Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Eur J Histochem ; 65(s1)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34755506

RESUMEN

Bisphenol A (BPA), an organic synthetic compound found in some plastics and epoxy resins, is classified as an endocrine disrupting chemical. Exposure to BPA is especially dangerous if it occurs during specific "critical periods" of life, when organisms are more sensitive to hormonal changes (i.e., intrauterine, perinatal, juvenile or puberty periods). In this study, we focused on the effects of chronic exposure to BPA in adult female mice starting during pregnancy. Three months old C57BL/6J females were orally exposed to BPA or to vehicle (corn oil). The treatment (4 µg/kg body weight/day) started the day 0 of pregnancy and continued throughout pregnancy, lactation, and lasted for a total of 20 weeks. BPA-treated dams did not show differences in body weight or food intake, but they showed an altered estrous cycle compared to the controls. In order to evidence alterations in social and sociosexual behaviors, we performed the Three-Chamber test for sociability, and analyzed two hypothalamic circuits (well-known targets of endocrine disruption) particularly involved in the control of social behavior: the vasopressin and the oxytocin systems. The test revealed some alterations in the displaying of social behavior: BPA-treated dams have higher locomotor activity compared to the control dams, probably a signal of high level of anxiety. In addition, BPA-treated dams spent more time interacting with no-tester females than with no-tester males. In brain sections, we observed a decrease of vasopressin immunoreactivity (only in the paraventricular and suprachiasmatic nuclei) of BPA-treated females, while we did not find any alteration of the oxytocin system. In parallel, we have also observed, in the same hypothalamic nuclei, a significant reduction of the membrane estrogen receptor GPER1 expression.


Asunto(s)
Conducta Animal/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vasopresinas/metabolismo , Animales , Ciclo Estral/efectos de los fármacos , Femenino , Masculino , Ratones Endogámicos C57BL , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/patología , Embarazo , Conducta Social , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/patología
2.
Nat Commun ; 12(1): 3164, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039965

RESUMEN

The circadian clock controls daily rhythms of physiological processes. The presence of the clock mechanism throughout the body is hampering its local regulation by small molecules. A photoresponsive clock modulator would enable precise and reversible regulation of circadian rhythms using light as a bio-orthogonal external stimulus. Here we show, through judicious molecular design and state-of-the-art photopharmacological tools, the development of a visible light-responsive inhibitor of casein kinase I (CKI) that controls the period and phase of cellular and tissue circadian rhythms in a reversible manner. The dark isomer of photoswitchable inhibitor 9 exhibits almost identical affinity towards the CKIα and CKIδ isoforms, while upon irradiation it becomes more selective towards CKIδ, revealing the higher importance of CKIδ in the period regulation. Our studies enable long-term regulation of CKI activity in cells for multiple days and show the reversible modulation of circadian rhythms with a several hour period and phase change through chronophotopharmacology.


Asunto(s)
Caseína Quinasa Ialfa/antagonistas & inhibidores , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Ritmo Circadiano/efectos de los fármacos , Cronoterapia de Medicamentos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Caseína Quinasa Ialfa/metabolismo , Caseína Quinasa Ialfa/ultraestructura , Quinasa Idelta de la Caseína/metabolismo , Línea Celular Tumoral , Trastornos Cronobiológicos/tratamiento farmacológico , Relojes Circadianos/efectos de la radiación , Evaluación Preclínica de Medicamentos , Pruebas de Enzimas , Humanos , Luz , Ratones , Ratones Transgénicos , Simulación del Acoplamiento Molecular , Fotoperiodo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/efectos de la radiación , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/metabolismo , Técnicas de Cultivo de Tejidos
3.
Mol Neurobiol ; 58(8): 3653-3664, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33786741

RESUMEN

Glaucoma is a blindness-causing disease that involves selective damage to retinal ganglion cells (RGCs) and their axons. A subset of RGCs expressing the photopigment melanopsin regulates non-image-forming visual system functions, such as pupillary light reflex and circadian rhythms. We analyzed the effect of melatonin on the non-image-forming visual system alterations induced by experimental glaucoma. For this purpose, male Wistar rats were weekly injected with vehicle or chondroitin sulfate into the eye anterior chamber. The non-image-forming visual system was analyzed in terms of (1) melanopsin-expressing RGC number, (2) anterograde transport from the retina to the olivary pretectal nucleus and the suprachiasmatic nuclei, (3) blue- and white light-induced pupillary light reflex, (4) light-induced c-Fos expression in the suprachiasmatic nuclei, (5) daily rhythm of locomotor activity, and (6) mitochondria in melanopsin-expressing RGC cells. Melatonin prevented the effect of experimental glaucoma on melanopsin-expressing RGC number, blue- and white light-induced pupil constriction, retina-olivary pretectal nucleus, and retina- suprachiasmatic nuclei communication, light-induced c-Fos expression in the suprachiasmatic nuclei, and alterations in the locomotor activity daily rhythm. In addition, melatonin prevented the effect of glaucoma on melanopsin-expressing RGC mitochondrial alterations. These results support that melatonin protected the non-image-forming visual system against glaucoma, probably through a mitochondrial protective mechanism.


Asunto(s)
Antioxidantes/administración & dosificación , Glaucoma/prevención & control , Melatonina/administración & dosificación , Células Ganglionares de la Retina/efectos de los fármacos , Visión Ocular/efectos de los fármacos , Animales , Glaucoma/inducido químicamente , Glaucoma/metabolismo , Luz/efectos adversos , Masculino , Ratas , Ratas Wistar , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/metabolismo , Visión Ocular/fisiología
4.
Front Neural Circuits ; 14: 55, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973462

RESUMEN

Background: Monochromatic blue light (MBL), with a wavelength between 400-490 nm, can regulate non-image-forming (NIF) functions of light in the central nervous system. The suprachiasmatic nucleus (SCN) in the brain is involved in the arousal-promoting response to blue light in mice. Animal and human studies showed that the responsiveness of the brain to visual stimuli is partly preserved under general anesthesia. Therefore, this study aimed to investigate whether MBL promotes arousal from sevoflurane anesthesia via activation of the SCN in mice. Methods: The induction and emergence time of sevoflurane anesthesia under MBL (460 nm and 800 lux) exposure was measured. Cortical electroencephalograms (EEGs) were recorded and the burst-suppression ratio (BSR) was calculated under MBL during sevoflurane anesthesia. The EEGs and local field potential (LFP) recordings with or without locally electrolytic ablated bilateral SCN were used to further explore the role of SCN in the arousal-promoting effect of MBL under sevoflurane anesthesia. Immunofluorescent staining of c-Fos was conducted to reveal the possible downstream mechanism of SCN activation. Results: Unlike the lack of effect on the induction time, MBL shortened the emergence time and the EEG recordings showed cortical arousal during the recovery period. MBL resulted in a significant decrease in BSR and a marked increase in EEG power at all frequency bands except for the spindle band during 2.5% sevoflurane anesthesia. MBL exposure under sevoflurane anesthesia enhances the neuronal activity of the SCN. These responses to MBL were abolished in SCN lesioned (SCNx) mice. MBL evoked a high level of c-Fos expression in the prefrontal cortex (PFC) and lateral hypothalamus (LH) compared to polychromatic white light (PWL) under sevoflurane anesthesia, while it exerted no effect on c-Fos expression in the ventrolateral preoptic area (VLPO) and locus coeruleus (LC) c-Fos expression. Conclusions: MBL promotes behavioral and electroencephalographic arousal from sevoflurane anesthesia via the activation of the SCN and its associated downstream wake-related nuclei. The clinical implications of this study warrant further study.


Asunto(s)
Anestésicos por Inhalación/farmacología , Nivel de Alerta/efectos de la radiación , Hipotálamo/efectos de la radiación , Luz , Neuronas/efectos de la radiación , Corteza Prefrontal/efectos de la radiación , Sevoflurano/farmacología , Núcleo Supraquiasmático/efectos de la radiación , Anestesia , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Electroencefalografía , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/efectos de la radiación , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/efectos de la radiación , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/metabolismo
5.
Behav Brain Res ; 374: 112117, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31362012

RESUMEN

According to the organizational-activational hypothesis, testosterone or its metabolite estradiol, can organize the brain in a male direction (permanently or for long periods) if exposure occurs during a critical (sensitive) time of brain development like the prenatal period. Male rodents with insufficient levels of testosterone during such critical period would irreversibly fail to display sexual partner preference for receptive females in adulthood. However, exposure to testosterone during puberty is believed to function as a second critical period for organization of brain and behavior. Thus, in the present study we explored the effects of neonatal gonadectomy at postnatal day 1 (GNX) on the partner preference of adult males and the size of some sexually dimorphic regions in the brain like the SDN-MPOA, SCN, MeApd and VMH; and challenged its irreversibility by providing exogenous testosterone during puberty. Our results indicated that neonatal GNX impaired partner preference for females and reduced the size of SDN-MPOA, MeApd and VMH, but not SCN. GNX males restored with testosterone in PD30-PD59 (GNX + T) expressed partner preference for sexually receptive females and increased the size of SDN-MPOA and VMH, but not MeApd in adulthood. We conclude that neonatal castration and the lack of testosterone during the first month of life alters sexual behavior and brain dimorphism in adult male rats, but pubertal testosterone reverses the effects on behavior and brain dimorphism to some extent.


Asunto(s)
Castración/efectos adversos , Matrimonio/psicología , Testosterona/farmacología , Factores de Edad , Amígdala del Cerebelo/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Estradiol/farmacología , Masculino , Área Preóptica/efectos de los fármacos , Ratas , Ratas Wistar , Conducta Sexual Animal/efectos de los fármacos , Maduración Sexual , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Hipotalámico Ventromedial/efectos de los fármacos
6.
PLoS One ; 14(5): e0217368, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31136603

RESUMEN

Environmental circadian disruption (ECD), characterized by repeated or long-term disruption in environmental timing cues which require the internal circadian clock to change its phase to resynchronize with the environment, is associated with numerous serious health issues in humans. While animal and isolated cell models exist to study the effects of destabilizing the relationship between the circadian system and the environment, neither approach provides an ideal solution. Here, we developed an in vitro model which incorporates both elements of a reductionist cellular model and disruption of the clock/environment relationship using temperature as an environmental cue, as occurs in vivo. Using this approach, we have demonstrated that some effects of in vivo ECD can be reproduced using only isolated peripheral oscillators. Specifically, we report exaggerated inflammatory responses to endotoxin following repeated environmental circadian disruption in explanted spleens. This effect requires a functional circadian clock but not the master brain clock, the suprachiasmatic nucleus (SCN). Further, we report that this is a result of cumulative, rather than acute, circadian disruption as has been previously observed in vivo. Finally, such effects appear to be tissue specific as it does not occur in lung, which is less sensitive to the temperature cycles employed to induce ECD. Taken together, the present study suggests that this model could be a valuable tool for dissecting the causes and effects of circadian disruption both in isolated components of physiological systems as well as the aggregated interactions of these systems that occur in vivo.


Asunto(s)
Relojes Circadianos/fisiología , Inflamación/fisiopatología , Núcleo Supraquiasmático/fisiología , Animales , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Endotoxinas/toxicidad , Ambiente , Femenino , Técnicas In Vitro , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Pulmón/efectos de los fármacos , Pulmón/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Especificidad de Órganos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiología , Bazo/efectos de los fármacos , Bazo/fisiología , Núcleo Supraquiasmático/efectos de los fármacos , Temperatura
7.
Nat Commun ; 10(1): 542, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710088

RESUMEN

The suprachiasmatic nucleus (SCN) co-ordinates circadian behaviour and physiology in mammals. Its cell-autonomous circadian oscillations pivot around a well characterised transcriptional/translational feedback loop (TTFL), whilst the SCN circuit as a whole is synchronised to solar time by its retinorecipient cells that express and release vasoactive intestinal peptide (VIP). The cell-autonomous and circuit-level mechanisms whereby VIP synchronises the SCN are poorly understood. We show that SCN slices in organotypic culture demonstrate rapid and sustained circuit-level circadian responses to VIP that are mediated at a cell-autonomous level. This is accompanied by changes across a broad transcriptional network and by significant VIP-directed plasticity in the internal phasing of the cell-autonomous TTFL. Signalling via ERK1/2 and tuning by its negative regulator DUSP4 are critical elements of the VIP-directed circadian re-programming. In summary, we provide detailed mechanistic insight into VIP signal transduction in the SCN at the level of genes, cells and neural circuit.


Asunto(s)
Relojes Circadianos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Tirosina Fosfatasas/metabolismo , Núcleo Supraquiasmático/fisiología , Péptido Intestinal Vasoactivo/farmacología , Animales , Sistemas CRISPR-Cas , Relojes Circadianos/genética , Relojes Circadianos/efectos de la radiación , AMP Cíclico/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/efectos de la radiación , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/efectos de la radiación , Luz , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Ratones Noqueados , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/efectos de la radiación , Elementos de Respuesta/genética , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/efectos de la radiación , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiación
8.
Addict Biol ; 24(6): 1179-1190, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30295391

RESUMEN

Shift-work and exposure to light at night lead to circadian disruption, which favors the use of alcohol and may be a risk factor for development of addictive behavior. This study evaluated in two experimental models of circadian disruption behavioral indicators of elevated alcohol intake and looked for ΔFosB, which is a transcription factor for neuronal plasticity in corticolimbic structures. Male Wistar rats were exposed to experimental shift-work (AR) or to constant light (LL) and were compared with a control group (LD). After 4 weeks in their corresponding conditions, control LD rats remained rhythmic, AR rats exhibited a loss of day-night patterns in the brain and the LL rats showed arrhythmicity in general activity and day-night PER1 patterns in corticolimbic structures. During 12 days of exposure to 10 percent alcohol solution, the AR group showed daily increased alcohol intake while LD and LL rats ingested similar amounts. After 72 h of alcohol deprivation, AR and LL rats increased alcohol intake in a binge-like test; this could be due not only to circadian disruption but also to stress and/or anxiety developed from the AR and LL manipulations. Associated to the increased alcohol intake, the AR and LL rats had significant accumulation of ΔFosB in the nucleus accumbens shell and decreased ΔFosB in the infralimbic cortex. Data here reported confirm that the disruption of temporal patterns favors the increased alcohol consumption and that this is associated with a differential accumulation of ΔFosB which may favor the development of addictive behavior.


Asunto(s)
Consumo de Bebidas Alcohólicas , Encéfalo/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Ritmo Circadiano , Etanol/farmacología , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Horario de Trabajo por Turnos , Animales , Ansiedad/metabolismo , Conducta Animal , Encéfalo/metabolismo , Núcleo Amigdalino Central/efectos de los fármacos , Núcleo Amigdalino Central/metabolismo , Depresores del Sistema Nervioso Central/administración & dosificación , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Etanol/administración & dosificación , Plasticidad Neuronal , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Proteínas Circadianas Period/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distribución Aleatoria , Ratas , Autoadministración , Estrés Psicológico/metabolismo , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/metabolismo
9.
Sci Rep ; 8(1): 14848, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287844

RESUMEN

In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and it orchestrates peripheral clocks in the whole body to organize physiological and behavioral rhythms. Light-induced phase-shift of the SCN clock enables synchronization of the circadian clock system with 24-h environmental light/dark cycle. We previously found that adenosine deaminase acting on RNA 2 (Adar2), an A-to-I RNA editing enzyme catalyzing rhythmic A-to-I RNA editing, governs a wide range of mRNA rhythms in the mouse liver and regulates the circadian behavior. In brain, ADAR2-mediated A-to-I RNA editing was reported to occur in various transcripts encoding ion channels and neurotransmitter receptors, which could influence neuronal function of the SCN. Here we show that ADAR2 plays a crucial role for light-induced phase-shift of the circadian clock. Intriguingly, exposure of Adar2-knockout mice to a light pulse at late night caused an aberrant phase-advance of the locomotor rhythms. By monitoring the bioluminescence rhythms of the mutant SCN slices, we found that a phase-advance induced by treatment with pituitary adenylyl cyclase-activating polypeptide (PACAP) was markedly attenuated. The present study suggests that A-to-I RNA editing in the SCN regulates a proper phase response to light in the mouse circadian system.


Asunto(s)
Adenosina Desaminasa/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Luz , Edición de ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Luminiscencia , Ratones Endogámicos C57BL , Ratones Noqueados , Fotoperiodo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/efectos de la radiación
10.
Sci Rep ; 8(1): 854, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339832

RESUMEN

In mammals, the principal circadian oscillator exists in the hypothalamic suprachiasmatic nucleus (SCN). In the SCN, CLOCK works as an essential component of molecular circadian oscillation, and ClockΔ19 mutant mice show unique characteristics of circadian rhythms such as extended free running periods, amplitude attenuation, and high-magnitude phase-resetting responses. Here we investigated what modifications occur in the spatiotemporal organization of clock gene expression in the SCN of ClockΔ19 mutants. The cultured SCN, sampled from neonatal homozygous ClockΔ19 mice on an ICR strain comprising PERIOD2::LUCIFERASE, demonstrated that the Clock gene mutation not only extends the circadian period, but also affects the spatial phase and period distribution of circadian oscillations in the SCN. In addition, disruption of the synchronization among neurons markedly attenuated the amplitude of the circadian rhythm of individual oscillating neurons in the mutant SCN. Further, with numerical simulations based on the present studies, the findings suggested that, in the SCN of the ClockΔ19 mutant mice, stable oscillation was preserved by the interaction among oscillating neurons, and that the orderly phase and period distribution that makes a phase wave are dependent on the functionality of CLOCK.


Asunto(s)
Proteínas CLOCK/metabolismo , Neuronas/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Conducta Animal , Proteínas CLOCK/genética , Ritmo Circadiano/fisiología , AMP Cíclico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Modelos Teóricos , Mutagénesis , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Transducción de Señal/efectos de los fármacos , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/efectos de los fármacos , Tetrodotoxina/farmacología
11.
eNeuro ; 4(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29098175

RESUMEN

New cells are added during both puberty and adulthood to hypothalamic regions that govern reproduction, homeostasis, and social behaviors, yet the functions of these late-born cells remain elusive. Here, we pharmacologically inhibited cell proliferation in ventricular zones during puberty or in adulthood and determined subsequent effects on the hormone-induced surge of luteinizing hormone (LH) in female rats. Initial neuroanatomical analyses focused on verifying incorporation, activation, and pharmacological inhibition of pubertally or adult born cells in the anteroventral periventricular nucleus (AVPV) of the hypothalamus because of the essential role of the AVPV in triggering the preovulatory LH surge in females. We first showed that approximately half of the pubertally born AVPV cells are activated by estradiol plus progesterone (P) treatment, as demonstrated by Fos expression, and that approximately 10% of pubertally born AVPV cells express estrogen receptor alpha (ERα). Next, we found that mitotic inhibition through intracerebroventricular (ICV) administration of cytosine ß-D-arabinofuranoside (AraC), whether during puberty or in adulthood, decreased the number of new cells added to the AVPV and the suprachiasmatic nucleus (SCN), and also blunted and delayed the hormone-induced LH surge. These studies do not prove, but are highly suggestive, that ongoing postnatal addition of new cells in periventricular brain regions, including the AVPV and SCN, may be important to the integrity of female reproduction.


Asunto(s)
Hipotálamo Anterior/citología , Hipotálamo Anterior/metabolismo , Hormona Luteinizante/metabolismo , Maduración Sexual/fisiología , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/metabolismo , Animales , Antimitóticos/farmacología , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Estradiol/administración & dosificación , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Hipotálamo Anterior/efectos de los fármacos , Hipotálamo Anterior/crecimiento & desarrollo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Progesterona/administración & dosificación , Progesterona/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Sprague-Dawley , Receptores de Progesterona/metabolismo , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/crecimiento & desarrollo
12.
J Biol Rhythms ; 32(1): 35-47, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28326909

RESUMEN

Although the suprachiasmatic nucleus (SCN) has long been considered the master circadian clock in mammals, the topology of the connections that synchronize daily rhythms among SCN cells is not well understood. We combined experimental and computational methods to infer the directed interactions that mediate circadian synchrony between regions of the SCN. We analyzed PERIOD2 (PER2) expression from SCN slices during and after treatment with tetrodotoxin, allowing us to map connections as cells resynchronized their daily cycling following blockade and restoration of cell-cell communication. Using automated analyses, we found that cells in the dorsal SCN stabilized their periods slower than those in the ventral SCN. A phase-amplitude computational model of the SCN revealed that, to reproduce the experimental results: (1) the ventral SCN had to be more densely connected than the dorsal SCN and (2) the ventral SCN needed strong connections to the dorsal SCN. Taken together, these results provide direct evidence that the ventral SCN entrains the dorsal SCN in constant conditions.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Luciferasas/metabolismo , Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/fisiología , Algoritmos , Animales , Arginina Vasopresina/metabolismo , Luciferasas/genética , Mediciones Luminiscentes/métodos , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Proteínas Circadianas Period/genética , Bloqueadores de los Canales de Sodio/farmacología , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/metabolismo , Tetrodotoxina/farmacología , Péptido Intestinal Vasoactivo/metabolismo
13.
J Pineal Res ; 62(4)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28226198

RESUMEN

Second generation antipsychotics (SGA) are associated with adverse cardiometabolic side effects contributing to premature mortality in patients. While mechanisms mediating these cardiometabolic side effects remain poorly understood, three independent studies recently demonstrated that melatonin was protective against cardiometabolic risk in SGA-treated patients. As one of the main target areas of circulating melatonin in the brain is the suprachiasmatic nucleus (SCN), we hypothesized that the SCN is involved in SGA-induced early cardiovascular effects in Wistar rats. We evaluated the acute effects of olanzapine and melatonin in the biological clock, paraventricular nucleus and autonomic nervous system using immunohistochemistry, invasive cardiovascular measurements, and Western blot. Olanzapine induced c-Fos immunoreactivity in the SCN followed by the paraventricular nucleus and dorsal motor nucleus of the vagus indicating a potent induction of parasympathetic tone. The involvement of a SCN-parasympathetic neuronal pathway after olanzapine administration was further documented using cholera toxin-B retrograde tracing and vasoactive intestinal peptide immunohistochemistry. Olanzapine-induced decrease in blood pressure and heart rate confirmed this. Melatonin abolished olanzapine-induced SCN c-Fos immunoreactivity, including the parasympathetic pathway and cardiovascular effects while brain areas associated with olanzapine beneficial effects including the striatum, ventral tegmental area, and nucleus accumbens remained activated. In the SCN, olanzapine phosphorylated the GSK-3ß, a regulator of clock activity, which melatonin prevented. Bilateral lesions of the SCN prevented the effects of olanzapine on parasympathetic activity. Collectively, results demonstrate the SCN as a key region mediating the early effects of olanzapine on cardiovascular function and show melatonin has opposing and potentially protective effects warranting additional investigation.


Asunto(s)
Benzodiazepinas/toxicidad , Relojes Biológicos/efectos de los fármacos , Melatonina/uso terapéutico , Animales , Depresores del Sistema Nervioso Central/farmacología , Depresores del Sistema Nervioso Central/uso terapéutico , Hemodinámica/efectos de los fármacos , Inmunohistoquímica , Masculino , Melatonina/farmacología , Núcleo Accumbens/efectos de los fármacos , Olanzapina , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Núcleo Supraquiasmático/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
14.
J Neurosci ; 37(7): 1900-1909, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087763

RESUMEN

The circadian system may regulate adult neurogenesis via intracellular molecular clock mechanisms or by modifying the environment of neurogenic niches, with daily variation in growth factors or nutrients depending on the animal's diurnal or nocturnal lifestyle. In a diurnal vertebrate, zebrafish, we studied circadian distribution of immunohistochemical markers of the cell division cycle (CDC) in 5 of the 16 neurogenic niches of adult brain, the dorsal telencephalon, habenula, preoptic area, hypothalamus, and cerebellum. We find that common to all niches is the morning initiation of G1/S transition and daytime S-phase progression, overnight increase in G2/M, and cycle completion by late night. This is supported by the timing of gene expression for critical cell cycle regulators cyclins D, A2, and B2 and cyclin-dependent kinase inhibitor p20 in brain tissue. The early-night peak in p20, limiting G1/S transition, and its phase angle with the expression of core clock genes, Clock1 and Per1, are preserved in constant darkness, suggesting intrinsic circadian patterns of cell cycle progression. The statistical modeling of CDC kinetics reveals the significant circadian variation in cell proliferation rates across all of the examined niches, but interniche differences in the magnitude of circadian variation in CDC, S-phase length, phase angle of entrainment to light or clock, and its dispersion. We conclude that, in neurogenic niches of an adult diurnal vertebrate, the circadian modulation of cell cycle progression involves both systemic and niche-specific factors.SIGNIFICANCE STATEMENT This study establishes that in neurogenic niches of an adult diurnal vertebrate, the cell cycle progression displays a robust circadian pattern. Common to neurogenic niches located in diverse brain regions is daytime progression of DNA replication and nighttime mitosis, suggesting systemic regulation. Differences between neurogenic niches in the phase and degree of S-phase entrainment to the clock suggest additional roles for niche-specific regulatory mechanisms. Understanding the circadian regulation of adult neurogenesis can help optimize the timing of therapeutic approaches in patients with brain traumas or neurodegenerative disorders and preserve neural stem cells during cytostatic cancer therapies.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Ritmo Circadiano/fisiología , Neurogénesis/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Bromodesoxiuridina/metabolismo , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Ritmo Circadiano/efectos de los fármacos , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Oscuridad , Masculino , Neurogénesis/efectos de los fármacos , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , ARN Mensajero/metabolismo , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/efectos de los fármacos , Pez Cebra
15.
Physiol Behav ; 171: 61-68, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28057567

RESUMEN

During development, the exposure to testosterone, and its conversion to estradiol by an enzyme complex termed aromatase, appears to be essential in adult male rats for the expression of typical male sexual behavior and female-sex preference. Some hypothalamic areas are the supposed neural bases of sexual preference/orientation; for example, male-oriented rams have a reduced volume of the sexually dimorphic nucleus (oSDN), while in homosexual men this nucleus does not differ from that of heterosexual men. In contrast, homosexual men showed a larger number of vasopressinergic cells in the suprachiasmatic nucleus (SCN). Interestingly, male rats perinatally treated with an aromatase inhibitor, 1,4,6-androstatriene-3,17-dione (ATD), also showed bisexual preference and an increased number of vasopressinergic neurons in the SCN. However, this steroidal aromatase inhibitor has affinity for all three steroid receptors. Recently, we reported that the prenatal administration of the selective aromatase inhibitor, letrozole, produced a subpopulation of males with same-sex preference. The aim of this study was to compare the volume and number of cells of the SDN and SCN (the latter nucleus was immunohistochemically stained for vasopressin) between males treated with letrozole with same-sex preference, males treated with letrozole with female preference and control males with female preference. Results showed that all males prenatally treated with letrozole have a reduced volume and estimated cell number in the SDN and SCN, independent of their partner preference. These results indicate that the changes in these brain areas are not related to sexual preference, but rather to the effects of letrozole. The divergent results may be explained by species differences as well as by the critical windows during which the aromatase inhibitor was administered.


Asunto(s)
Antineoplásicos/toxicidad , Preferencia en el Apareamiento Animal/efectos de los fármacos , Nitrilos/toxicidad , Efectos Tardíos de la Exposición Prenatal , Área Preóptica/efectos de los fármacos , Núcleo Supraquiasmático/efectos de los fármacos , Triazoles/toxicidad , Análisis de Varianza , Animales , Recuento de Células , Femenino , Letrozol , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Diferenciación Sexual , Parejas Sexuales , Vasopresinas/metabolismo
16.
J Sleep Res ; 26(2): 247-250, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28116759

RESUMEN

Splitting of the behavioural activity phase has been found in nocturnal rodents with suprachiasmatic nucleus (SCN) coupling disorder. A similar phenomenon was observed in the sleep phase in the diurnal human discussed here, suggesting that there are so-called evening and morning oscillators in the SCN of humans. The present case suffered from bipolar disorder refractory to various treatments, and various circadian rhythm sleep disorders, such as delayed sleep phase, polyphasic sleep, separation of the sleep bout resembling splitting and circabidian rhythm (48 h), were found during prolonged depressive episodes with hypersomnia. Separation of sleep into evening and morning components and delayed sleep-offset (24.69-h cycle) developed when lowering and stopping the dose of aripiprazole (APZ). However, resumption of APZ improved these symptoms in 2 weeks, accompanied by improvement in the patient's depressive state. Administration of APZ may improve various circadian rhythm sleep disorders, as well as improve and prevent manic-depressive episodes, via augmentation of coupling in the SCN network.


Asunto(s)
Aripiprazol/uso terapéutico , Trastorno Bipolar/complicaciones , Trastorno Bipolar/tratamiento farmacológico , Trastornos del Sueño del Ritmo Circadiano/complicaciones , Trastornos del Sueño del Ritmo Circadiano/tratamiento farmacológico , Adulto , Aripiprazol/administración & dosificación , Aripiprazol/farmacología , Trastorno Bipolar/psicología , Ritmo Circadiano/efectos de los fármacos , Trastornos de Somnolencia Excesiva/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Sueño/efectos de los fármacos , Trastornos del Sueño del Ritmo Circadiano/psicología , Núcleo Supraquiasmático/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 113(47): 13498-13503, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821764

RESUMEN

Sleep and wake states are regulated by a variety of mechanisms. One such important system is the circadian clock, which provides temporal structure to sleep and wake. Conversely, changes in behavioral state, such as sleep deprivation (SD) or arousal, can phase shift the circadian clock. Here we demonstrate that the level of wakefulness is critical for this arousal resetting of the circadian clock. Specifically, drowsy animals with significant power in the 7- to 9-Hz band of their EEGs do not exhibit phase shifts in response to a mild SD procedure. We then show that treatments that both produce arousal and reset the phase of circadian clock activate (i.e., induce Fos expression in) the basal forebrain. Many of the activated cells are cholinergic. Using retrograde tract tracing, we demonstrate that cholinergic cells activated by these arousal procedures project to the circadian clock in the suprachiasmatic nuclei (SCN). We then demonstrate that arousal-induced phase shifts are blocked when animals are pretreated with atropine injections to the SCN, demonstrating that cholinergic activity at the SCN is necessary for arousal-induced phase shifting. Finally, we demonstrate that electrical stimulation of the substantia innominata of the basal forebrain phase shifts the circadian clock in a manner similar to that of our arousal procedures and that these shifts are also blocked by infusions of atropine to the SCN. These results establish a functional link between the major forebrain arousal center and the circadian system.


Asunto(s)
Nivel de Alerta/fisiología , Prosencéfalo Basal/fisiología , Colina/metabolismo , Relojes Circadianos/fisiología , Actigrafía , Animales , Nivel de Alerta/efectos de los fármacos , Atropina/farmacología , Prosencéfalo Basal/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , Cricetinae , Electrodos , Electroencefalografía , Masculino , Estimulación Física , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/fisiología
18.
Neuroscience ; 327: 115-24, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27090819

RESUMEN

The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is a heterogeneous structure. Two key populations of cells that receive retinal input and are believed to participate in circadian responses to light are cells that contain vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP). VIP acts primarily through the VPAC2 receptor, while GRP works primarily through the BB2 receptor. Both VIP and GRP phase shift the circadian clock in a manner similar to light when applied to the SCN, both in vivo and in vitro, indicating that they are sufficient to elicit photic-like phase shifts. However, it is not known if they are necessary signals for light to elicit phase shifts. Here we test the hypothesis that GRP and VIP are necessary signaling components for the photic phase shifting of the hamster circadian clock by examining two antagonists for each of these neuropeptides. The BB2 antagonist PD176252 had no effect on light-induced delays on its own, while the BB2 antagonist RC-3095 had the unexpected effect of significantly potentiating both phase delays and advances. Neither of the VIP antagonists ([d-p-Cl-Phe6, Leu17]-VIP, or PG99-465) altered phase shifting responses to light on their own. When the BB2 antagonist PD176252 and the VPAC2 antagonist PG99-465 were delivered together to the SCN, phase delays were significantly attenuated. These results indicate that photic phase shifting requires participation of either VIP or GRP; phase shifts to light are only impaired when signalling in both pathways are inhibited. Additionally, the unexpected potentiation of light-induced phase shifts by RC-3095 should be investigated further for potential chronobiotic applications.


Asunto(s)
Luz , Receptores de Neuropéptido/metabolismo , Núcleo Supraquiasmático/fisiología , Animales , Bombesina/análogos & derivados , Bombesina/farmacología , Ritmo Circadiano/fisiología , Cricetinae , Péptido Liberador de Gastrina/metabolismo , Masculino , Fragmentos de Péptidos/farmacología , Estimulación Luminosa/métodos , Receptores de Neuropéptido/antagonistas & inhibidores , Núcleo Supraquiasmático/efectos de los fármacos , Péptido Intestinal Vasoactivo/metabolismo
19.
Endocrinology ; 157(4): 1522-34, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26901093

RESUMEN

Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation.


Asunto(s)
Factores de Transcripción ARNTL/genética , Ritmo Circadiano , Corticosterona/metabolismo , Proteínas Circadianas Period/genética , Corteza Prefrontal/metabolismo , Adrenalectomía , Animales , Corticosterona/farmacología , Perfilación de la Expresión Génica , Hibridación in Situ , Masculino , Corteza Prefrontal/efectos de los fármacos , Ratas Sprague-Dawley , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/metabolismo
20.
Int J Exp Pathol ; 97(1): 18-26, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26799547

RESUMEN

Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.


Asunto(s)
Neuronas/efectos de los fármacos , Neuronas/metabolismo , Glutamato de Sodio/farmacología , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/crecimiento & desarrollo , Animales , Recuento de Células , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratas Wistar , Péptido Intestinal Vasoactivo/metabolismo , Vasopresinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA