Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Brain Stimul ; 17(4): 769-779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38906529

RESUMEN

BACKGROUND: Enhancing slow waves, the electrophysiological (EEG) manifestation of non-rapid eye movement (NREM) sleep, could potentially benefit patients with Parkinson's disease (PD) by improving sleep quality and slowing disease progression. Phase-targeted auditory stimulation (PTAS) is an approach to enhance slow waves, which are detected in real-time in the surface EEG signal. OBJECTIVE: We aimed to test whether the local-field potential of the subthalamic nucleus (STN-LFP) can be used to detect frontal slow waves and assess the electrophysiological changes related to PTAS. METHODS: We recruited patients diagnosed with PD and undergoing Percept™ PC neurostimulator (Medtronic) implantation for deep brain stimulation of STN (STN-DBS) in a two-step surgery. Patients underwent three full-night recordings, including one between-surgeries recording and two during rehabilitation, one with DBS+ (on) and one with DBS- (off). Surface EEG and STN-LFP signals from Percept PC were recorded simultaneously, and PTAS was applied during sleep in all three recording sessions. RESULTS: Our results show that during NREM sleep, slow waves of the cortex and STN are time-locked. PTAS application resulted in power and coherence changes, which can be detected in STN-LFP. CONCLUSION: Our findings suggest the feasibility of implementing PTAS using solely STN-LFP signal for slow wave detection, thus without a need for an external EEG device alongside the implanted neurostimulator. Moreover, we propose options for more efficient STN-LFP signal preprocessing, including different referencing and filtering to enhance the reliability of cortical slow wave detection in STN-LFP recordings.


Asunto(s)
Estimulación Acústica , Estimulación Encefálica Profunda , Electroencefalografía , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiopatología , Núcleo Subtalámico/fisiología , Masculino , Estimulación Encefálica Profunda/métodos , Persona de Mediana Edad , Femenino , Estimulación Acústica/métodos , Anciano
2.
Neurobiol Dis ; 197: 106529, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740349

RESUMEN

Parkinson's disease (PD) is characterized by the disruption of repetitive, concurrent and sequential motor actions due to compromised timing-functions principally located in cortex-basal ganglia (BG) circuits. Increasing evidence suggests that motor impairments in untreated PD patients are linked to an excessive synchronization of cortex-BG activity at beta frequencies (13-30 Hz). Levodopa and subthalamic nucleus deep brain stimulation (STN-DBS) suppress pathological beta-band reverberation and improve the motor symptoms in PD. Yet a dynamic tuning of beta oscillations in BG-cortical loops is fundamental for movement-timing and synchronization, and the impact of PD therapies on sensorimotor functions relying on neural transmission in the beta frequency-range remains controversial. Here, we set out to determine the differential effects of network neuromodulation through dopaminergic medication (ON and OFF levodopa) and STN-DBS (ON-DBS, OFF-DBS) on tapping synchronization and accompanying cortical activities. To this end, we conducted a rhythmic finger-tapping study with high-density EEG-recordings in 12 PD patients before and after surgery for STN-DBS and in 12 healthy controls. STN-DBS significantly ameliorated tapping parameters as frequency, amplitude and synchrony to the given auditory rhythms. Aberrant neurophysiologic signatures of sensorimotor feedback in the beta-range were found in PD patients: their neural modulation was weaker, temporally sluggish and less distributed over the right cortex in comparison to controls. Levodopa and STN-DBS boosted the dynamics of beta-band modulation over the right hemisphere, hinting to an improved timing of movements relying on tactile feedback. The strength of the post-event beta rebound over the supplementary motor area correlated significantly with the tapping asynchrony in patients, thus indexing the sensorimotor match between the external auditory pacing signals and the performed taps. PD patients showed an excessive interhemispheric coherence in the beta-frequency range during the finger-tapping task, while under DBS-ON the cortico-cortical connectivity in the beta-band was normalized. Ultimately, therapeutic DBS significantly ameliorated the auditory-motor coupling of PD patients, enhancing the electrophysiological processing of sensorimotor feedback-information related to beta-band activity, and thus allowing a more precise cued-tapping performance.


Asunto(s)
Ritmo beta , Sincronización Cortical , Estimulación Encefálica Profunda , Dedos , Levodopa , Corteza Motora , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Estimulación Encefálica Profunda/métodos , Anciano , Ritmo beta/fisiología , Corteza Motora/fisiopatología , Corteza Motora/fisiología , Sincronización Cortical/fisiología , Levodopa/uso terapéutico , Núcleo Subtalámico/fisiopatología , Antiparkinsonianos/uso terapéutico , Electroencefalografía
3.
Ann Neurol ; 96(2): 234-246, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38721781

RESUMEN

OBJECTIVE: Bradykinesia and rigidity are considered closely related motor signs in Parkinson disease (PD), but recent neurophysiological findings suggest distinct pathophysiological mechanisms. This study aims to examine and compare longitudinal changes in bradykinesia and rigidity in PD patients treated with bilateral subthalamic nucleus deep brain stimulation (STN-DBS). METHODS: In this retrospective cohort study, the clinical progression of appendicular and axial bradykinesia and rigidity was assessed up to 15 years after STN-DBS in the best treatment conditions (ON medication and ON stimulation). The severity of bradykinesia and rigidity was examined using ad hoc composite scores from specific subitems of the Unified Parkinson's Disease Rating Scale motor part (UPDRS-III). Short- and long-term predictors of bradykinesia and rigidity were analyzed through linear regression analysis, considering various preoperative demographic and clinical data, including disease duration and severity, phenotype, motor and cognitive scores (eg, frontal score), and medication. RESULTS: A total of 301 patients were examined before and 1 year after surgery. Among them, 101 and 56 individuals were also evaluated at 10-year and 15-year follow-ups, respectively. Bradykinesia significantly worsened after surgery, especially in appendicular segments (p < 0.001). Conversely, rigidity showed sustained benefit, with unchanged clinical scores compared to preoperative assessment (p > 0.05). Preoperative motor disability (eg, composite scores from the UPDRS-III) predicted short- and long-term outcomes for both bradykinesia and rigidity (p < 0.01). Executive dysfunction was specifically linked to bradykinesia but not to rigidity (p < 0.05). INTERPRETATION: Bradykinesia and rigidity show long-term divergent progression in PD following STN-DBS and are associated with independent clinical factors, supporting the hypothesis of partially distinct pathophysiology. ANN NEUROL 2024;96:234-246.


Asunto(s)
Estimulación Encefálica Profunda , Hipocinesia , Rigidez Muscular , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/complicaciones , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Hipocinesia/etiología , Hipocinesia/fisiopatología , Persona de Mediana Edad , Núcleo Subtalámico/fisiopatología , Rigidez Muscular/etiología , Rigidez Muscular/fisiopatología , Anciano , Estudios Retrospectivos , Progresión de la Enfermedad , Estudios de Cohortes
4.
Mov Disord Clin Pract ; 11(6): 698-703, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38698586

RESUMEN

BACKGROUND: Blood pressure control in Parkinson's disease (PD) under subthalamic deep brain stimulation (STN-DBS) is influenced by several intertwined aspects, including autonomic failure and levodopa treatment. OBJECTIVE: To evaluate the effect of chronic STN-DBS, levodopa, and their combination on cardiovascular autonomic functions in PD. METHODS: We performed cardiovascular reflex tests (CRTs) before and 6-months after STN-DBS surgery in 20 PD patients (pre-DBS vs. post-DBS). CRTs were executed without and with medication (med-OFF vs. med-ON). RESULTS: CRT results and occurrence of neurogenic orthostatic hypotension (OH) did not differ between pre- and post-DBS studies in med-OFF condition. After levodopa intake, the BP decrease during HUTT was significantly greater compared to med-OFF, both at pre-DBS and post-DBS evaluation. Levodopa-induced OH was documented in 25% and 5% of patients in pre-DBS/med-ON and post-DBS/med-ON study. CONCLUSION: Chronic stimulation did not influence cardiovascular responses, while levodopa exerts a relevant hypotensive effect. The proportion of patients presenting levodopa-induced OH decreases after STN-DBS surgery.


Asunto(s)
Antiparkinsonianos , Sistema Nervioso Autónomo , Estimulación Encefálica Profunda , Levodopa , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Levodopa/uso terapéutico , Levodopa/efectos adversos , Levodopa/administración & dosificación , Sistema Nervioso Autónomo/fisiopatología , Sistema Nervioso Autónomo/efectos de los fármacos , Antiparkinsonianos/uso terapéutico , Antiparkinsonianos/efectos adversos , Presión Sanguínea/fisiología , Presión Sanguínea/efectos de los fármacos , Núcleo Subtalámico/fisiopatología , Hipotensión Ortostática/terapia , Hipotensión Ortostática/etiología , Hipotensión Ortostática/fisiopatología
5.
Mov Disord ; 39(5): 768-777, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415321

RESUMEN

BACKGROUND: One of the characteristics of parkinsonian tremor is that its amplitude decreases with movement. Current models suggest an interaction between basal ganglia (BG) and cerebello-thalamo-cortical circuits in parkinsonian tremor pathophysiology. OBJECTIVE: We aimed to correlate central oscillation in the BG with electromyographic activity during re-emergent tremor in order to detect changes in BG oscillatory activity when tremor is attenuated by movement. METHODS: We performed a prospective, observational study on consecutive parkinsonian patients who underwent deep brain stimulation surgery and presented re-emergent tremor. Coherence analysis between subthalamic nucleus/globus pallidus internus (STN/GPi) tremorous activity measured by microrecording (MER) and electromyogram (EMG) from flexor and extensor wrist muscles during rest, posture, and re-emergent tremor pause was performed during surgery. The statistical significance level of the MER-EMG coherence was determined using surrogate data analysis, and the directionality of information transfer between BG and muscle was performed using entropy transfer analysis. RESULTS: We analyzed 148 MERs with tremor-like activity from 6 patients which were evaluated against the simultaneous EMGs, resulting in 296 correlations. Of these, 26 presented a significant level of coherence at tremor frequency, throughout rest and posture, with a complete EMG stop in between. During the pause, all recordings showed sustained MER peaks at tremor frequency (±1.5 Hz). Information flows preferentially from BG to muscle during rest and posture, with a loss of directionality during the pause. CONCLUSIONS: Our results suggest that oscillatory activity in STN/GPi functionally linked to tremor sustains firing frequency during re-emergent tremor pause, thus suggesting no direct role of the BG circuit on tremor attenuation due to voluntary movements. © 2024 International Parkinson and Movement Disorder Society.


Asunto(s)
Ganglios Basales , Estimulación Encefálica Profunda , Electromiografía , Movimiento , Enfermedad de Parkinson , Núcleo Subtalámico , Temblor , Humanos , Temblor/fisiopatología , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Ganglios Basales/fisiopatología , Persona de Mediana Edad , Anciano , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/fisiopatología , Movimiento/fisiología , Estudios Prospectivos , Músculo Esquelético/fisiopatología , Globo Pálido/fisiopatología
6.
Ann Neurol ; 91(3): 424-435, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34984729

RESUMEN

OBJECTIVE: This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS: Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS: Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION: Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.


Asunto(s)
Cognición/fisiología , Estimulación Encefálica Profunda/métodos , Glucosilceramidasa/genética , Heterocigoto , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pruebas Neuropsicológicas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología
7.
J Neurosci ; 41(47): 9844-9858, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34702744

RESUMEN

Tremor, a common and often primary symptom of Parkinson's disease, has been modeled with distinct onset and maintenance dynamics. To identify the neurophysiologic correlates of each state, we acquired intraoperative cortical and subthalamic nucleus recordings from 10 patients (9 male, 1 female) performing a naturalistic visual-motor task. From this task, we isolated short epochs of tremor onset and sustained tremor. Comparing these epochs, we found that the subthalamic nucleus was central to tremor onset, as it drove both motor cortical activity and tremor output. Once tremor became sustained, control of tremor shifted to cortex. At the same time, changes in directed functional connectivity across sensorimotor cortex further distinguished the sustained tremor state.SIGNIFICANCE STATEMENT Tremor is a common symptom of Parkinson's disease (PD). While tremor pathophysiology is thought to involve both basal ganglia and cerebello-thalamic-cortical circuits, it is unknown how these structures functionally interact to produce tremor. In this article, we analyzed intracranial recordings from the subthalamic nucleus and sensorimotor cortex in patients with PD undergoing deep brain stimulation surgery. Using an intraoperative task, we examined tremor in two separate dynamic contexts: when tremor first emerged, and when tremor was sustained. We believe that these findings reconcile several models of Parkinson's tremor, while describing the short-timescale dynamics of subcortical-cortical interactions during tremor for the first time. These findings may describe a framework for developing proactive and responsive neurostimulation models for specifically treating tremor.


Asunto(s)
Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/fisiopatología , Corteza Sensoriomotora/fisiopatología , Núcleo Subtalámico/fisiopatología , Temblor/fisiopatología , Anciano , Electrocorticografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Temblor/etiología
8.
Ann Clin Transl Neurol ; 8(5): 1010-1023, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33826240

RESUMEN

OBJECTIVE: To investigate local short-term neuroplasticity elicited by subthalamic, thalamic, and pallidal deep brain stimulation (DBS) for movement disorders. METHODS: During DBS surgery, we delivered pairs of stimulus pulses with both circular and directional leads across 90 interstimulus intervals in 17 participants and recorded local field potentials from unused contacts on the implanted electrode array. We removed the stimulus artifact, validated the neural origin of the underlying signals, and examined short-term plasticity as a function of interstimulus interval and DBS target, using linear mixed effects models. RESULTS: DBS evokes short latency local field potentials that are readily detected with both circular and directional leads at all stimulation targets (0.31 ± 0.10 msec peak latency, mean ± SD). Peak amplitude, area, and latency are modified strongly by interstimulus interval (P < 0.001) and display absolute and relative refractory periods (0.56 ± 0.08 and 2.94 ± 1.05 msec, respectively). We also identified later oscillatory activity in the subthalamic-pallidal circuit (4.50 ± 1.11 msec peak latency) that displays paired pulse facilitation (present in 5/8 subthalamic, 4/5 pallidal, and 0/6 thalamic trajectories, P = 0.018, Fisher's exact test), and correlates with resting beta frequency power (P < 0.001), therapeutic DBS frequencies, and stimulation sites chosen later for therapy in the ambulatory setting (P = 0.031). INTERPRETATION: Paired DBS pulses synchronize local circuit electrophysiology and elicit short-term neuroplasticity in the subthalamic-pallidal circuit. Collectively, these responses likely represent the earliest detectable interaction between the DBS pulse and local neuronal tissue in humans. Evoked subcortical field potentials could serve as a predictive biomarker to guide the implementation of next-generation directional and adaptive stimulation devices.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial/terapia , Globo Pálido/fisiopatología , Plasticidad Neuronal/fisiología , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Núcleos Talámicos Ventrales/fisiopatología , Anciano , Anciano de 80 o más Años , Electrocorticografía , Fenómenos Electrofisiológicos/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
Sci Rep ; 11(1): 8742, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888857

RESUMEN

Deep-brain stimulation (DBS) is an effective treatment for patients with Meige syndrome. The globus pallidus interna (GPi) and the subthalamic nucleus (STN) are accepted targets for this treatment. We compared 12-month outcomes for patients who had undergone bilateral stimulation of the GPi or STN. Forty-two Asian patients with primary Meige syndrome who underwent GPi or STN neurostimulation were recruited between September 2017 and September 2019 at the Department of Neurosurgery, Peking University People's Hospital. The primary outcome was the change in motor function, including the Burke-Fahn-Marsden Dystonia Rating Scale movement (BFMDRS-M) and disability subscale (BFMDRS-D) at 3 days before DBS (baseline) surgery and 1, 3, 6, and 12 months after surgery. Secondary outcomes included health-related quality of life, sleep quality status, depression severity, and anxiety severity at 3 days before and 12 months after DBS surgery. Adverse events during the 12 months were also recorded. Changes in BFMDRS-M and BFMDRS-D scores at 1, 3, 6, and 12 months with DBS and without medication did not significantly differ based on the stimulation target. There were also no significant differences in the changes in health-related quality of life (36-Item Short-Form General Health Survey) and sleep quality status (Pittsburgh Sleep Quality Index) at 12 months. However, there were larger improvements in the STN than the GPi group in mean score changes on the 17-item Hamilton depression rating scale (- 3.38 vs. - 0.33 points; P = 0.014) and 14-item Hamilton anxiety rating scale (- 3.43 vs. - 0.19 points; P < 0.001). There were no significant between-group differences in the frequency or type of serious adverse events. Patients with Meige syndrome had similar improvements in motor function, quality of life and sleep after either pallidal or subthalamic stimulation. Depression and anxiety factors may reasonably be included during the selection of DBS targets for Meige syndrome.


Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido/fisiopatología , Núcleo Subtalámico/fisiopatología , Anciano , Femenino , Humanos , Masculino , Síndrome de Meige/fisiopatología , Persona de Mediana Edad , Estudios Retrospectivos
10.
PLoS One ; 16(3): e0248568, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33711081

RESUMEN

BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a recognized treatment in Parkinson's disease (PD). Knowledge is still limited regarding the possible impact of STN-DBS on personality traits and the personality characteristics of PD patients who undergo surgery. METHODS: To assess personality traits in relation to STN-DBS we did an ancillary protocol as part of a prospective randomized study that compared two surgical strategies. Patients were assessed with the Temperament and Character Inventory (TCI), the Urgency, Premeditation, Perseverance and Sensation Seeking impulse behavior scale, the Eysenck Personality Questionnaire (EPQ) and the Toronto Alexithymia Scale preoperatively and after one year of STN-DBS. EPQ and TCI baseline scores were compared with mean scores of healthy reference populations. RESULTS: After 12-months of STN-DBS, there was a significant decline in Persistence compared to baseline. Preoperatively, the STN-DBS patients had significantly lower Persistence and Self-Transcendence scores, and significantly higher scores on Novelty-Seeking, Self-Directedness, Cooperativeness and on Social Conformity than referenced populations. No difference was found in Neuroticism or Harm-Avoidance scores. The baseline prevalence of alexithymia was low and at 1-year follow-up there was no significant change in alexithymia scores. CONCLUSIONS: We found a higher baseline level of impulsivity in PD patients who underwent STN-DBS. After one year of STN-DBS, our results indicated that the treatment may affect the patients' personality by increasing certain aspects of impulsivity. There was no effect on alexithymia. The preoperative personality profile of PD patients might influence the outcome of STN-DBS.


Asunto(s)
Estimulación Encefálica Profunda , Conducta Impulsiva , Enfermedad de Parkinson , Núcleo Subtalámico/fisiopatología , Encuestas y Cuestionarios , Temperamento , Anciano , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/terapia
11.
Commun Biol ; 4(1): 393, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758361

RESUMEN

Despite having remarkable utility in treating movement disorders, the lack of understanding of the underlying mechanisms of high-frequency deep brain stimulation (DBS) is a main challenge in choosing personalized stimulation parameters. Here we investigate the modulations in local field potentials induced by electrical stimulation of the subthalamic nucleus (STN) at therapeutic and non-therapeutic frequencies in Parkinson's disease patients undergoing DBS surgery. We find that therapeutic high-frequency stimulation (130-180 Hz) induces high-frequency oscillations (~300 Hz, HFO) similar to those observed with pharmacological treatment. Along with HFOs, we also observed evoked compound activity (ECA) after each stimulation pulse. While ECA was observed in both therapeutic and non-therapeutic (20 Hz) stimulation, the HFOs were induced only with therapeutic frequencies, and the associated ECA were significantly more resonant. The relative degree of enhancement in the HFO power was related to the interaction of stimulation pulse with the phase of ECA. We propose that high-frequency STN-DBS tunes the neural oscillations to their healthy/treated state, similar to pharmacological treatment, and the stimulation frequency to maximize these oscillations can be inferred from the phase of ECA waveforms of individual subjects. The induced HFOs can, therefore, be utilized as a marker of successful re-calibration of the dysfunctional circuit generating PD symptoms.


Asunto(s)
Ondas Encefálicas , Estimulación Encefálica Profunda , Potenciales Evocados , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Resultado del Tratamiento
12.
Acta Neurochir (Wien) ; 163(5): 1327-1333, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33649878

RESUMEN

BACKGROUND: Several surgical methods are used for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD). This study aimed to compare clinical outcomes and electrode placement accuracy after robot-assisted (RAS) versus frame-based stereotactic (FSS) STN DBS in Parkinson's disease. METHODS: In this single-center open-label study, we prospectively collected data from 48 consecutive PD patients who underwent RAS (Neuromate®; n = 20) or FSS (n = 28) STN DBS with the same MRI-based STN targeting between October 2016 and December 2018 in the university neurological hospital of Lyon, France. Clinical variables were assessed before and 1 year after surgery. The number of electrode contacts within the STN was determined by merging post-operative CT and pre-operative MRI using Brainlab® GUIDE™XT software. RESULTS: One year after surgery, the improvement of motor manifestations (p = 0.18), motor complications (p = 0.80), and quality of life (p= 0.30) and the reduction of dopaminergic treatment (p = 0.94) and the rate of complications (p = 0.99) were similar in the two groups. Surgery duration was longer in the RAS group (p = 0.0001). There was no difference in the number of electrode contacts within the STN. CONCLUSION: This study demonstrates that RAS and FSS STN DBS for PD provide similar clinical outcomes and accuracy of electrode placement.


Asunto(s)
Estimulación Encefálica Profunda , Robótica , Núcleo Subtalámico/cirugía , Electrodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Actividad Motora/fisiología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Periodo Posoperatorio , Calidad de Vida , Núcleo Subtalámico/fisiopatología , Resultado del Tratamiento
13.
PLoS One ; 16(1): e0244133, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33497391

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for improving the motor symptoms of advanced Parkinson's disease (PD). Accurate positioning of the stimulation electrodes is necessary for better clinical outcomes. OBJECTIVE: We applied deep learning techniques to microelectrode recording (MER) signals to better predict motor function improvement, represented by the UPDRS part III scores, after bilateral STN DBS in patients with advanced PD. If we find the optimal stimulation point with MER by deep learning, we can improve the clinical outcome of STN DBS even under restrictions such as general anesthesia or non-cooperation of the patients. METHODS: In total, 696 4-second left-side MER segments from 34 patients with advanced PD who underwent bilateral STN DBS surgery under general anesthesia were included. We transformed the original signal into three wavelets of 1-50 Hz, 50-500 Hz, and 500-5,000 Hz. The wavelet-transformed MER was used for input data of the deep learning. The patients were divided into two groups, good response and moderate response groups, according to DBS on to off ratio of UPDRS part III score for the off-medication state, 6 months postoperatively. The ratio were used for output data in deep learning. The Visual Geometry Group (VGG)-16 model with a multitask learning algorithm was used to estimate the bilateral effect of DBS. Different ratios of the loss function in the task-specific layer were applied considering that DBS affects both sides differently. RESULTS: When we divided the MER signals according to the frequency, the maximal accuracy was higher in the 50-500 Hz group than in the 1-50 Hz and 500-5,000 Hz groups. In addition, when the multitask learning method was applied, the stability of the model was improved in comparison with single task learning. The maximal accuracy (80.21%) occurred when the right-to-left loss ratio was 5:1 or 6:1. The area under the curve (AUC) was 0.88 in the receiver operating characteristic (ROC) curve. CONCLUSION: Clinical improvements in PD patients who underwent bilateral STN DBS could be predicted based on a multitask deep learning-based MER analysis.


Asunto(s)
Estimulación Encefálica Profunda , Aprendizaje Profundo , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Anestesia General , Área Bajo la Curva , Femenino , Humanos , Masculino , Microelectrodos , Persona de Mediana Edad , Enfermedad de Parkinson/patología , Curva ROC , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Análisis de Ondículas
14.
World Neurosurg ; 147: e428-e436, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359524

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) of the bilateral subthalamic nucleus (STN) is a standard surgical treatment option in patients with advanced Parkinson's disease. Adverse effects on cognitive function have been reported, impacting the quality of life of patients and caregivers. We aimed to investigate a quantitative predictive preexisting cognitive factor for predicting postoperative cognitive changes. METHODS: Thirty-five patients underwent STN-DBS. A battery of neuropsychological tests were used to examine executive function, processing speed, and visuospatial function both preoperatively and 1 year postoperatively. A multiple logistic regression analysis was performed to investigate the relationships between preoperative factors and cognitive outcomes. The predictive value of the preoperative factors for global cognitive decline during long-term follow-up were evaluated. RESULTS: The patients exhibited significant changes in processing speed and visuospatial function after surgery. Using reliable change index values, lower preoperative scores on the Similarities and Object Assembly subtests of the Wechsler Adult Intelligence Scale III were associated with decreases in visuospatial function at 1 year after DBS. The odds ratios were 10.2 for Similarities and 9.53 for Object Assembly. The proportion of Mini Mental State Examination-maintained patients with low scores on the Similarities subtest was significantly lower than that of patients with high scores at 3 and 5 years. No factors were found to be related to decreases in processing speed. CONCLUSIONS: Preoperative evaluation of the Similarities and Object Assembly subtests may be useful to identify patients who are at a greater risk of experiencing decreases in visuospatial functioning after STN-DBS. Furthermore, a low score on the Similarities subtest may predict future global cognitive deterioration.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Estimulación Encefálica Profunda , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Núcleo Subtalámico/cirugía , Anciano , Cognición/fisiología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/cirugía , Estimulación Encefálica Profunda/efectos adversos , Función Ejecutiva/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Enfermedad de Parkinson/fisiopatología , Periodo Posoperatorio , Calidad de Vida
15.
Br J Anaesth ; 126(2): 477-485, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33160604

RESUMEN

BACKGROUND: Desflurane and sevoflurane are commonly used during inhalational anaesthesia, but few studies have investigated their effects on deep cerebral neuronal activity. In addition, the association between subthalamic nucleus (STN) neurophysiology and general anaesthesia induced by volatile anaesthetics are not yet identified. This study aimed to identify differences in neurophysiological characteristics of the STN during comparable minimal alveolar concentration (MAC) desflurane and sevoflurane anaesthesia for deep brain stimulation (DBS) in patients with Parkinson's disease. METHODS: Twelve patients with similar Parkinson's disease severity received desflurane (n=6) or sevoflurane (n=6) during DBS surgery. We obtained STN spike firing using microelectrode recording at 0.5-0.6 MAC and compared firing rate, power spectral density, and coherence. RESULTS: Neuronal firing rate was lower with desflurane (47.4 [26.7] Hz) than with sevoflurane (63.9 [36.5] Hz) anaesthesia (P<0.001). Sevoflurane entrained greater gamma oscillation power than desflurane (62.9% [0.9%] vs 57.0% [1.5%], respectively; P=0.002). There was greater coherence in the theta band of the desflurane group compared with the sevoflurane group (13% vs 6%, respectively). Anaesthetic choice did not differentially influence STN mapping accuracy or the clinical outcome of DBS electrode implantation. CONCLUSIONS: Desflurane and sevoflurane produced distinct neurophysiological profiles in humans that may be associated with their analgesic and hypnotic actions.


Asunto(s)
Anestésicos por Inhalación/administración & dosificación , Ondas Encefálicas/efectos de los fármacos , Desflurano/administración & dosificación , Enfermedad de Parkinson/terapia , Sevoflurano/administración & dosificación , Núcleo Subtalámico/efectos de los fármacos , Adulto , Anciano , Estimulación Encefálica Profunda , Electroencefalografía , Femenino , Humanos , Monitorización Neurofisiológica Intraoperatoria , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiopatología , Resultado del Tratamiento
16.
Sci Rep ; 10(1): 19241, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159098

RESUMEN

Alongside stereotactic magnetic resonance imaging, microelectrode recording (MER) is frequently used during the deep brain stimulation (DBS) surgery for optimal target localization. The aim of this study is to optimize subthalamic nucleus (STN) mapping using MER analytical patterns. 16 patients underwent bilateral STN-DBS. MER was performed simultaneously for 5 microelectrodes in a setting of Ben's-gun pattern in awake patients. Using spikes and background activity several different parameters and their spectral estimates in various frequency bands including low frequency (2-7 Hz), Alpha (8-12 Hz), Beta (sub-divided as Low_Beta (13-20 Hz) and High_Beta (21-30 Hz)) and Gamma (31 to 49 Hz) were computed. The optimal STN lead placement with the most optimal clinical effect/side-effect ratio accorded to the maximum spike rate in 85% of the implantation. Mean amplitude of background activity in the low beta frequency range was corresponding to right depth in 85% and right location in 94% of the implantation respectively. MER can be used for STN mapping and intraoperative decisions for the implantation of DBS electrode leads with a high accuracy. Spiking and background activity in the beta range are the most promising independent parameters for the delimitation of the proper anatomical site.


Asunto(s)
Ondas Encefálicas , Estimulación Encefálica Profunda , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Mapeo Encefálico , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Neuroimage ; 223: 117356, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32916287

RESUMEN

This study offers a novel and efficient measure based on a higher order version of autocorrelative signal memory that can identify nonlinearities in a single time series. The suggested method was applied to simultaneously recorded subthalamic nucleus (STN) local field potentials (LFP) and magnetoencephalography (MEG) from fourteen Parkinson's Disease (PD) patients who underwent surgery for deep brain stimulation. Recordings were obtained during rest for both OFF and ON dopaminergic medication states. We analyzed the bilateral LFP channels that had the maximum beta power in the OFF state and the cortical sources that had the maximum coherence with the selected LFP channels in the alpha band. Our findings revealed the inherent nonlinearity in the PD data as subcortical high beta (20-30 Hz) band and cortical alpha (8-12 Hz) band activities. While the former was discernible without medication (p=0.015), the latter was induced upon the dopaminergic medication (p<6.10-4). The degree of subthalamic nonlinearity was correlated with contralateral tremor severity (r=0.45, p=0.02). Conversely, for the cortical signals nonlinearity was present for the ON medication state with a peak in the alpha band and correlated with contralateral akinesia and rigidity (r=0.46, p=0.02). This correlation appeared to be independent from that of alpha power and the two measures combined explained 34 % of the variance in contralateral akinesia scores. Our findings suggest that particular frequency bands and brain regions display nonlinear features closely associated with distinct motor symptoms and functions.


Asunto(s)
Mapeo Encefálico/métodos , Ondas Encefálicas , Corteza Cerebral/fisiopatología , Magnetoencefalografía , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiopatología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador
18.
Neurobiol Dis ; 146: 105119, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32991998

RESUMEN

Abnormally sustained beta-frequency synchronisation between the motor cortex and subthalamic nucleus (STN) is associated with motor symptoms in Parkinson's disease (PD). It is currently unclear whether STN neurons have a preference for beta-frequency input (12-35 Hz), rather than cortical input at other frequencies, and how such a preference would arise following dopamine depletion. To address this question, we combined analysis of cortical and STN recordings from awake human PD patients undergoing deep brain stimulation surgery with recordings of identified STN neurons in anaesthetised rats. In these patients, we demonstrate that a subset of putative STN neurons is strongly and selectively sensitive to magnitude fluctuations of cortical beta oscillations over time, linearly increasing their phase-locking strength with respect to the full range of instantaneous amplitude in the beta-frequency range. In rats, we probed the frequency response of STN neurons in the cortico-basal-ganglia-network more precisely, by recording spikes evoked by short bursts of cortical stimulation with variable frequency (4-40 Hz) and constant amplitude. In both healthy and dopamine-depleted rats, only beta-frequency stimulation led to a progressive reduction in the variability of spike timing through the stimulation train. This suggests, that the interval of beta-frequency input provides an optimal window for eliciting the next spike with high fidelity. We hypothesize, that abnormal activation of the indirect pathway, via dopamine depletion and/or cortical stimulation, could trigger an underlying sensitivity of the STN microcircuit to beta-frequency input.


Asunto(s)
Conducta Animal/fisiología , Ritmo beta/fisiología , Estimulación Encefálica Profunda , Corteza Motora/fisiopatología , Enfermedad de Parkinson/fisiopatología , Animales , Estimulación Encefálica Profunda/métodos , Neuronas/fisiología , Enfermedad de Parkinson/terapia , Ratas , Núcleo Subtalámico/fisiología , Núcleo Subtalámico/fisiopatología
19.
Neurologist ; 25(3): 55-61, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32358462

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used in the treatment of advanced Parkinson's disease (PD) with well-established benefits over motor complications. However, few studies addressing the impact of DBS on nonmotor dimensions such as sexual function have been conducted. This study aims to determine the effect of DBS-STN on the sexual activity of patients with PD and to establish predictive factors for sexual function decline after surgery. MATERIALS AND METHODS: Twenty-one patients with PD submitted to DBS-STN were compared with 19 eligible surgery candidates. Clinical measures included disease progression (Hoehn and Yahr scale), sexual function evaluation (Female Sexual Function Index and International Index of Erectile Function), severity of depressive symptoms (Beck Depressive Inventory-II), motor symptoms (Movement Disorders Society-Unified Parkinson's Disease Rating Scale Part III), and quality of life (39-item Parkinson's Disease Questionnaire). The primary outcomes were the development of sexual dysfunction in women and erectile dysfunction in men. Regression analysis was performed to outline risk factors for developing sexual function deterioration. RESULTS: Erectile dysfunction was present in 83.3% of men and sexual dysfunction in 77.8% of women treated with DBS-STN. Women with sexual dysfunction had higher emotional well-being 39-item Parkinson's Disease Questionnaire scores (P=0.017) and a higher prevalence of cardiovascular diseases (P=0.012) comparing with women without sexual dysfunction. Age was an independent predictive factor for developing erectile dysfunction in men (relative risk=1.26; P=0.033) and sexual dysfunction in women (relative risk =1.30; P=0.039), regardless of DBS-STN submission. CONCLUSIONS: Sexual function in both sexes of patients with PD does not seem to be influenced by DBS-STN itself, but by psychological and clinical features.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson/complicaciones , Disfunciones Sexuales Fisiológicas/terapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Disfunciones Sexuales Fisiológicas/complicaciones , Disfunciones Sexuales Fisiológicas/fisiopatología , Núcleo Subtalámico/fisiopatología , Resultado del Tratamiento
20.
Clin Neurophysiol ; 131(6): 1221-1229, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32299006

RESUMEN

OBJECTIVE: Here, we investigate whether cortical activation predicts motor side effects of deep brain stimulation (DBS) and whether these potential biomarkers have utility under general anesthesia. METHODS: We recorded scalp potentials elicited by DBS during surgery (n = 11), both awake and under general anesthesia, and in an independent ambulatory cohort (n = 8). Across a range of stimulus configurations, we measured the amplitude and timing of short- and long-latency response components and linked them to motor side effects. RESULTS: Regardless of anesthesia state, in both cohorts, DBS settings with capsular side effects elicited early responses with peak latencies clustering at <1 ms. This early response was preserved under anesthesia in all participants (11/11). In contrast, the long-latency components were suppressed completely in 6/11 participants. Finally, the latency of the earliest response could predict the presence of postoperative motor side effects both awake and under general anesthesia (84.8% and 75.8% accuracy, awake and under anesthesia, respectively). CONCLUSION: DBS elicits short-latency cortical activation, both awake and under general anesthesia, which appears to reveal interactions between the stimulus and the corticospinal tract. SIGNIFICANCE: Short-latency evoked cortical activity can potentially be used to aid both DBS lead placement and post-operative programming.


Asunto(s)
Estimulación Encefálica Profunda , Potenciales Evocados/fisiología , Corteza Motora/fisiopatología , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiopatología , Anciano , Biomarcadores , Electroencefalografía , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/fisiopatología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA