Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nature ; 599(7883): 131-135, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34646010

RESUMEN

Oestrogen depletion in rodents and humans leads to inactivity, fat accumulation and diabetes1,2, underscoring the conserved metabolic benefits of oestrogen that inevitably decrease with age. In rodents, the preovulatory surge in 17ß-oestradiol (E2) temporarily increases energy expenditure to coordinate increased physical activity with peak sexual receptivity. Here we report that a subset of oestrogen-sensitive neurons in the ventrolateral ventromedial hypothalamic nucleus (VMHvl)3-7 projects to arousal centres in the hippocampus and hindbrain, and enables oestrogen to rebalance energy allocation in female mice. Surges in E2 increase melanocortin-4 receptor (MC4R) signalling in these VMHvl neurons by directly recruiting oestrogen receptor-α (ERα) to the Mc4r gene. Sedentary behaviour and obesity in oestrogen-depleted female mice were reversed after chemogenetic stimulation of VMHvl neurons expressing both MC4R and ERα. Similarly, a long-term increase in physical activity is observed after CRISPR-mediated activation of this node. These data extend the effect of MC4R signalling - the most common cause of monogenic human obesity8 - beyond the regulation of food intake and rationalize reported sex differences in melanocortin signalling, including greater disease severity of MC4R insufficiency in women9. This hormone-dependent node illuminates the power of oestrogen during the reproductive cycle in motivating behaviour and maintaining an active lifestyle in women.


Asunto(s)
Encéfalo/fisiología , Estrógenos/metabolismo , Esfuerzo Físico/fisiología , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal , Animales , Sistemas CRISPR-Cas , Metabolismo Energético , Receptor alfa de Estrógeno/metabolismo , Estrógenos/deficiencia , Femenino , Edición Génica , Hipocampo/metabolismo , Masculino , Melanocortinas/metabolismo , Ratones , Neuronas/metabolismo , Obesidad/metabolismo , Rombencéfalo/metabolismo , Conducta Sedentaria , Caracteres Sexuales , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología
2.
Nat Commun ; 12(1): 2517, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947849

RESUMEN

Survival depends on a balance between seeking rewards and avoiding potential threats, but the neural circuits that regulate this motivational conflict remain largely unknown. Using an approach-food vs. avoid-predator threat conflict test in rats, we identified a subpopulation of neurons in the anterior portion of the paraventricular thalamic nucleus (aPVT) which express corticotrophin-releasing factor (CRF) and are preferentially recruited during conflict. Inactivation of aPVTCRF neurons during conflict biases animal's response toward food, whereas activation of these cells recapitulates the food-seeking suppression observed during conflict. aPVTCRF neurons project densely to the nucleus accumbens (NAc), and activity in this pathway reduces food seeking and increases avoidance. In addition, we identified the ventromedial hypothalamus (VMH) as a critical input to aPVTCRF neurons, and demonstrated that VMH-aPVT neurons mediate defensive behaviors exclusively during conflict. Together, our findings describe a hypothalamic-thalamostriatal circuit that suppresses reward-seeking behavior under the competing demands of avoiding threats.


Asunto(s)
Reacción de Prevención/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/fisiología , Núcleos Talámicos de la Línea Media/metabolismo , Red Nerviosa/fisiología , Neuronas/metabolismo , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Escala de Evaluación de la Conducta , Conflicto Psicológico , Femenino , Hipotálamo/metabolismo , Masculino , Núcleos Talámicos de la Línea Media/citología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de la radiación , Neuronas/efectos de los fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Núcleo Accumbens/efectos de la radiación , Optogenética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Recompensa , Núcleo Hipotalámico Ventromedial/citología
3.
Proc Natl Acad Sci U S A ; 117(32): 19566-19577, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719118

RESUMEN

The ventromedial hypothalamus (VMH) plays chief roles regulating energy and glucose homeostasis and is sexually dimorphic. We discovered that expression of metabotropic glutamate receptor subtype 5 (mGluR5) in the VMH is regulated by caloric status in normal mice and reduced in brain-derived neurotrophic factor (BDNF) mutants, which are severely obese and have diminished glucose balance control. These findings led us to investigate whether mGluR5 might act downstream of BDNF to critically regulate VMH neuronal activity and metabolic function. We found that mGluR5 depletion in VMH SF1 neurons did not affect energy balance regulation. However, it significantly impaired insulin sensitivity, glycemic control, lipid metabolism, and sympathetic output in females but not in males. These sex-specific deficits are linked to reductions in intrinsic excitability and firing rate of SF1 neurons. Abnormal excitatory and inhibitory synapse assembly and elevated expression of the GABAergic synthetic enzyme GAD67 also cooperate to decrease and potentiate the synaptic excitatory and inhibitory tone onto mutant SF1 neurons, respectively. Notably, these alterations arise from disrupted functional interactions of mGluR5 with estrogen receptors that switch the normally positive effects of estrogen on SF1 neuronal activity and glucose balance control to paradoxical and detrimental. The collective data inform an essential central mechanism regulating metabolic function in females and underlying the protective effects of estrogen against metabolic disease.


Asunto(s)
Glucemia/metabolismo , Estrógenos/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Metabolismo Energético , Femenino , Glutamato Descarboxilasa/metabolismo , Homeostasis , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Mutantes , Red Nerviosa , Inhibición Neural , Neuronas/metabolismo , Neuronas/fisiología , Receptor del Glutamato Metabotropico 5/genética , Receptores de Estrógenos/metabolismo , Factores Sexuales , Transducción de Señal , Factor Esteroidogénico 1/metabolismo , Sistema Nervioso Simpático/metabolismo , Transmisión Sináptica , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo
4.
Nat Commun ; 11(1): 1729, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265438

RESUMEN

The TrkB receptor is critical for the control of energy balance, as mutations in its gene (NTRK2) lead to hyperphagia and severe obesity. The main neural substrate mediating the appetite-suppressing activity of TrkB, however, remains unknown. Here, we demonstrate that selective Ntrk2 deletion within paraventricular hypothalamus (PVH) leads to severe hyperphagic obesity. Furthermore, chemogenetic activation or inhibition of TrkB-expressing PVH (PVHTrkB) neurons suppresses or increases food intake, respectively. PVHTrkB neurons project to multiple brain regions, including ventromedial hypothalamus (VMH) and lateral parabrachial nucleus (LPBN). We find that PVHTrkB neurons projecting to LPBN are distinct from those to VMH, yet Ntrk2 deletion in PVH neurons projecting to either VMH or LPBN results in hyperphagia and obesity. Additionally, TrkB activation with BDNF increases firing of these PVH neurons. Therefore, TrkB signaling is a key regulator of a previously uncharacterized neuronal population within the PVH that impinges upon multiple circuits to govern appetite.


Asunto(s)
Hiperfagia/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Apetito/genética , Conducta Alimentaria/fisiología , Femenino , Hiperfagia/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiopatología , Proteínas Tirosina Quinasas/genética , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo
5.
Brain Res Bull ; 157: 41-50, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31981674

RESUMEN

Mechanisms that underlie metabolic sensor acclimation to recurring insulin-induced hypoglycemia (RIIH) are unclear. Norepinephrine (NE) regulates ventromedial hypothalamic nucleus (VMN) gluco-stimulatory nitric oxide (NO) and gluco-inhibitory γ-aminobutryic acid (GABA) neuron signaling. Current research addressed the hypothesis that during RIIH, NE suppresses 5'-AMP-activated protein kinase (AMPK) reactivity in both populations and impedes counter-regulation. The brain is postulated to utilize non-glucose substrates, e.g. amino acids glutamine (Gln), glutamate (Glu), and aspartate (Asp), to produce energy during hypoglycemia. A correlated aim investigated whether NE controls pyruvate recycling pathway marker protein (glutaminase, GLT; malic enzyme, ME-1) expression in either metabolic-sensory cell population. Male rats were injected subcutaneously with vehicle or insulin on days 1-3, then pretreated on day 4 by intracerebroventricular delivery of the alpha1-adrenergic receptor (α1-AR) reverse-agonist prazocin (PRZ) or vehicle before final insulin therapy. PRZ prevented acute hypoglycemic augmentation of AMPK activation in each cell group. Antecedent hypoglycemic repression of sensor activity was reversed by PRZ in GABA neurons. During RIIH, nitrergic neurons exhibited α1-AR - dependent up-regulated GLT and α2-AR profiles, while GABA cells showed down-regulated α1-AR. LC-ESI-MS analysis documented a decline in VMN Glu, Gln, and Asp concentrations during acute hypoglycemia, and habituation of the former two profiles to RIIH. PRZ attenuated glucagon and corticosterone secretion during acute hypoglycemia, but reversed decrements in output of both hormones during RIIH. Results implicate adjustments in impact of α1-AR signaling in repressed VMN metabolic-sensory AMPK activation and counter-regulatory dysfunction during RIIH. Antecedent hypoglycemia may up-regulate NO neuron energy yield via α1-AR - mediated up-regulated pyruvate recycling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hipoglucemia/metabolismo , Insulina/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Hipoglucemia/fisiopatología , Hipoglucemiantes/farmacología , Masculino , Norepinefrina/metabolismo , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Rombencéfalo/metabolismo , Núcleo Hipotalámico Ventromedial/citología
6.
Proc Natl Acad Sci U S A ; 116(15): 7503-7512, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30898882

RESUMEN

Type 1 estrogen receptor-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvlEsr1) play a causal role in the control of social behaviors, including aggression. Here we use six different viral-genetic tracing methods to systematically map the connectional architecture of VMHvlEsr1 neurons. These data reveal a high level of input convergence and output divergence ("fan-in/fan-out") from and to over 30 distinct brain regions, with a high degree (∼90%) of bidirectionality, including both direct as well as indirect feedback. Unbiased collateralization mapping experiments indicate that VMHvlEsr1 neurons project to multiple targets. However, we identify two anatomically distinct subpopulations with anterior vs. posterior biases in their collateralization targets. Nevertheless, these two subpopulations receive indistinguishable inputs. These studies suggest an overall system architecture in which an anatomically feed-forward sensory-to-motor processing stream is integrated with a dense, highly recurrent central processing circuit. This architecture differs from the "brain-inspired," hierarchical feed-forward circuits used in certain types of artificial intelligence networks.


Asunto(s)
Conducta Animal/fisiología , Red Nerviosa/fisiología , Neuronas/metabolismo , Conducta Social , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Mapeo Encefálico , Receptor alfa de Estrógeno/biosíntesis , Receptor alfa de Estrógeno/genética , Ratones , Ratones Transgénicos , Red Nerviosa/citología , Neuronas/citología , Núcleo Hipotalámico Ventromedial/citología
7.
Mol Cell Neurosci ; 95: 51-58, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30660767

RESUMEN

The ventromedial hypothalamic nucleus (VMN) is a critical component of the neural circuitry that regulates glucostasis. Astrocyte glycogen is a vital reserve of glucose and its oxidizable metabolite L-lactate. In hypoglycemic female rats, estradiol-dependent augmentation of VMN glycogen phosphorylase (GP) protein requires hindbrain catecholamine input. Research here investigated the premise that norepinephrine (NE) regulation of VMN astrocyte metabolism shapes local glucoregulatory neurotransmitter signaling in this sex. Estradiol-implanted ovariectomized rats were pretreated by intra-VMN administration of the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxy-cinnamic acid (4CIN) or vehicle before NE delivery to that site. NE caused 4CIN-reversible reduction or augmentation of VMN glycogen synthase and phosphorylase expression. 4CIN prevented NE stimulation of gluco-inhibitory (glutamate decarboxylase65/67) and suppression of gluco-stimulatory (neuronal nitric oxide synthase) neuron marker proteins. These outcomes imply that effects of noradrenergic stimulation of VMN astrocyte glycogen depletion on glucoregulatory transmitter signaling may be mediated, in part, by glycogen-derived substrate fuel provision. NE control of astrocyte glycogen metabolism may involve down-regulated adrenoreceptor (AR), e.g. alpha1 and alpha2, alongside amplified beta1 AR and estrogen receptor-beta signaling. Noradrenergic hypoglycemia was refractory to 4CIN, implying that additional NE-sensitive VMN glucoregulatory neurochemicals may be insensitive to monocarboxylate uptake. Augmentation of circulating free fatty acids by combinatory NE and 4CIN, but not NE alone implies that acute hypoglycemia induced here is an insufficient stimulus for mobilization of these fuels, but is adequate when paired with diminished brain monocarboxylate fuel availability.


Asunto(s)
Glucosa/metabolismo , Glucógeno/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Norepinefrina/farmacología , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Astrocitos/metabolismo , Ácidos Cumáricos/farmacología , Inhibidores Enzimáticos/farmacología , Receptor beta de Estrógeno/metabolismo , Estrógenos/deficiencia , Ácidos Grasos/metabolismo , Femenino , Glucógeno Sintasa/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos/metabolismo , Núcleo Hipotalámico Ventromedial/citología
8.
Nature ; 564(7735): 213-218, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518859

RESUMEN

Although the hippocampus is known to be important for declarative memory, it is less clear how hippocampal output regulates motivated behaviours, such as social aggression. Here we report that pyramidal neurons in the CA2 region of the hippocampus, which are important for social memory, promote social aggression in mice. This action depends on output from CA2 to the lateral septum, which is selectively enhanced immediately before an attack. Activation of the lateral septum by CA2 recruits a circuit that disinhibits a subnucleus of the ventromedial hypothalamus that is known to trigger attack. The social hormone arginine vasopressin enhances social aggression by acting on arginine vasopressin 1b receptors on CA2 presynaptic terminals in the lateral septum to facilitate excitatory synaptic transmission. In this manner, release of arginine vasopressin in the lateral septum, driven by an animal's internal state, may serve as a modulatory control that determines whether CA2 activity leads to declarative memory of a social encounter and/or promotes motivated social aggression.


Asunto(s)
Agresión/fisiología , Región CA2 Hipocampal/citología , Región CA2 Hipocampal/fisiología , Inhibición Neural , Vías Nerviosas/fisiología , Núcleos Septales/citología , Núcleos Septales/fisiología , Conducta Social , Animales , Arginina Vasopresina/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos BALB C , Motivación , Terminales Presinápticos/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Células Piramidales/metabolismo , Receptores de Vasopresinas/metabolismo , Transmisión Sináptica , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología
9.
Elife ; 72018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905528

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) is a neuromodulator implicated in anxiety, metabolism and reproductive behavior. PACAP global knockout mice have decreased fertility and PACAP modulates LH release. However, its source and role at the hypothalamic level remain unknown. We demonstrate that PACAP-expressing neurons of the ventral premamillary nucleus of the hypothalamus (PMVPACAP) project to, and make direct contact with, kisspeptin neurons in the arcuate and AVPV/PeN nuclei and a subset of these neurons respond to PACAP exposure. Targeted deletion of PACAP from the PMV through stereotaxic virally mediated cre- injection or genetic cross to LepR-i-cre mice with Adcyap1fl/fl mice led to delayed puberty onset and impaired reproductive function in female, but not male, mice. We propose a new role for PACAP-expressing neurons in the PMV in the relay of nutritional state information to regulate GnRH release by modulating the activity of kisspeptin neurons, thereby regulating reproduction in female mice.


Asunto(s)
Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Reproducción/fisiología , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/citología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Reproducción/genética , Factores Sexuales , Maduración Sexual/genética , Núcleo Hipotalámico Ventromedial/citología
10.
Nat Neurosci ; 21(5): 717-724, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632359

RESUMEN

'Sundowning' in dementia and Alzheimer's disease is characterized by early-evening agitation and aggression. While such periodicity suggests a circadian origin, whether the circadian clock directly regulates aggressive behavior is unknown. We demonstrate that a daily rhythm in aggression propensity in male mice is gated by GABAergic subparaventricular zone (SPZGABA) neurons, the major postsynaptic targets of the central circadian clock, the suprachiasmatic nucleus. Optogenetic mapping revealed that SPZGABA neurons receive input from vasoactive intestinal polypeptide suprachiasmatic nucleus neurons and innervate neurons in the ventrolateral part of the ventromedial hypothalamus (VMH), which is known to regulate aggression. Additionally, VMH-projecting dorsal SPZ neurons are more active during early day than early night, and acute chemogenetic inhibition of SPZGABA transmission phase-dependently increases aggression. Finally, SPZGABA-recipient central VMH neurons directly innervate ventrolateral VMH neurons, and activation of this intra-VMH circuit drove attack behavior. Altogether, we reveal a functional polysynaptic circuit by which the suprachiasmatic nucleus clock regulates aggression.


Asunto(s)
Agresión/fisiología , Ritmo Circadiano/fisiología , Hipotálamo/fisiología , Vías Nerviosas/fisiología , Animales , Mapeo Encefálico , Corticosterona/sangre , Potenciales Postsinápticos Excitadores/fisiología , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Optogenética , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/fisiología , Núcleo Supraquiasmático/fisiología , Péptido Intestinal Vasoactivo/fisiología , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología , Ácido gamma-Aminobutírico/fisiología
11.
Nat Neurosci ; 20(11): 1580-1590, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28920934

RESUMEN

As an essential means of resolving conflicts, aggression is expressed by both sexes but often at a higher level in males than in females. Recent studies suggest that cells in the ventrolateral part of the ventromedial hypothalamus (VMHvl) that express estrogen receptor-α (Esr1) and progesterone receptor are essential for male but not female mouse aggression. In contrast, here we show that VMHvlEsr1+ cells are indispensable for female aggression. This population was active when females attacked naturally. Inactivation of these cells reduced female aggression whereas their activation elicited attack. Additionally, we found that female VMHvl contains two anatomically distinguishable subdivisions that showed differential gene expression, projection and activation patterns after mating and fighting. These results support an essential role of the VMHvl in both male and female aggression and reveal the existence of two previously unappreciated subdivisions in the female VMHvl that are involved in distinct social behaviors.


Asunto(s)
Agresión/fisiología , Receptor alfa de Estrógeno/biosíntesis , Conducta Sexual Animal/fisiología , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo , Agresión/psicología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo
12.
Neuron ; 92(4): 739-753, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27974160

RESUMEN

We developed a technology (capturing activated neuronal ensembles [CANE]) to label, manipulate, and transsynaptically trace neural circuits that are transiently activated in behavioral contexts with high efficiency and temporal precision. CANE consists of a knockin mouse and engineered viruses designed to specifically infect activated neurons. Using CANE, we selectively labeled neurons that were activated by either fearful or aggressive social encounters in a hypothalamic subnucleus previously known as a locus for aggression, and discovered that social-fear and aggression neurons are intermixed but largely distinct. Optogenetic stimulation of CANE-captured social-fear neurons (SFNs) is sufficient to evoke fear-like behaviors in normal social contexts, whereas silencing SFNs resulted in reduced social avoidance. CANE-based mapping of axonal projections and presynaptic inputs to SFNs further revealed a highly distributed and recurrent neural network. CANE is a broadly applicable technology for dissecting causality and connectivity of spatially intermingled but functionally distinct ensembles.


Asunto(s)
Agresión , Conducta Animal/fisiología , Miedo/fisiología , Hipotálamo/citología , Red Nerviosa/fisiología , Neuronas/fisiología , Conducta Social , Animales , Axones/metabolismo , Axones/fisiología , Técnicas de Sustitución del Gen , Hipotálamo/metabolismo , Hipotálamo/fisiología , Ratones , Red Nerviosa/metabolismo , Neuronas/metabolismo , Optogenética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo , Núcleo Hipotalámico Ventromedial/fisiología
13.
Physiol Behav ; 167: 248-254, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27666162

RESUMEN

OBJECTIVE: 17ß-Estradiol (17ßE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17ßE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17ßE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). METHODS: These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17ßE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. RESULTS: The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17ßE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17ßE application. CONCLUSION: These data suggest that physiological fluctuations in circulating 17ßE levels across the estrous cycle lead to changes in hypothalamic glucose sensing and the response to IIH.


Asunto(s)
Ciclo Estral/fisiología , Homeostasis/fisiología , Neuronas/fisiología , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Glucemia/efectos de los fármacos , Glucemia/fisiología , Estradiol/farmacología , Ciclo Estral/efectos de los fármacos , Ayuno , Femenino , Glucosa/farmacología , Prueba de Tolerancia a la Glucosa , Homeostasis/efectos de los fármacos , Técnicas In Vitro , Insulina/farmacología , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Núcleo Hipotalámico Ventromedial/efectos de los fármacos
14.
Cell ; 167(1): 47-59.e15, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27616062

RESUMEN

Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.


Asunto(s)
Regulación de la Temperatura Corporal/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Regulación de la Expresión Génica , Calor , Neuronas/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Núcleo Hipotalámico Ventromedial/citología , Animales , Conducta Animal , Ratones , Microdisección , Neuronas/metabolismo , Optogenética , ARN Mensajero/genética , Proteína S6 Ribosómica/metabolismo , Análisis de Secuencia de ARN , Núcleo Hipotalámico Ventromedial/metabolismo
15.
Mol Cell Endocrinol ; 420: 1-10, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26597778

RESUMEN

The ventrolateral division of the hypothalamic ventromedial nucleus (VMNvl) is a brain center for estrogen-dependent triggering of female sexual behavior upon progesterone receptor (PR) activation. We examined the agonistic and antagonistic actions of tamoxifen in this nucleus by analyzing its effects on the total number of PR-immunoreactive neurons, PR mRNA and protein levels, and subcellular location of PRs in ovariectomized Wistar rats. The results show that tamoxifen has no agonistic action in the number of PR-immunoreactive neurons, but increases PR expression and labeling in the nucleus and cytoplasm of VMNvl neurons that constitutively express PRs. As an antagonist, tamoxifen partially inhibited the estradiol-dependent increase in the number of PR-immunoreactive neurons and in PR mRNA and protein levels, without interfering with the subcellular location of the protein. We suggest that tamoxifen influence on PR expression in the VMNvl critically depends on the presence or absence of estradiol.


Asunto(s)
Neuronas/metabolismo , Receptores de Progesterona/metabolismo , Tamoxifeno/farmacología , Núcleo Hipotalámico Ventromedial/citología , Animales , Peso Corporal/efectos de los fármacos , Recuento de Células , Estradiol/sangre , Femenino , Neuronas/efectos de los fármacos , Progesterona/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Progesterona/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Útero/efectos de los fármacos
16.
Diabetes ; 64(5): 1621-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25409701

RESUMEN

Amylin acts acutely via the area postrema to reduce food intake and body weight, but it also interacts with leptin over longer periods of time, possibly via the ventromedial hypothalamus (VMH), to increase leptin signaling and phosphorylation of STAT3. We postulated that amylin enhances VMH leptin signaling by inducing interleukin (IL)-6, which then interacts with its gp130 receptor to activate STAT3 signaling and gene transcription downstream of the leptin receptor. We found that components of the amylin receptor (RAMPs1-3, CTR1a,b) are expressed in cultured VMH astrocytes, neurons, and microglia, as well as in micropunches of arcuate and ventromedial hypothalamic nuclei (VMN). Amylin exposure for 5 days increased IL-6 mRNA expression in VMH explants and microglia by two- to threefold, respectively, as well as protein abundance in culture supernatants by five- and twofold, respectively. Amylin had no similar effects on cultured astrocytes or neurons. In rats, 5 days of amylin treatment decreased body weight gain and/or food intake and increased IL-6 mRNA expression in the VMN. Similar 5-day amylin treatment increased VMN leptin-induced phosphorylation of STAT3 expression in wild-type mice and rats infused with lateral ventricular IgG but not in IL-6 knockout mice or rats infused with ventricular IL-6 antibody. Lateral ventricular infusion of IL-6 antibody also prevented the amylin-induced decrease of body weight gain. These results show that amylin-induced VMH microglial IL-6 production is the likely mechanism by which amylin treatment interacts with VMH leptin signaling to increase its effect on weight loss.


Asunto(s)
Interleucina-6/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Leptina/metabolismo , Transducción de Señal/fisiología , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Astrocitos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Interleucina-6/genética , Leptina/genética , Masculino , Ratones , Ratones Noqueados , Microglía/metabolismo , Neuronas/metabolismo , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Núcleo Hipotalámico Ventromedial/citología
17.
Neurosci Lett ; 583: 194-8, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25281790

RESUMEN

The role of the serotonergic system in regulating the expression of estrogen receptor (ER) α in the hypothalamus was investigated in ovariectomized rats by injecting a serotonin synthesis inhibitor, parachlorophenylalanine (PCPA), or by destroying the dorsal raphe nucleus (DR). The number of ERα-immunoreactive (ir) cells was counted in the anteroventral periventricular nucleus in the preoptic area (AVPV), ventrolateral ventromedial hypothalamic nucleus (vlVMN), and arcuate nucleus (ARCN). Seven days after ovariectomy, 100mg/kg PCPA or saline was injected daily for 4 days. Alternatively, radiofrequency lesioning of the DR (DRL) or sham lesions were made on the same time of ovariectomy. One-day after the last injection of PCPA or 7 days after brain surgery, the brain was fixed for immunostaining of ERα and the number of ERα-ir cell were counted in the nuclei of interest. The mean number of ERα-ir cells/mm(3) (density) in the AVPV of the PCPA or DRL groups was statistically higher than that in the saline or sham group. In the vlVMN and ARCN of the PCPA or DRL groups, the mean density of ERα-ir cells was comparable to the saline or sham groups. These results suggest that the serotonergic system of the DR plays an inhibitory role on the expression of ERα in the AVPV, but not in the vlVMN and ARCN.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Fenclonina/farmacología , Hipotálamo/metabolismo , Antagonistas de la Serotonina/farmacología , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Dorsal del Rafe/fisiología , Femenino , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo Anterior/citología , Hipotálamo Anterior/efectos de los fármacos , Hipotálamo Anterior/metabolismo , Ovariectomía , Área Preóptica/citología , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Ratas Wistar , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/efectos de los fármacos , Núcleo Hipotalámico Ventromedial/metabolismo
18.
Nature ; 509(7502): 627-32, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24739975

RESUMEN

Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of arousal. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1(+) (but not Esr1(-)) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1(+) neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro, as well as c-Fos analysis in vivo, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1(+) neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population.


Asunto(s)
Agresión/fisiología , Receptor alfa de Estrógeno/metabolismo , Neuronas/metabolismo , Conducta Sexual Animal/fisiología , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Femenino , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Optogenética
19.
Neurochem Res ; 38(1): 82-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22987058

RESUMEN

The activation of the subtype α of estrogen receptors (ERα) in the hypothalamic ventromedial nucleus (VMNvl) is required to stimulate female sexual receptivity. Moreover, the hormone was found to govern the expression of the receptor. Its removal due to ovariectomy and subsequent substitution suggest that the hormone down-regulates the expression of ERα. In contrast, in normally cycling animals the expression of the receptor peaks at proestrus, the phase of highest concentration of 17ß-estradiol in estrous cycle. Therefore, in this study we examined the influence of the hormone on ERα expression in primary dissociated cultures of neurons isolated from the VMNvl of young adult female rats. Measurements of ERα immunofluorescence revealed that both supraphysiological and physiological concentrations of 17ß-estradiol increase the expression of ERα. Analyses with selective agonists showed that both nuclear ERs are able to mediate the action of the hormone. However, the activation of ERα had a stronger effect on the expression of its own receptor than the activation of ERß. Simultaneous activation of both receptors attenuated the influence of ERα alone. Physiological concentrations of progesterone were found to revoke the effect of 17ß-estradiol, whereas the expression of ERα is up-regulated by progesterone alone. These data indicate that the expression of ERα in VMNvl neurons is under the control of both types of nuclear ERs and, in addition, progesterone receptors (PRs). The particular contribution of the receptors is dependent on their level of expression and the hormonal context. In neurons expressing high quantity of ERα, ERß attenuates the overall expression of the receptor, whereas in cells containing mostly ERß it contributes to the up-regulation of ERα synthesis. Simultaneous activation of ERs and PRs reverses the influences of the receptors due to inter-inhibition of their transcriptional activities.


Asunto(s)
Estradiol/farmacología , Receptor alfa de Estrógeno/biosíntesis , Neuronas/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Especificidad de Anticuerpos , Western Blotting , Células Cultivadas , Medios de Cultivo , Receptor beta de Estrógeno/biosíntesis , Femenino , Inmunohistoquímica , Neuronas/efectos de los fármacos , Ovariectomía , Progesterona/farmacología , Ratas , Ratas Wistar , Núcleo Hipotalámico Ventromedial/citología
20.
J Clin Invest ; 122(7): 2578-89, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22653058

RESUMEN

The transcription factor FOXO1 plays a central role in metabolic homeostasis by regulating leptin and insulin activity in many cell types, including neurons. However, the neurons mediating these effects and the identity of the molecular targets through which FOXO1 regulates metabolism remain to be defined. Here, we show that the ventral medial nucleus of the hypothalamus (VMH) is a key site of FOXO1 action. We found that mice lacking FOXO1 in steroidogenic factor 1 (SF-1) neurons of the VMH are lean due to increased energy expenditure. The mice also failed to appropriately suppress energy expenditure in response to fasting. Furthermore, these mice displayed improved glucose tolerance due to increased insulin sensitivity in skeletal muscle and heart. Gene expression profiling and sequence analysis revealed several pathways regulated by FOXO1. In addition, we identified the nuclear receptor SF-1 as a direct FOXO1 transcriptional target in the VMH. Collectively, our data suggest that the transcriptional networks modulated by FOXO1 in VMH neurons are key components in the regulation of energy balance and glucose homeostasis.


Asunto(s)
Metabolismo Energético , Factores de Transcripción Forkhead/fisiología , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Composición Corporal/genética , Peso Corporal , Catecolaminas/sangre , Células Cultivadas , Dieta Alta en Grasa , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Glucosa/metabolismo , Resistencia a la Insulina , Canales Iónicos/sangre , Leptina/farmacología , Leptina/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/sangre , Especificidad de Órganos , Consumo de Oxígeno , Fenotipo , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Transcripción Genética , Proteína Desacopladora 1 , Núcleo Hipotalámico Ventromedial/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA