH reader proteins YTHDF2/DC1/DC2. Atomic mutagenesis refers to atom-specific changes that are introduced by chemical synthesis, such as the replacement of nitrogen by carbon atoms. Synthetic RNA oligonucleotides containing site-specifically incorporated 1-deaza-, 3-deaza-, and 7-deaza-m6A nucleosides were prepared by solid-phase synthesis and their RNA binding and demethylation by recombinant proteins were evaluated. We found distinct differences in substrate recognition and transformation and revealed structural preferences for the enzymatic activity. The deaza m6A analogues introduced in this work will be useful probes for other proteins in m6A research.


Asunto(s)
Adenosina/análogos & derivados , ARN , Humanos , ARN/química , Mutagénesis , Proteínas Recombinantes , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
13.
Sci Adv ; 10(12): eadn4649, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517960

RESUMEN

Genomic rearrangements are a hallmark of most childhood tumors, including medulloblastoma, one of the most common brain tumors in children, but their causes remain largely unknown. Here, we show that PiggyBac transposable element derived 5 (Pgbd5) promotes tumor development in multiple developmentally accurate mouse models of Sonic Hedgehog (SHH) medulloblastoma. Most Pgbd5-deficient mice do not develop tumors, while maintaining normal cerebellar development. Ectopic activation of SHH signaling is sufficient to enforce cerebellar granule cell progenitor-like cell states, which exhibit Pgbd5-dependent expression of distinct DNA repair and neurodevelopmental factors. Mouse medulloblastomas expressing Pgbd5 have increased numbers of somatic structural DNA rearrangements, some of which carry PGBD5-specific sequences at their breakpoints. Similar sequence breakpoints recurrently affect somatic DNA rearrangements of known tumor suppressors and oncogenes in medulloblastomas in 329 children. This identifies PGBD5 as a medulloblastoma mutator and provides a genetic mechanism for the generation of oncogenic DNA rearrangements in childhood cancer.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Animales , Ratones , Meduloblastoma/genética , Transposasas/genética , Transposasas/metabolismo , Proteínas Hedgehog/metabolismo , Factores de Transcripción/genética , Mutagénesis , Neoplasias Cerebelosas/genética
14.
J Virol ; 98(3): e0183823, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38426726

RESUMEN

Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE: Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.


Asunto(s)
Infecciones por Henipavirus , Henipavirus , Receptores Virales , Humanos , Aminoácidos/genética , Anticuerpos Monoclonales/metabolismo , Proteínas Portadoras/metabolismo , Efrina-B3/genética , Efrina-B3/química , Efrina-B3/metabolismo , Epítopos/genética , Epítopos/metabolismo , Ghana , Virus Hendra/metabolismo , Henipavirus/clasificación , Henipavirus/genética , Henipavirus/metabolismo , Mutagénesis , Virus Nipah/metabolismo , Proteínas del Envoltorio Viral/genética , Internalización del Virus , Receptores Virales/metabolismo
15.
Bioresour Technol ; 397: 130497, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408501

RESUMEN

To effectively improve biomass growth and flue-gas CO2 fixation of microalgae, acid-tolerant Euglena gracilis was modified with cobalt-60 γ-ray irradiation and polyethylene glycol (PEG) adaptive screening to obtain the mutant strain M800. The biomass dry weight and maximum CO2 fixation rate of M800 were both 1.47 times higher than that of wild strain, which was attributed to a substantial increase in key carbon fixation enzyme RuBisCO activity and photosynthetic pigment content. The high charge separation quantum efficiency in PSII reaction center, efficient light utilization and energy regulation that favors light conversion, were the underlying drivers of efficient photosynthetic carbon fixation in M800. M800 had stronger antioxidant capacity in sufficient high-carbon environment, alleviating lipid peroxidation damage. After adding 1 mM PEG, biomass dry weight of M800 reached 2.31 g/L, which was 79.1 % higher than that of wild strain. Cell proliferation of M800 was promoted, the apoptosis and necrosis rates decreased.


Asunto(s)
Euglena gracilis , Microalgas , Dióxido de Carbono , Fotosíntesis , Mutagénesis , Ciclo del Carbono , Biomasa
16.
Biotechnol J ; 19(2): e2300648, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403408

RESUMEN

L-Cysteine production through fermentation stands as a promising technology. However, excessive accumulation of L-cysteine poses a challenge due to the potential to inflict damage on cellular DNA. In this study, we employed a synergistic approach encompassing atmospheric and room temperature plasma mutagenesis (ARTP) and adaptive laboratory evolution (ALE) to improve L-cysteine tolerance in Escherichia coli. ARTP-treated populations obtained substantial enhancement in L-cysteine tolerance by ALE. Whole-genome sequencing, transcription analysis, and reverse engineering, revealed the pivotal role of an effective export mechanism mediated by gene eamB in augmenting L-cysteine resistance. The isolated tolerant strain, 60AP03/pTrc-cysEf , achieved a 2.2-fold increase in L-cysteine titer by overexpressing the critical gene cysEf during batch fermentation, underscoring its enormous potential for L-cysteine production. The production evaluations, supplemented with L-serine, further demonstrated the stability and superiority of tolerant strains in L-cysteine production. Overall, our work highlighted the substantial impact of the combined ARTP and ALE strategy in increasing the tolerance of E. coli to L-cysteine, providing valuable insights into improving L-cysteine overproduction, and further emphasized the potential of biotechnology in industrial production.


Asunto(s)
Cisteína , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Cisteína/metabolismo , Temperatura , Mutagénesis , Fermentación
17.
Cell Rep ; 43(1): 113655, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38219146

RESUMEN

Alterations in the exonuclease domain of DNA polymerase ε cause ultramutated cancers. These cancers accumulate AGA>ATA transversions; however, their genomic features beyond the trinucleotide motifs are obscure. We analyze the extended DNA context of ultramutation using whole-exome sequencing data from 524 endometrial and 395 colorectal tumors. We find that G>T transversions in POLE-mutant tumors predominantly affect sequences containing at least six consecutive purines, with a striking preference for certain positions within polypurine tracts. Using this signature, we develop a machine-learning classifier to identify tumors with hitherto unknown POLE drivers and validate two drivers, POLE-E978G and POLE-S461L, by functional assays in yeast. Unlike other pathogenic variants, the E978G substitution affects the polymerase domain of Pol ε. We further show that tumors with POLD1 drivers share the extended signature of POLE ultramutation. These findings expand the understanding of ultramutation mechanisms and highlight peculiar mutagenic properties of polypurine tracts in the human genome.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa II , Humanos , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Mutación/genética , Mutagénesis , Neoplasias Colorrectales/patología , ADN Polimerasa III/genética , Secuenciación del Exoma , Proteínas de Unión a Poli-ADP-Ribosa/genética
18.
Cancer Gene Ther ; 31(4): 527-536, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38177308

RESUMEN

To identify genes important for colorectal cancer (CRC) development and metastasis, we established a new metastatic mouse organoid model using Sleeping Beauty (SB) transposon mutagenesis. Intestinal organoids derived from mice carrying actively mobilizing SB transposons, an activating KrasG12D, and an inactivating ApcΔ716 allele, were transplanted to immunodeficient mice. While 66.7% of mice developed primary tumors, 7.6% also developed metastatic tumors. Analysis of SB insertion sites in tumors identified numerous candidate cancer genes (CCGs) identified previously in intestinal SB screens performed in vivo, in addition to new CCGs, such as Slit2 and Atxn1. Metastatic tumors from the same mouse were clonally related to each other and to primary tumors, as evidenced by the transposon insertion site. To provide functional validation, we knocked out Slit2, Atxn1, and Cdkn2a in mouse tumor organoids and transplanted to mice. Tumor development was promoted when these gene were knocked out, demonstrating that these are potent tumor suppressors. Cdkn2a knockout cells also metastasized to the liver in 100% of the mice, demonstrating that Cdkn2a loss confers metastatic ability. Our organoid model thus provides a new approach that can be used to understand the evolutionary forces driving CRC metastasis and a rich resource to uncover CCGs promoting CRC.


Asunto(s)
Elementos Transponibles de ADN , Neoplasias , Ratones , Animales , Elementos Transponibles de ADN/genética , Neoplasias/genética , Mutagénesis , Hígado , Organoides
19.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38231539

RESUMEN

Respiratory syncytial virus (RSV) has two main surface glycoproteins, the attachment glycoprotein (G) and the fusion (F) protein, which together mediate viral entry. Attachment is mediated by the RSV-G protein, while the RSV-F protein makes specific contact with the cellular insulin-like growth factor 1 receptor (IGF1R). This interaction leads to IGF1R activation and initiates a signalling cascade that calls the co-receptor, nucleolin, from the nucleus to the cell surface, where it can trigger viral fusion. We performed molecular docking analysis, which provided a potential set of 35 residues in IGF1R that may be important for interactions with RSV-F. We used alanine-scanning mutagenesis to generate IGF1R mutants and assessed their abundance and maturation, as well as the effect of mutation on RSV infection. We identified several mutations that appear to inhibit IGF1R maturation; but surprisingly, these mutations had no significant effect on RSV infection. This suggests that maturation of IGF1R may not be required for RSV infection. Additionally, we identified one residue, S788, that, when mutated, significantly reduced RSV infection. Further analysis revealed that this mutation disrupted a hydrogen bonding network that may be important for both IGF1R maturation and RSV infection.


Asunto(s)
Receptor IGF Tipo 1 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Proteínas Virales de Fusión , Humanos , Alanina/genética , Simulación del Acoplamiento Molecular , Mutagénesis , Receptor IGF Tipo 1/genética , Virus Sincitial Respiratorio Humano/genética , Proteínas Virales de Fusión/genética
20.
Nat Struct Mol Biol ; 31(3): 424-435, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177685

RESUMEN

Clamp loaders are AAA+ ATPases that facilitate high-speed DNA replication. In eukaryotic and bacteriophage clamp loaders, ATP hydrolysis requires interactions between aspartate residues in one protomer, present in conserved 'DEAD-box' motifs, and arginine residues in adjacent protomers. We show that functional defects resulting from a DEAD-box mutation in the T4 bacteriophage clamp loader can be compensated by widely distributed single mutations in the ATPase domain. Using cryo-EM, we discovered an unsuspected inactive conformation of the clamp loader, in which DNA binding is blocked and the catalytic sites are disassembled. Mutations that restore function map to regions of conformational change upon activation, suggesting that these mutations may increase DNA affinity by altering the energetic balance between inactive and active states. Our results show that there are extensive opportunities for evolution to improve catalytic efficiency when an inactive intermediate is involved.


Asunto(s)
Adenosina Trifosfatasas , Replicación del ADN , Adenosina Trifosfatasas/metabolismo , Microscopía por Crioelectrón , ADN , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Mutagénesis , Adenosina Trifosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA