Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.282
Filtrar
1.
Cell Mol Life Sci ; 81(1): 268, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884814

RESUMEN

It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.


Asunto(s)
Potenciales de Acción , Glicina , Neuronas , Núcleo Accumbens , Receptores Acoplados a Proteínas G , Animales , Glicina/farmacología , Glicina/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/citología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Potenciales de Acción/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Receptores de Glicina/metabolismo , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Neuronas Espinosas Medianas
2.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892125

RESUMEN

A total of 3102 neurons were recorded before and following acute and chronic methylphenidate (MPD) administration. Acute MPD exposure elicits mainly increases in neuronal and behavioral activity in dose-response characteristics. The response to chronic MPD exposure, as compared to acute 0.6, 2.5, or 10.0 mg/kg MPD administration, elicits electrophysiological and behavioral sensitization in some animals and electrophysiological and behavioral tolerance in others when the neuronal recording evaluations were performed based on the animals' behavioral responses, or amount of locomotor activity, to chronic MPD exposure. The majority of neurons recorded from those expressing behavioral sensitization responded to chronic MPD with further increases in firing rate as compared to the initial MPD responses. The majority of neurons recorded from animals expressing behavioral tolerance responded to chronic MPD with decreases in their firing rate as compared to the initial MPD exposures. Each of the six brain areas studied-the ventral tegmental area, locus coeruleus, dorsal raphe, nucleus accumbens, prefrontal cortex, and caudate nucleus (VTA, LC, DR, NAc, PFC, and CN)-responds significantly (p < 0.001) differently to MPD, suggesting that each one of the above brain areas exhibits different roles in the response to MPD. Moreover, this study demonstrates that it is essential to evaluate neuronal activity responses to psychostimulants based on the animals' behavioral responses to acute and chronic effects of the drug from several brain areas simultaneously to obtain accurate information on each area's role in response to the drug.


Asunto(s)
Conducta Animal , Núcleo Caudado , Metilfenidato , Neuronas , Núcleo Accumbens , Corteza Prefrontal , Área Tegmental Ventral , Animales , Metilfenidato/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/metabolismo , Núcleo Caudado/efectos de los fármacos , Núcleo Caudado/fisiología , Núcleo Caudado/metabolismo , Masculino , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Conducta Animal/efectos de los fármacos , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Ratas Sprague-Dawley , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/fisiología , Núcleo Dorsal del Rafe/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología
3.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791298

RESUMEN

Tobacco use disorder represents a significant public health challenge due to its association with various diseases. Despite awareness efforts, smoking rates remain high, partly due to ineffective cessation methods and the spread of new electronic devices. This study investigated the impact of prolonged nicotine exposure via a heat-not-burn (HnB) device on selected genes and signaling proteins involved in inflammatory processes in the rat ventral tegmental area (VTA) and nucleus accumbens (NAc), two brain regions associated with addiction to different drugs, including nicotine. The results showed a reduction in mRNA levels for PPARα and PPARγ, two nuclear receptors and anti-inflammatory transcription factors, along with the dysregulation of gene expression of the epigenetic modulator KDM6s, in both investigated brain areas. Moreover, decreased PTEN mRNA levels and higher AKT phosphorylation were detected in the VTA of HnB-exposed rats with respect to their control counterparts. Finally, significant alterations in ERK 1/2 phosphorylation were observed in both mesolimbic areas, with VTA decrease and NAc increase, respectively. Overall, the results suggest that HnB aerosol exposure disrupts intracellular pathways potentially involved in the development and maintenance of the neuroinflammatory state. Moreover, these data highlight that, similar to conventional cigarettes, HnB devices use affects specific signaling pathways shaping neuroinflammatory process in the VTA and NAc, thus triggering mechanisms that are currently considered as potentially relevant for the development of addictive behavior.


Asunto(s)
Núcleo Accumbens , Área Tegmental Ventral , Animales , Ratas , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , PPAR gamma/metabolismo , PPAR gamma/genética , Transducción de Señal/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Humo/efectos adversos , Nicotina/efectos adversos , Ratas Wistar , Nicotiana/efectos adversos , Tabaquismo/metabolismo , Fosforilación/efectos de los fármacos
4.
Neuropharmacology ; 255: 110001, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38750804

RESUMEN

Emerging evidence suggests an important role of astrocytes in mediating behavioral and molecular effects of commonly misused drugs. Passive exposure to nicotine alters molecular, morphological, and functional properties of astrocytes. However, a potential involvement of astrocytes in nicotine reinforcement remains largely unexplored. The overall hypothesis tested in the current study is that astrocytes play a critical role in nicotine reinforcement. Protein levels of the astrocyte marker glial fibrillary acidic protein (GFAP) were examined in key mesocorticolimbic regions following chronic nicotine intravenous self-administration. Fluorocitrate, a metabolic inhibitor of astrocytes, was tested for its effects on behaviors related to nicotine reinforcement and relapse. Effects of fluorocitrate on extracellular neurotransmitter levels, including glutamate, GABA, and dopamine, were determined with microdialysis. Chronic nicotine intravenous self-administration increased GFAP expression in the nucleus accumbens core (NACcr), but not other key mesocorticolimbic regions, compared to saline intravenous self-administration. Both intra-ventricular and intra-NACcr microinjection of fluorocitrate decreased nicotine self-administration. Intra-NACcr fluorocitrate microinjection also inhibited cue-induced reinstatement of nicotine seeking. Local perfusion of fluorocitrate decreased extracellular glutamate levels, elevated extracellular dopamine levels, but did not alter extracellular GABA levels in the NACcr. Fluorocitrate did not alter basal locomotor activity. These results indicate that nicotine reinforcement upregulates the astrocyte marker GFAP expression in the NACcr, metabolic inhibition of astrocytes attenuates nicotine reinforcement and relapse, and metabolic inhibition of astrocytes disrupts extracellular dopamine and glutamate transmission. Overall, these findings suggest that astrocytes play an important role in nicotine reinforcement and relapse, potentially through regulation of extracellular glutamate and dopamine neurotransmission.


Asunto(s)
Astrocitos , Citratos , Dopamina , Ácido Glutámico , Nicotina , Núcleo Accumbens , Ratas Wistar , Autoadministración , Animales , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Nicotina/farmacología , Nicotina/administración & dosificación , Masculino , Ácido Glutámico/metabolismo , Dopamina/metabolismo , Citratos/farmacología , Citratos/administración & dosificación , Ratas , Proteína Ácida Fibrilar de la Glía/metabolismo , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/administración & dosificación , Microdiálisis , Refuerzo en Psicología , Ácido gamma-Aminobutírico/metabolismo
5.
Neuropharmacology ; 255: 110008, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797243

RESUMEN

Ketamine (KET), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has rapid onset of antidepressant effects in Treatment-Resistant Depression patients and repeated infusions are required to sustain its antidepressant properties. However, KET is an addictive drug, and so more preclinical and clinical research is needed to assess the safety of recurring treatments in both sexes. Thus, the aim of this study was to investigate the reinforcing properties of various doses of KET (0-, 0.125-, 0.25-, 0.5 mg/kg/infusion) and assess KET's cue-induced reinstatement and neuronal activation in both sexes of Long Evans rats. Neuronal activation was assessed using the protein expression of the immediate early gene cFos in the nucleus accumbens (Nac), an important brain area implicated in reward, reinforcement and reinstatement to most drug-related cues. Our findings show that KET has reinforcing effects in both male and female rats, albeit exclusively at the highest two doses (0.25 and 0.5 mg/kg/infusion). Furthermore, we noted sex differences, particularly at the highest dose of ketamine, with female rats displaying a higher rate of self-administration. Interestingly, all groups that self-administered KET reinstated to drug-cues. Following drug cue-induced reinstatement test in rats exposed to KET (0.25 mg/kg/infusion) or saline, there was higher cFos protein expression in KET-treated animals compared to saline controls, and higher cFos expression in the core compared to the shell subregions of the Nac. As for reinstatement, there were no notable sex differences reported for cFos expression in the Nac. These findings reveal some sex and dose dependent effects in KET's reinforcing properties and that KET at all doses induced similar reinstatement in both sexes. This study also demonstrated that cues associated with ketamine induce comparable neuronal activation in the Nac of both male and female rats. This work warrants further research into the potential addictive properties of KET, especially when administered at lower doses which are now being used in the clinic for treating various psychopathologies.


Asunto(s)
Señales (Psicología) , Relación Dosis-Respuesta a Droga , Ketamina , Núcleo Accumbens , Ratas Long-Evans , Refuerzo en Psicología , Animales , Ketamina/farmacología , Ketamina/administración & dosificación , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Femenino , Proteínas Proto-Oncogénicas c-fos/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Ratas , Caracteres Sexuales , Autoadministración , Condicionamiento Operante/efectos de los fármacos
6.
eNeuro ; 11(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806231

RESUMEN

Amylin, a pancreatic hormone that is cosecreted with insulin, has been highlighted as a potential treatment target for obesity. Amylin receptors are distributed widely throughout the brain and are coexpressed on mesolimbic dopamine neurons. Activation of amylin receptors is known to reduce food intake, but the neurochemical mechanisms behind this remain to be elucidated. Amylin receptor activation in the ventral tegmental area (VTA), a key dopaminergic nucleus in the mesolimbic reward system, has a potent ability to suppress intake of palatable fat and sugar solutions. Although previous work has demonstrated that VTA amylin receptor activation can dampen mesolimbic dopamine signaling elicited by random delivery of sucrose, whether this is also the case for fat remains unknown. Herein we tested the hypothesis that amylin receptor activation in the VTA of male rats would attenuate dopamine signaling in the nucleus accumbens core in response to random intraoral delivery of either fat or sugar solutions. Results show that fat solution produces a greater potentiation of accumbens dopamine than an isocaloric sucrose solution. Moreover, activation of VTA amylin receptors elicits a more robust suppression of accumbens dopamine signaling in response to fat solution than to sucrose. Taken together these results shed new light on the amylin system as a therapeutic target for obesity and emphasize the reinforcing nature of high-fat/high-sugar diets.


Asunto(s)
Dopamina , Núcleo Accumbens , Receptores de Polipéptido Amiloide de Islotes Pancreáticos , Área Tegmental Ventral , Animales , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Masculino , Dopamina/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/metabolismo , Ratas Sprague-Dawley , Grasas de la Dieta/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Agonistas de los Receptores de Amilina/farmacología , Ratas , Sacarosa/administración & dosificación , Sacarosa/farmacología
7.
Nat Commun ; 15(1): 3661, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688901

RESUMEN

Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.


Asunto(s)
Adenosina , Núcleo Accumbens , Receptor de Adenosina A2A , Sueño de Onda Lenta , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Masculino , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Ratones , Adenosina/metabolismo , Adenosina/farmacología , Regulación Alostérica , Sueño de Onda Lenta/fisiología , Sueño de Onda Lenta/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Luz , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos , Agonistas del Receptor de Adenosina A2/farmacología
8.
Life Sci ; 348: 122673, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679193

RESUMEN

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Asunto(s)
Etanol , Técnicas de Sustitución del Gen , Receptores de Glicina , Animales , Etanol/farmacología , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Ratones , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones Transgénicos , Receptores de GABA-A
9.
Science ; 384(6693): eadk6742, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38669575

RESUMEN

Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.


Asunto(s)
Homeostasis , Núcleo Accumbens , Recompensa , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Animales , Ratones , Neuronas/metabolismo , Drogas Ilícitas/efectos adversos , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Masculino , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Transducción de Señal , Trastornos Relacionados con Sustancias , Análisis de la Célula Individual , Cocaína/farmacología , Calcio/metabolismo
10.
Behav Brain Res ; 468: 114999, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38615978

RESUMEN

Itch is one of the most common clinical symptoms in patients with diseases of the skin, liver, or kidney, and it strongly triggers aversive emotion and scratching behavior. Previous studies have confirmed the role of the prelimbic cortex (Prl) and the nucleus accumbens core (NAcC), which are reward and motivation regulatory centers, in the regulation of itch. However, it is currently unclear whether the Prl-NAcC projection, an important pathway connecting these two brain regions, is involved in the regulation of itch and its associated negative emotions. In this study, rat models of acute neck and cheek itch were established by subcutaneous injection of 5-HT, compound 48/80, or chloroquine. Immunofluorescence experiments determined that the number of c-Fos-immunopositive neurons in the Prl increased during acute itch. Chemogenetic inhibition of Prl glutamatergic neurons or Prl-NAcC glutamatergic projections can inhibit both histaminergic and nonhistaminergic itch-scratching behaviors and rectify the itch-related conditioned place aversion (CPA) behavior associated with nonhistaminergic itch. The Prl-NAcC projection may play an important role in the positive regulation of itch-scratching behavior by mediating the negative emotions related to itch.


Asunto(s)
Vías Nerviosas , Núcleo Accumbens , Prurito , Ratas Sprague-Dawley , Animales , Prurito/fisiopatología , Núcleo Accumbens/fisiología , Núcleo Accumbens/efectos de los fármacos , Masculino , Ratas , Vías Nerviosas/fisiología , Vías Nerviosas/fisiopatología , Modelos Animales de Enfermedad , Neuronas/fisiología , Reacción de Prevención/fisiología , Conducta Animal/fisiología , Corteza Prefrontal/fisiología , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38565388

RESUMEN

While there is extensive research on alcohol dependence, the factors that make an individual vulnerable to developing alcoholism haven't been explored much. In this study, we aim to investigate how neonatal exposure to sex hormones affects alcohol intake and the regulation of the mesolimbic pathway in adulthood. The study aimed to investigate the impact of neonatal exposure to a single dose of testosterone propionate (TP) or estradiol valerate (EV) on ethanol consumption in adult rats. The rats were subjected to a two-bottle free-choice paradigm, and the content of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens (NAcc) was measured using HPLC-ED. The expression of critical DA-related proteins in the mesolimbic pathway was evaluated through RT-qPCR and western blot analysis. Supraphysiological neonatal exposure to EV or TP resulted in increased ethanol intake over four weeks in adulthood. In addition, the DA and DOPAC content was reduced and increased in the NAcc of EV and TP-treated rats, and ß-endorphin content in the hypothalamus decreased in EV-treated rats. The VTA µ receptor and DA type 2 form short receptor (D2S) expression were significantly reduced in EV and TP male rats. Finally, in an extended 6-week protocol, the increase in ethanol consumption induced by EV was mitigated during the initial two hours post-naloxone injection. Neonatal exposure to sex hormones is a detrimental stimulus for the brain, which can facilitate the development of addictive behaviors, including alcohol use disorder.


Asunto(s)
Ácido 3,4-Dihidroxifenilacético , Consumo de Bebidas Alcohólicas , Animales Recién Nacidos , Dopamina , Estradiol , Núcleo Accumbens , Propionato de Testosterona , Animales , Masculino , Consumo de Bebidas Alcohólicas/metabolismo , Ratas , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Estradiol/farmacología , Propionato de Testosterona/farmacología , Propionato de Testosterona/administración & dosificación , Dopamina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Femenino , Etanol/farmacología , Etanol/administración & dosificación , Hormonas Esteroides Gonadales/metabolismo , Ratas Sprague-Dawley
12.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38613458

RESUMEN

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Ibogaína , Ibogaína/análogos & derivados , Nicotina , Receptores Nicotínicos , Animales , Dopamina/metabolismo , Masculino , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Nicotina/farmacología , Ibogaína/farmacología , Ratones , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratones Endogámicos C57BL , Antagonistas Nicotínicos/farmacología , Oocitos/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Autoadministración , Xenopus laevis , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Relación Dosis-Respuesta a Droga , Actividad Motora/efectos de los fármacos
13.
Pharmacol Biochem Behav ; 239: 173752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521210

RESUMEN

RATIONALE: Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE: The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS: Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS: Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION: In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.


Asunto(s)
Benzamidas , Nicotina , Receptor del Glutamato Metabotropico 5 , Recompensa , Animales , Nicotina/farmacología , Masculino , Benzamidas/farmacología , Benzamidas/uso terapéutico , Receptor del Glutamato Metabotropico 5/metabolismo , Ratas , Plasticidad Neuronal/efectos de los fármacos , Fumar Cigarrillos , Femenino , Quinpirol/farmacología , Pirazoles/farmacología , Ratas Sprague-Dawley , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/metabolismo , Regulación Alostérica/efectos de los fármacos , Sistema Límbico/metabolismo , Sistema Límbico/efectos de los fármacos , Animales Recién Nacidos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos
14.
J Neurosci ; 42(9): 1738-1751, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35042768

RESUMEN

Striatal adenosine A1 receptor (A1R) activation can inhibit dopamine release. A1Rs on other striatal neurons are activated by an adenosine tone that is limited by equilibrative nucleoside transporter 1 (ENT1) that is enriched on astrocytes and is ethanol sensitive. We explored whether dopamine release in nucleus accumbens core is under tonic inhibition by A1Rs, and is regulated by astrocytic ENT1 and ethanol. In ex vivo striatal slices from male and female mice, A1R agonists inhibited dopamine release evoked electrically or optogenetically and detected using fast-scan cyclic voltammetry, most strongly for lower stimulation frequencies and pulse numbers, thereby enhancing the activity-dependent contrast of dopamine release. Conversely, A1R antagonists reduced activity-dependent contrast but enhanced evoked dopamine release levels, even for single optogenetic pulses indicating an underlying tonic inhibition. The ENT1 inhibitor nitrobenzylthioinosine reduced dopamine release and promoted A1R-mediated inhibition, and, conversely, virally mediated astrocytic overexpression of ENT1 enhanced dopamine release and relieved A1R-mediated inhibition. By imaging the genetically encoded fluorescent adenosine sensor [GPCR-activation based (GRAB)-Ado], we identified a striatal extracellular adenosine tone that was elevated by the ENT1 inhibitor and sensitive to gliotoxin fluorocitrate. Finally, we identified that ethanol (50 mm) promoted A1R-mediated inhibition of dopamine release, through diminishing adenosine uptake via ENT1. Together, these data reveal that dopamine output dynamics are gated by a striatal adenosine tone, limiting amplitude but promoting contrast, regulated by ENT1, and promoted by ethanol. These data add to the diverse mechanisms through which ethanol modulates striatal dopamine, and to emerging datasets supporting astrocytic transporters as important regulators of striatal function.SIGNIFICANCE STATEMENT Dopamine axons in the mammalian striatum are emerging as strategic sites where neuromodulators can powerfully influence dopamine output in health and disease. We found that ambient levels of the neuromodulator adenosine tonically inhibit dopamine release in nucleus accumbens core via adenosine A1 receptors (A1Rs), to a variable level that promotes the contrast in dopamine signals released by different frequencies of activity. We reveal that the equilibrative nucleoside transporter 1 (ENT1) on astrocytes limits this tonic inhibition, and that ethanol promotes it by diminishing adenosine uptake via ENT1. These findings support the hypotheses that A1Rs on dopamine axons inhibit dopamine release and, furthermore, that astrocytes perform important roles in setting the level of striatal dopamine output, in health and disease.


Asunto(s)
Astrocitos , Dopamina , Tranportador Equilibrativo 1 de Nucleósido , Etanol , Núcleo Accumbens , Receptor de Adenosina A1 , Adenosina/farmacología , Agonistas del Receptor de Adenosina A1/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Dopamina/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Etanol/farmacología , Femenino , Masculino , Ratones , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptor de Adenosina A1/metabolismo
15.
Behav Brain Res ; 417: 113590, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34551348

RESUMEN

Oxytocin attenuates cocaine-seeking when administered both systemically and directly into the nucleus accumbens core. This effect is blocked by intra-accumbens antagonism of mGlu2/3 and, together with our finding that intra-accumbens oxytocin increases glutamate concentrations in this brain region, indicates that pre-synaptic regulation of glutamate release by oxytocin influences cocaine relapse. However, mGlu2/3 receptors also regulate dopamine release in the nucleus accumbens. Here we aimed to determine whether systemic oxytocin increases glutamate and dopamine concentrations in the nucleus accumbens core of cocaine-experienced and cocaine-naïve male and female rats. A subset of rats self-administered cocaine (0.5 mg/kg/infusion) and then underwent extinction training for 2-3 weeks. Rats were implanted with microdialysis probes in the accumbens core and samples were collected for a baseline period, and following saline (1 mL/kg), and oxytocin (1 mg/kg, IP) injections. Locomotion was assessed during microdialysis. In cocaine-experienced rats, oxytocin increased glutamate concentrations in the accumbens core to the same extent in males and females but only increased dopamine concentrations in male rats. Oxytocin did not alter glutamate levels in cocaine-naïve rats. Oxytocin did not produce sedation. These results extend previous findings that systemic oxytocin increases nucleus accumbens dopamine in a sex-specific manner in cocaine-experienced rats. These data are the first to find that systemic oxytocin increases nucleus accumbens glutamate after cocaine experience, providing a mechanism of action by which oxytocin attenuates the reinstatement of cocaine seeking in both male and female rats.


Asunto(s)
Cocaína/administración & dosificación , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Núcleo Accumbens/metabolismo , Oxitocina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Comportamiento de Búsqueda de Drogas , Femenino , Masculino , Microdiálisis , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Autoadministración
16.
Behav Brain Res ; 417: 113596, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34562552

RESUMEN

Cotinine is the major metabolite of nicotine and has recently been shown to be self-administered intravenously by rats. However, mechanisms underlying cotinine self-administration remained unknown. Mesolimbic dopamine system projecting from the ventral tegmental area (VTA) to nucleus accumbens (NAC) is closely implicated in drug reinforcement, including nicotine. The objective of the current study was to determine potential involvement of mesolimbic dopamine system in cotinine self-administration. An intracranial self-administration experiment demonstrates that cotinine at 0.88 and 1.76 ng/100 nl/infusion was self-infused into the VTA by rats. Rats produced more infusions of cotinine than vehicle and responded more on active than inactive lever during acquisition, reduced responding when cotinine was replaced by vehicle, and resumed responding during re-exposure to cotinine. Microinjection of cotinine at 1.76 ng/100 nl/infusion into the VTA increased extracellular dopamine levels within the NAC. Subcutaneous injection of cotinine at 1 mg/kg also increased extracellular dopamine levels within the NAC. Administration of the D1-like receptor antagonist SCH 23390 attenuated intravenous cotinine self-administration. On the other hand, bupropion, a catecholamine uptake inhibitor, did not significantly alter intravenous cotinine self-administration. These results suggest that activation of mesolimbic dopamine system may represent one cellular mechanism underlying cotinine self-administration. This shared mechanism between cotinine and nicotine suggests that cotinine may play a role in nicotine reinforcement.


Asunto(s)
Cotinina/administración & dosificación , Dopamina/fisiología , Sistema Límbico/fisiología , Autoadministración , Animales , Benzazepinas/antagonistas & inhibidores , Encéfalo/metabolismo , Bupropión , Inhibidores de Captación de Dopamina , Sistema Límbico/efectos de los fármacos , Masculino , Microinyecciones , Núcleo Accumbens/efectos de los fármacos , Ratas , Refuerzo en Psicología , Área Tegmental Ventral/efectos de los fármacos
17.
Behav Brain Res ; 416: 113540, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34419513

RESUMEN

Dopamine (DA) transmission is important in the regulation of mood and anxiety behaviors. However, how specific dopaminergic signaling pathways respond to anxiogenic stimuli as well as regulate behaviors remains unknown. To understand how DA regulates the animal behaviors under anxiety we performed retrograde labeling and c-Fos staining of midbrain DA neurons. Our c-Fos labeling results showed that DA neurons projected to nucleus accumbens (NAc) are activated in animals treated with the elevated plus-maze (EPM). Real-time measurement of DA release using fast scanning cyclic voltammetry (FSCV) in NAc of freely behaving mice showed that increased DA release and more DA transients in the close arms than the open arms in the EPM. Meanwhile, we also observed a reduction of DA level from the close arms to the open arms. Local infusion of DA D1 receptor antagonist, SCH23390 in the core of NAc, leads to an anxiolytic-like effect in the open-field and EPM. These anxiolytic effects were not observed in animals received D2 receptor antagonist sulpiride infusion in the core of NAc. Taken together, our results reveal a novel function of the mesolimbic DA pathway through the D1 receptor in the regulation of anxiety-like behaviors.


Asunto(s)
Ansiolíticos/farmacología , Benzazepinas/farmacología , Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Benzazepinas/antagonistas & inhibidores , Antagonistas de Dopamina/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Proteínas Proto-Oncogénicas c-fos/fisiología , Receptores de Dopamina D2/metabolismo , Transducción de Señal , Sulpirida/farmacología
18.
Addict Biol ; 27(1): e13108, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34713509

RESUMEN

Previous studies indicate that moderate-to-high ethanol (EtOH) concentrations enhance dopamine (DA) neurotransmission in the mesolimbic DA system from the ventral tegmental area (VTA) and projecting to the nucleus accumbens core (NAc). However, voltammetry studies demonstrate that moderate-to-high EtOH concentrations decrease evoked DA release at NAc terminals. The involvement of γ-aminobutyric acid (GABA) receptors (GABAA Rs), glycine (GLY) receptors (GLYRs) and cholinergic interneurons (CINs) in mediating EtOH inhibition of evoked NAc DA release were examined. Fast scan cyclic voltammetry, electrophysiology, optogenetics and immunohistochemistry techniques were used to evaluate the effects of acute and chronic EtOH exposure on DA release and CIN activity in C57/BL6, CD-1, transgenic mice and δ-subunit knockout (KO) mice (δ-/-). Ethanol decreased DA release in mice with an IC50 of 80 mM ex vivo and 2.0 g/kg in vivo. GABA and GLY decreased evoked DA release at 1-10 mM. Typical GABAA R agonists inhibited DA release at high concentrations. Typical GABAA R antagonists had minimal effects on EtOH inhibition of evoked DA release. However, EtOH inhibition of DA release was blocked by the α4 ß3 δ GABAA R antagonist Ro15-4513, the GLYR antagonist strychnine and by the GABA ρ1 (Rho-1) antagonist TPMPA (10 µM) and reduced significantly in GABAA R δ-/- mice. Rho-1 expression was observed in CINs. Ethanol inhibited GABAergic synaptic input to CINs from the VTA and enhanced firing rate, both of which were blocked by TPMPA. Results herein suggest that EtOH inhibition of DA release in the NAc is modulated by GLYRs and atypical GABAA Rs on CINs containing δ- and Rho-subunits.


Asunto(s)
Dopamina/metabolismo , Etanol/farmacología , Núcleo Accumbens/efectos de los fármacos , Receptores de GABA/efectos de los fármacos , Animales , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
19.
Behav Brain Res ; 418: 113660, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34752844

RESUMEN

Accumulating studies consistently show that methylphenidate (MPD), the first line drug for treating Attention-Deficit Hyperactivity Disorder (ADHD), is abused by patients to whom the drug is prescribed. Like other psychostimulants, only low doses of MPD improve cognitive performance while higher doses impair it. Preventing the use of high doses of MPD is important for retaining its therapeutic efficacy. Previously, it has been shown that performance in Morris water maze test is improved in rats treated, orally, with MPD in doses of 2.5 mg/kg; but higher doses (5 mg/kg) impair it. The present study is designed to monitor rewarding effects of 2.5 mg/kg MPD in conditioned place preference (CPP) paradigm and its potential inhibition in buspirone co-treated animals. Our results show that rewarding effects of MPD in CPP paradigm are prevented in rats co-treated with buspirone in doses of 0.1 and 0.3 mg/kg. Animals treated with MPD exhibit a downregulation of 5-HT1A receptor mRNA in the nucleus accumbens which is also prevented in rats co-treated with 0.1 and 0.3 mg/kg but not 1.0 and 2.0 mg/kg buspirone. Administration of buspirone in these doses is not rewarding in CPP test and upregulates 5-HT1A receptor mRNA in the nucleus accumbens. The findings suggest that co-use of low doses of buspirone can prevent rewarding effects of MPD to help retain its therapeutic efficacy.


Asunto(s)
Buspirona/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Metilfenidato/farmacología , Núcleo Accumbens/efectos de los fármacos , ARN Mensajero/metabolismo , Receptor de Serotonina 5-HT1A , Agonistas de Receptores de Serotonina/farmacología , Animales , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Receptor de Serotonina 5-HT1A/metabolismo , Recompensa
20.
Neuropharmacology ; 205: 108925, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921830

RESUMEN

The abuse of oral formulations of prescription opioids has precipitated the current opioid epidemic. We developed an oral oxycodone consumption model consisting of a limited access (4 h) two-bottle choice drinking in the dark (TBC-DID) paradigm and quantified dependence with naloxone challenge using mice of both sexes. We also assessed neurobiological correlates of withdrawal and dependence elicited via oral oxycodone consumption using immunohistochemistry for DeltaFosB (ΔFosB), a transcription factor described as a molecular marker for drug addiction. Neither sex developed a preference for the oxycodone bottle, irrespective of oxycodone concentration, bottle position or prior water restriction. Mice that volitionally consumed oxycodone exhibited hyperlocomotion in an open field test and supraspinal but not spinally-mediated antinociception. Both sexes also developed robust, dose-dependent levels of opioid withdrawal that was precipitated by the opioid antagonist naloxone. Oral oxycodone consumption followed by naloxone challenge led to mesocorticolimbic region-dependent increases in the number of ΔFosB expressing cells. Naloxone-precipitated withdrawal jumps, but not the oxycodone bottle % preference, was positively correlated with the number of ΔFosB expressing cells specifically in the nucleus accumbens shell. Thus, limited access oral consumption of oxycodone produced physical dependence and increased ΔFosB expression despite the absence of opioid preference. Our TBC-DID paradigm allows for the study of oral opioid consumption in a simple, high-throughput manner and elucidates the underlying neurobiological substrates that accompany opioid-induced physical dependence.


Asunto(s)
Analgésicos Opioides/farmacología , Núcleo Accumbens/efectos de los fármacos , Trastornos Relacionados con Opioides , Oxicodona/farmacología , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Síndrome de Abstinencia a Sustancias , Analgésicos Opioides/administración & dosificación , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Locomoción/efectos de los fármacos , Ratones , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Nocicepción/efectos de los fármacos , Núcleo Accumbens/metabolismo , Trastornos Relacionados con Opioides/metabolismo , Trastornos Relacionados con Opioides/fisiopatología , Oxicodona/administración & dosificación , Proteínas Proto-Oncogénicas c-fos/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA