Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 11(1): 1729, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265438

RESUMEN

The TrkB receptor is critical for the control of energy balance, as mutations in its gene (NTRK2) lead to hyperphagia and severe obesity. The main neural substrate mediating the appetite-suppressing activity of TrkB, however, remains unknown. Here, we demonstrate that selective Ntrk2 deletion within paraventricular hypothalamus (PVH) leads to severe hyperphagic obesity. Furthermore, chemogenetic activation or inhibition of TrkB-expressing PVH (PVHTrkB) neurons suppresses or increases food intake, respectively. PVHTrkB neurons project to multiple brain regions, including ventromedial hypothalamus (VMH) and lateral parabrachial nucleus (LPBN). We find that PVHTrkB neurons projecting to LPBN are distinct from those to VMH, yet Ntrk2 deletion in PVH neurons projecting to either VMH or LPBN results in hyperphagia and obesity. Additionally, TrkB activation with BDNF increases firing of these PVH neurons. Therefore, TrkB signaling is a key regulator of a previously uncharacterized neuronal population within the PVH that impinges upon multiple circuits to govern appetite.


Asunto(s)
Hiperfagia/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Apetito/genética , Conducta Alimentaria/fisiología , Femenino , Hiperfagia/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiopatología , Proteínas Tirosina Quinasas/genética , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo
2.
Nat Commun ; 7: 11905, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27301688

RESUMEN

The central nervous system controls food consumption to maintain metabolic homoeostasis. In response to a meal, visceral signals from the gut activate neurons in the nucleus of the solitary tract (NTS) via the vagus nerve. These NTS neurons then excite brain regions known to mediate feeding behaviour, such as the lateral parabrachial nucleus (PBN). We previously described a neural circuit for appetite suppression involving calcitonin gene-related protein (CGRP)-expressing PBN (CGRP(PBN)) neurons; however, the molecular identity of the inputs to these neurons was not established. Here we identify cholecystokinin (CCK) and noradrenergic, dopamine ß-hydroxylase (DBH)-expressing NTS neurons as two separate populations that directly excite CGRP(PBN) neurons. When these NTS neurons are activated using optogenetic or chemogenetic methods, food intake decreases and with chronic stimulation mice lose body weight. Our optogenetic results reveal that CCK and DBH neurons in the NTS directly engage CGRP(PBN) neurons to promote anorexia.


Asunto(s)
Anorexia/genética , Anorexia/fisiopatología , Vías Nerviosas/fisiopatología , Núcleos Parabraquiales/fisiopatología , Núcleo Solitario/fisiopatología , Potenciales de Acción , Animales , Ansiedad/fisiopatología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Colecistoquinina/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Ingestión de Alimentos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
3.
Int J Obes (Lond) ; 40(6): 921-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26984418

RESUMEN

BACKGROUND/OBJECTIVE: Obesity and metabolic diseases are at an alarming level globally and increasingly affect children and adolescents. Gastric bypass and other bariatric surgeries have proven remarkably successful and are increasingly performed worldwide. Reduced desire to eat and changes in eating behavior and food choice account for most of the initial weight loss and diabetes remission after surgery, but the underlying mechanisms of altered gut-brain communication are unknown. SUBJECTS/METHODS: To explore the potential involvement of a powerful brainstem anorexia pathway centered around the lateral parabrachial nucleus (lPBN), we measured meal-induced neuronal activation by means of c-Fos immunohistochemistry in a new high-fat diet-induced obese mouse model of Roux-en-Y gastric bypass (RYGB) at 10 and 40 days after RYGB or sham surgery. RESULTS: Voluntary ingestion of a meal 10 days after RYGB, but not after sham surgery, strongly and selectively activates calcitonin gene-related peptide neurons in the external lPBN as well as neurons in the nucleus tractus solitarius, area postrema and medial amygdala. At 40 days after surgery, meal-induced activation in all these areas was greatly diminished and did not reach statistical significance. CONCLUSIONS: The neural activation pattern and dynamics suggest a role of the brainstem anorexia pathway in the early effects of RYGB on meal size and food intake that may lead to adaptive neural and behavioral changes involved in the control of food intake and body weight at a lower level. However, selective inhibition of this pathway will be required for a more causal implication.


Asunto(s)
Anorexia/fisiopatología , Modelos Animales de Enfermedad , Ingestión de Alimentos , Conducta Alimentaria , Derivación Gástrica , Núcleos Parabraquiales/fisiopatología , Animales , Dieta Alta en Grasa , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/patología , Obesidad/cirugía , Respuesta de Saciedad
4.
J Neurophysiol ; 115(6): 2721-39, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26888105

RESUMEN

A large majority of neurons in the superficial layer of the dorsal horn projects to the lateral parabrachial nucleus (LPB). LPB neurons then project to the capsular part of the central amygdala (CeA; CeC), a key structure underlying the nociception-emotion link. LPB-CeC synaptic transmission is enhanced in various pain models by using electrical stimulation of putative fibers of LPB origin in brain slices. However, this approach has limitations for examining direct monosynaptic connections devoid of directly stimulating fibers from other structures and local GABAergic neurons. To overcome these limitations, we infected the LPB of rats with an adeno-associated virus vector expressing channelrhodopsin-2 and prepared coronal and horizontal brain slices containing the amygdala. We found that blue light stimulation resulted in monosynaptic excitatory postsynaptic currents (EPSCs), with very small latency fluctuations, followed by a large polysynaptic inhibitory postsynaptic current in CeC neurons, regardless of the firing pattern type. Intraplantar formalin injection at 24 h before slice preparation significantly increased EPSC amplitude in late firing-type CeC neurons. These results indicate that direct monosynaptic glutamatergic inputs from the LPB not only excite CeC neurons but also regulate CeA network signaling through robust feed-forward inhibition, which is under plastic modulation in response to persistent inflammatory pain.


Asunto(s)
Núcleo Amigdalino Central/fisiopatología , Neuronas/fisiología , Dolor Nociceptivo/fisiopatología , Núcleos Parabraquiales/fisiopatología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Núcleo Amigdalino Central/patología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Plasticidad Neuronal/fisiología , Neuronas/patología , Dolor Nociceptivo/patología , Núcleos Parabraquiales/patología , Ratas Wistar , Sinapsis/patología , Técnicas de Cultivo de Tejidos
5.
Am J Physiol Regul Integr Comp Physiol ; 310(1): R41-54, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26491097

RESUMEN

The parabrachial nucleus is important for thermoregulation because it relays skin temperature information from the spinal cord to the hypothalamus. Prior work in rats localized thermosensory relay neurons to its lateral subdivision (LPB), but the genetic and neurochemical identity of these neurons remains unknown. To determine the identity of LPB thermosensory neurons, we exposed mice to a warm (36°C) or cool (4°C) ambient temperature. Each condition activated neurons in distinct LPB subregions that receive input from the spinal cord. Most c-Fos+ neurons in these LPB subregions expressed the transcription factor marker FoxP2. Consistent with prior evidence that LPB thermosensory relay neurons are glutamatergic, all FoxP2+ neurons in these subregions colocalized with green fluorescent protein (GFP) in reporter mice for Vglut2, but not for Vgat. Prodynorphin (Pdyn)-expressing neurons were identified using a GFP reporter mouse and formed a caudal subset of LPB FoxP2+ neurons, primarily in the dorsal lateral subnucleus (PBdL). Warm exposure activated many FoxP2+ neurons within PBdL. Half of the c-Fos+ neurons in PBdL were Pdyn+, and most of these project into the preoptic area. Cool exposure activated a separate FoxP2+ cluster of neurons in the far-rostral LPB, which we named the rostral-to-external lateral subnucleus (PBreL). These findings improve our understanding of LPB organization and reveal that Pdyn-IRES-Cre mice provide genetic access to warm-activated, FoxP2+ glutamatergic neurons in PBdL, many of which project to the hypothalamus.


Asunto(s)
Fiebre/metabolismo , Hipotermia/metabolismo , Neuronas/metabolismo , Núcleos Parabraquiales/metabolismo , Temperatura Cutánea , Sensación Térmica , Animales , Modelos Animales de Enfermedad , Encefalinas/genética , Encefalinas/metabolismo , Fiebre/genética , Fiebre/fisiopatología , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Genotipo , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipotermia/genética , Hipotermia/fisiopatología , Integrasas/genética , Integrasas/metabolismo , Sitios Internos de Entrada al Ribosoma , Masculino , Ratones Transgénicos , Técnicas de Trazados de Vías Neuroanatómicas , Núcleos Parabraquiales/fisiopatología , Fenotipo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Represoras/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
6.
Neuropharmacology ; 86: 38-48, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24998751

RESUMEN

The intricate relationships that associate pain, stress responses and emotional behavior have been well established. Acute stressful situations can decrease nociceptive sensations and conversely, chronic pain can enhance other pain experiences and heighten the emotional and behavioral consequences of stress. Accordingly, chronic pain is comorbid with a number of behavioral disorders including depression, anxiety abnormalities and associated stress-related disorders including post traumatic stress disorder (PTSD). The central nucleus of the amygdala (CeA) represents a convergence of pathways for pain, stress and emotion, and we have identified pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in fiber elements in the lateral capsular division of the CeA (CeLC). The PACAP staining patterns colocalized in part with those for calcitonin gene related peptide (CGRP); anterograde fiber tracing and excitotoxic lesion studies demonstrated that the CeLC PACAP/CGRP immunoreactivities represented sensory fiber projections from the lateral parabrachial nucleus (LPBn) along the spino-parabrachioamygdaloid tract. The same PBn PACAP/CGRP fiber system also projected to the BNST. As in the BNST, CeA PACAP signaling increased anxiety-like behaviors accompanied by weight loss and decreased feeding. But in addition to heightened anxiety-like responses, CeA PACAP signaling also altered nociception as reflected by decreased latency and threshold responses in thermal and mechanical sensitivity tests, respectively. From PACAP expression in major pain pathways, the current observations are novel and suggest that CeA PACAP nociceptive signaling and resulting neuroplasticity via the spino-parabrachioamygdaloid tract may represent mechanisms that associate chronic pain with sensory hypersensitivity, fear memory consolidation and severe behavioral disorders.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Dolor/fisiopatología , Núcleos Parabraquiales/fisiopatología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Animales , Ansiedad/fisiopatología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Enfermedad Crónica , Modelos Animales de Enfermedad , Ingestión de Alimentos/fisiología , Masculino , Vías Nerviosas/fisiopatología , Nocicepción/fisiología , Umbral del Dolor/fisiología , Distribución Aleatoria , Ratas Sprague-Dawley , Estrés Psicológico , Pérdida de Peso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA