Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.123
Filtrar
1.
J Vis Exp ; (207)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38767365

RESUMEN

Intermuscular adipose tissue (IMAT) is a relatively understudied adipose depot located between muscle fibers. IMAT content increases with age and BMI and is associated with metabolic and muscle degenerative diseases; however, an understanding of the biological properties of IMAT and its interplay with the surrounding muscle fibers is severely lacking. In recent years, single-cell and nuclei RNA sequencing have provided us with cell type-specific atlases of several human tissues. However, the cellular composition of human IMAT remains largely unexplored due to the inherent challenges of its accessibility from biopsy collection in humans. In addition to the limited amount of tissue collected, the processing of human IMAT is complicated due to its proximity to skeletal muscle tissue and fascia. The lipid-laden nature of the adipocytes makes it incompatible with single-cell isolation. Hence, single nuclei RNA sequencing is optimal for obtaining high-dimensional transcriptomics at single-cell resolution and provides the potential to uncover the biology of this depot, including the exact cellular composition of IMAT. Here, we present a detailed protocol for nuclei isolation and library preparation of frozen human IMAT for single nuclei RNA sequencing. This protocol allows for the profiling of thousands of nuclei using a droplet-based approach, thus providing the capacity to detect rare and low-abundant cell types.


Asunto(s)
Tejido Adiposo , Núcleo Celular , Análisis de Secuencia de ARN , Humanos , Tejido Adiposo/citología , Análisis de Secuencia de ARN/métodos , Núcleo Celular/química , Núcleo Celular/genética , Análisis de la Célula Individual/métodos , Músculo Esquelético/citología , Músculo Esquelético/química
2.
Nat Genet ; 56(5): 889-899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38741018

RESUMEN

The extent of cell-to-cell variation in tumor mitochondrial DNA (mtDNA) copy number and genotype, and the phenotypic and evolutionary consequences of such variation, are poorly characterized. Here we use amplification-free single-cell whole-genome sequencing (Direct Library Prep (DLP+)) to simultaneously assay mtDNA copy number and nuclear DNA (nuDNA) in 72,275 single cells derived from immortalized cell lines, patient-derived xenografts and primary human tumors. Cells typically contained thousands of mtDNA copies, but variation in mtDNA copy number was extensive and strongly associated with cell size. Pervasive whole-genome doubling events in nuDNA associated with stoichiometrically balanced adaptations in mtDNA copy number, implying that mtDNA-to-nuDNA ratio, rather than mtDNA copy number itself, mediated downstream phenotypes. Finally, multimodal analysis of DLP+ and single-cell RNA sequencing identified both somatic loss-of-function and germline noncoding variants in mtDNA linked to heteroplasmy-dependent changes in mtDNA copy number and mitochondrial transcription, revealing phenotypic adaptations to disrupted nuclear/mitochondrial balance.


Asunto(s)
Núcleo Celular , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Genoma Mitocondrial , Neoplasias , Análisis de la Célula Individual , Humanos , ADN Mitocondrial/genética , Análisis de la Célula Individual/métodos , Variaciones en el Número de Copia de ADN/genética , Núcleo Celular/genética , Neoplasias/genética , Neoplasias/patología , Línea Celular Tumoral , Animales , Mitocondrias/genética , Secuenciación Completa del Genoma/métodos , Ratones , Heteroplasmia/genética
3.
Anal Chem ; 96(16): 6301-6310, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597061

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is a transformative technology that unravels the intricate cellular state heterogeneity. However, the Poisson-dependent cell capture and low sensitivity in scRNA-seq methods pose challenges for throughput and samples with a low RNA-content. Herein, to address these challenges, we present Well-Paired-Seq2 (WPS2), harnessing size-exclusion and quasi-static hydrodynamics for efficient cell capture. WPS2 exploits molecular crowding effect, tailing activity enhancement in reverse transcription, and homogeneous enzymatic reaction in the initial bead-based amplification to achieve 3116 genes and 8447 transcripts with an average of ∼20000 reads per cell. WPS2 detected 1420 more genes and 4864 more transcripts than our previous Well-Paired-Seq. It sensitively characterizes transcriptomes of low RNA-content single cells and nuclei, overcoming the Poisson limit for cell and barcoded bead capture. WPS2 also profiles transcriptomes from frozen clinical samples, revealing heterogeneous tumor copy number variations and intercellular crosstalk in clear cell renal cell carcinomas. Additionally, we provide the first single-cell-level characterization of rare metanephric adenoma (MA) and uncover potential specific markers. With the advantages of high sensitivity and high throughput, WPS2 holds promise for diverse basic and clinical research.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , ARN/genética , Análisis de Secuencia de ARN , Neoplasias Renales/genética , Neoplasias Renales/patología , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Nat Commun ; 15(1): 3634, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688897

RESUMEN

Central nervous system (CNS) tumors are the leading cause of pediatric cancer death, and these patients have an increased risk for developing secondary neoplasms. Due to the low prevalence of pediatric CNS tumors, major advances in targeted therapies have been lagging compared to other adult tumors. We collect single nuclei RNA-seq data from 84,700 nuclei of 35 pediatric CNS tumors and three non-tumoral pediatric brain tissues and characterize tumor heterogeneity and transcriptomic alterations. We distinguish cell subpopulations associated with specific tumor types including radial glial cells in ependymomas and oligodendrocyte precursor cells in astrocytomas. In tumors, we observe pathways important in neural stem cell-like populations, a cell type previously associated with therapy resistance. Lastly, we identify transcriptomic alterations among pediatric CNS tumor types compared to non-tumor tissues, while accounting for cell type effects on gene expression. Our results suggest potential tumor type and cell type-specific targets for pediatric CNS tumor treatment. Here we address current gaps in understanding single nuclei gene expression profiles of previously under-investigated tumor types and enhance current knowledge of gene expression profiles of single cells of various pediatric CNS tumors.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Ependimoma , Regulación Neoplásica de la Expresión Génica , Transcriptoma , Humanos , Niño , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/metabolismo , Ependimoma/genética , Ependimoma/patología , Ependimoma/metabolismo , Preescolar , Astrocitoma/genética , Astrocitoma/patología , Astrocitoma/metabolismo , Perfilación de la Expresión Génica/métodos , Femenino , RNA-Seq , Masculino , Adolescente , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Núcleo Celular/metabolismo , Núcleo Celular/genética
5.
Genes Dev ; 38(7-8): 291-293, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688680

RESUMEN

The Malat1 (metastasis-associated lung adenocarcinoma transcript 1) long noncoding RNA is highly and broadly expressed in mammalian tissues, accumulating in the nucleus where it modulates expression and pre-mRNA processing of many protein-coding genes. In this issue of Genes & Development, Xiao and colleagues (doi:10.1101/gad.351557.124) report that a significant fraction of Malat1 transcripts in cultured mouse neurons are surprisingly exported from the nucleus. These transcripts are packaged with Staufen proteins in RNA granules and traffic down the lengths of neurites. They then can be released in a stimulus-dependent manner to be locally translated into a microprotein that alters neuronal gene expression patterns.


Asunto(s)
Núcleo Celular , Neuronas , Biosíntesis de Proteínas , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neuronas/metabolismo , Ratones , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
6.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653754

RESUMEN

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Núcleo Celular , Factor de Transcripción SOX9 , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Transporte Activo de Núcleo Celular/genética , Ratones , Línea Celular Tumoral , Animales , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
7.
J Cell Biol ; 223(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38451221

RESUMEN

Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.


Asunto(s)
Reparación del ADN , Proteínas de Homeodominio , Complejos Multiproteicos , Núcleo Celular/genética , Epigenómica , Histonas/genética , Humanos , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Homeodominio/metabolismo , Complejos Multiproteicos/metabolismo
8.
FEBS J ; 291(10): 2191-2208, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431777

RESUMEN

The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.


Asunto(s)
Higromicina B , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Higromicina B/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Biosíntesis de Proteínas/efectos de los fármacos
9.
J Biol Chem ; 300(3): 105692, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301892

RESUMEN

PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.


Asunto(s)
Regulación de la Expresión Génica , Proteína Quinasa C , Transducción de Señal , Regulación de la Expresión Génica/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Factores de Transcripción/metabolismo , Humanos , Animales , Núcleo Celular/enzimología , Núcleo Celular/genética
10.
Plant J ; 118(4): 1102-1118, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38323852

RESUMEN

Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.


Asunto(s)
Núcleo Celular , Festuca , Lolium , Poliploidía , Festuca/genética , Lolium/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma de Planta/genética , Genoma del Cloroplasto , Cloroplastos/genética , Cloroplastos/metabolismo , Hibridación Genética , Regulación de la Expresión Génica de las Plantas
11.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397052

RESUMEN

Chromosomal rearrangements have been shown to alter genome organization, consequently having an impact on gene expression. Studies on certain types of leukemia have shown that gene expression can be exacerbated by the altered nuclear positioning of fusion genes arising from chromosomal translocations. However, studies on lymphoma have been, so far, very limited. The scope of this study was to explore genome organization in lymphoma cells carrying the t(14;18)(q32;q21) rearrangement known to results in over-expression of the BCL2 gene. In order to achieve this aim, we used fluorescence in situ hybridization to carefully map the positioning of whole chromosome territories and individual genes involved in translocation in the lymphoma-derived cell line Pfeiffer. Our data show that, although there is no obvious alteration in the positioning of the whole chromosome territories, the translocated genes may take the nuclear positioning of either of the wild-type genes. Furthermore, the BCL2 gene was looping out in a proportion of nuclei with the t(14;18) translocation but not in control nuclei without the translocation, indicating that chromosome looping may be an essential mechanism for BCL2 expression in lymphoma cells.


Asunto(s)
Linfoma , Translocación Genética , Humanos , Hibridación Fluorescente in Situ , Linfoma/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Núcleo Celular/genética
13.
Plant Cell ; 36(4): 829-839, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38267606

RESUMEN

Hybridization in plants is often accompanied by nuclear genome doubling (allopolyploidy), which has been hypothesized to perturb interactions between nuclear and organellar (mitochondrial and plastid) genomes by creating imbalances in the relative copy number of these genomes and producing genetic incompatibilities between maternally derived organellar genomes and the half of the allopolyploid nuclear genome from the paternal progenitor. Several evolutionary responses have been predicted to ameliorate these effects, including selection for changes in protein sequences that restore cytonuclear interactions; biased gene retention/expression/conversion favoring maternal nuclear gene copies; and fine-tuning of relative cytonuclear genome copy numbers and expression levels. Numerous recent studies, however, have found that evolutionary responses are inconsistent and rarely scale to genome-wide generalities. The apparent robustness of plant cytonuclear interactions to allopolyploidy may reflect features that are general to allopolyploids such as the lack of F2 hybrid breakdown under disomic inheritance, and others that are more plant-specific, including slow sequence divergence in organellar genomes and preexisting regulatory responses to changes in cell size and endopolyploidy during development. Thus, cytonuclear interactions may only rarely act as the main barrier to establishment of allopolyploid lineages, perhaps helping to explain why allopolyploidy is so pervasive in plant evolution.


Asunto(s)
Núcleo Celular , Poliploidía , Núcleo Celular/genética , Núcleo Celular/metabolismo , Plastidios/genética , Plastidios/metabolismo , Mitocondrias/genética , Hibridación Genética , Genoma de Planta/genética , Evolución Molecular
14.
Intern Med ; 63(3): 403-406, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37316273

RESUMEN

Nuclear shape abnormalities in laminopathy are well known to occur in patients with cardiac systolic dysfunction. However, those in patients without systolic dysfunction are still unclear. We herein report a 42-year-old man who presented with advanced atrioventricular block without systolic dysfunction. Genetic testing identified a laminopathic mutation, c.497G>C, and an endocardial biopsy was performed. The hyperperfine structure on electron microscopy showed malformation of the nuclei, euchromatic nucleoplasm, and partial existence of heterochromatin clumps. Intrusion of heterochromatin into the nuclear fibrous lamina was observed. Cardiomyocyte nuclear shape abnormalities were observed before the progression of systolic dysfunction.


Asunto(s)
Cardiomiopatías , Laminopatías , Humanos , Adulto , Heterocromatina , Núcleo Celular/genética , Mutación
15.
Mutagenesis ; 39(1): 1-12, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37804235

RESUMEN

The translocation of mitochondrial DNA (mtDNA) sequences into the nuclear genome, resulted in the occurrence of nuclear sequences of mitochondrial origin (NUMTs) which can be detected in nearly all sequenced eukaryotes. However, de novo mtDNA insertions can contribute to the development of pathological conditions including cancer. Recent data indicate that de novo mtDNA translocation into chromosomes can occur due to genotoxic influence of DNA double-strand break-inducing environmental mutagens. This confirms the hypothesis of the involvement of genome instability in the occurrence of mtDNA fragments in chromosomes. Mounting evidence indicates that mitochondria can be transferred from normal cells to cancer cells and recover cellular respiration. These exchanged mitochondria can facilitate cancer progression and metastasis. This review article provides a comprehensive overview of the potential carcinogenicity of mtDNA insertions, and the relevance of mtDNA escape in cancer progression, metastasis, and treatment resistance in humans. Potential molecular targets involved in mtDNA escape and exchange of mitochondria that can be of possible clinical benefits are presented and discussed. Understanding these processes could lead to improved diagnostic approaches, novel therapeutic strategies, and a deeper understanding of the intricate relationship between mitochondria, nuclear DNA, and cancer biology.


Asunto(s)
Genoma Mitocondrial , Neoplasias , Humanos , Núcleo Celular/genética , Mitocondrias/genética , Genoma , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo
16.
Nature ; 623(7986): 347-355, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914934

RESUMEN

Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.


Asunto(s)
Adenosina Trifosfatasas , Centrómero , Proteínas de Unión al ADN , Complejos Multiproteicos , Animales , Femenino , Ratones/clasificación , Ratones/genética , Adenosina Trifosfatasas/metabolismo , Aneuploidia , Centrómero/genética , Centrómero/metabolismo , Segregación Cromosómica , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Proteínas de Unión al ADN/metabolismo , Hibridación Genética , Infertilidad Femenina/genética , Meiosis/genética , Complejos Multiproteicos/metabolismo , Oocitos/metabolismo , Profase/genética , Núcleo Celular/genética
17.
C R Biol ; 346: 89-93, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37779383

RESUMEN

The nucleus has been viewed as a passenger during cell migration that functions merely to protect the genome. However, increasing evidence shows that the nucleus is an active organelle, constantly sensing the surrounding environment and translating extracellular mechanical inputs into intracellular signaling. The nuclear envelope has a large membrane reservoir which serves as a buffer for mechanical inputs as it unfolds without increasing its tension. In contrast, when cells cope with mechanical strain, such as migration through solid tumors or dense interstitial spaces, the nuclear envelope folds stretch, increasing nuclear envelope tension and sometimes causing rupture. Different degrees of nuclear envelope tension regulate cellular behaviors and functions, especially in cells that move and grow within dense matrices. The crosstalk between extracellular mechanical inputs and the cell nucleus is a critical component in the modulation of cell function of cells that navigate within packed microenvironments. Moreover, there is a link between regimes of nuclear envelope unfolding and different cellular behaviors, from orchestrated signaling cascades to cellular perturbations and damage.


Le noyau a longtemps été considéré comme un passager lors de la migration cellulaire, servant simplement à protéger le génome. Cependant, de plus en plus de preuves montrent que le noyau est un organite actif, qui sonde le milieu environnant et traduit les entrées mécaniques extracellulaires en signalisation intracellulaire. L'enveloppe nucléaire possède un grand réservoir membranaire qui sert de tampon face aux entrées mécaniques en se dépliant sans augmenter sa tension. En revanche, lorsque les cellules font face à des contraintes mécaniques, telles que la migration au travers de tumeurs solides ou despaces interstitiels denses, les plis de l'enveloppe nucléaire s'étirent, augmentant sa tension et provoquant parfois sa rupture. Différents degrés de tension de l'enveloppe nucléaire régulent les comportements et les fonctions cellulaires, en particulier des cellules qui se déplacent et se développent dans des matrices denses. La signalisation croisée entre les entrées mécaniques extracellulaires et le noyau cellulaire sont des composants essentiels dans la modulation de la fonction des cellules qui naviguent dans des microenvironnements encombrés. De plus, il existe un lien entre les régimes de déploiement de l'enveloppe nucléaire et les différents comportements cellulaires, allant des cascades de signalisation jusquaux perturbations et dommages cellulaires.


Asunto(s)
Neoplasias , Membrana Nuclear , Humanos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Movimiento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Microambiente Tumoral
18.
Nucleic Acids Res ; 51(20): 10992-11009, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37791849

RESUMEN

A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.


Asunto(s)
Núcleo Celular , Receptores Androgénicos , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Receptores Androgénicos/metabolismo , Humanos , Ratones , Línea Celular Tumoral
19.
Nat Commun ; 14(1): 6433, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833263

RESUMEN

Nuclear factors rapidly scan the genome for their targets, but the role of nuclear organization in such search is uncharted. Here we analyzed how multiple factors explore chromatin, combining live-cell single-molecule tracking with multifocal structured illumination of DNA density. We find that factors displaying higher bound fractions sample DNA-dense regions more exhaustively. Focusing on the tumor-suppressor p53, we demonstrate that it searches for targets by alternating between rapid diffusion in the interchromatin compartment and compact sampling of chromatin dense regions. Efficient targeting requires balanced interactions with chromatin: fusing p53 with an exogenous intrinsically disordered region potentiates p53-mediated target gene activation at low concentrations, but leads to condensates at higher levels, derailing its search and downregulating transcription. Our findings highlight the role of disordered regions on factors search and showcase a powerful method to generate traffic maps of the eukaryotic nucleus to dissect how its organization guides nuclear factors action.


Asunto(s)
Cromatina , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN/metabolismo , Cromosomas/metabolismo , Activación Transcripcional , Núcleo Celular/genética , Núcleo Celular/metabolismo
20.
Signal Transduct Target Ther ; 8(1): 275, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37463926

RESUMEN

Cancer cell receives extracellular signal inputs to obtain a stem-like status, yet how tumor microenvironmental (TME) neural signals steer cancer stemness to establish the hierarchical tumor architectures remains elusive. Here, a pan-cancer transcriptomic screening for 10852 samples of 33 TCGA cancer types reveals that cAMP-responsive element (CRE) transcription factors are convergent activators for cancer stemness. Deconvolution of transcriptomic profiles, specification of neural markers and illustration of norepinephrine dynamics uncover a bond between TME neural signals and cancer-cell CRE activity. Specifically, neural signal norepinephrine potentiates the stemness of proximal cancer cells by activating cAMP-CRE axis, where ATF1 serves as a conserved hub. Upon activation by norepinephrine, ATF1 potentiates cancer stemness by coordinated trans-activation of both nuclear pluripotency factors MYC/NANOG and mitochondrial biogenesis regulators NRF1/TFAM, thereby orchestrating nuclear reprograming and mitochondrial rejuvenating. Accordingly, single-cell transcriptomes confirm the coordinated activation of nuclear pluripotency with mitochondrial biogenesis in cancer stem-like cells. These findings elucidate that cancer cell acquires stemness via a norepinephrine-ATF1 driven nucleus-mitochondria collaborated program, suggesting a spatialized stemness acquisition by hijacking microenvironmental neural signals.


Asunto(s)
Neoplasias , Factores de Transcripción , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Células Madre Neoplásicas/metabolismo , Norepinefrina/farmacología , Norepinefrina/metabolismo , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA