Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
PLoS Biol ; 22(5): e3002628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814940

RESUMEN

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Asunto(s)
Adenosina Trifosfato , División Celular , Proteínas de Escherichia coli , Escherichia coli , Peptidoglicano , Peptidoglicano/metabolismo , Hidrólisis , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Pared Celular/metabolismo , Conformación Proteica , Modelos Moleculares , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Proteínas de la Membrana Bacteriana Externa , Transportadoras de Casetes de Unión a ATP , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Lipoproteínas , Proteínas de Ciclo Celular
2.
Nat Commun ; 14(1): 3338, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286542

RESUMEN

Secreted proteins are one of the direct molecular mechanisms by which microbiota influence the host, thus constituting a promising field for drug discovery. Here, through bioinformatics-guided screening of the secretome of clinically established probiotics from Lactobacillus, we identify an uncharacterized secreted protein (named LPH here) that is shared by most of these probiotic strains (8/10) and demonstrate that it protects female mice from colitis in multiple models. Functional studies show that LPH is a bi-functional peptidoglycan hydrolase with both N-Acetyl-ß-D-muramidase and DL-endopeptidase activities that can generate muramyl dipeptide (MDP), a NOD2 ligand. Different active site mutants of LPH in combination with Nod2 knockout female mice confirm that LPH exerts anti-colitis effects through MDP-NOD2 signaling. Furthermore, we validate that LPH can also exert protective effects on inflammation-associated colorectal cancer in female mice. Our study reports a probiotic enzyme that enhances NOD2 signaling in vivo in female mice and describes a molecular mechanism that may contribute to the effects of traditional Lactobacillus probiotics.


Asunto(s)
Colitis , Probióticos , Ratones , Femenino , Animales , Ligandos , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacología , Ratones Noqueados , Proteína Adaptadora de Señalización NOD2/metabolismo , Peptidoglicano/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(21): e2301897120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186861

RESUMEN

The peptidoglycan (PG) cell wall produced by the bacterial division machinery is initially shared between the daughters and must be split to promote cell separation and complete division. In gram-negative bacteria, enzymes that cleave PG called amidases play major roles in the separation process. To prevent spurious cell wall cleavage that can lead to cell lysis, amidases like AmiB are autoinhibited by a regulatory helix. Autoinhibition is relieved at the division site by the activator EnvC, which is in turn regulated by the ATP-binding cassette (ABC) transporter-like complex called FtsEX. EnvC is also known to be autoinhibited by a regulatory helix (RH), but how its activity is modulated by FtsEX and the mechanism by which it activates the amidases have remained unclear. Here, we investigated this regulation by determining the structure of Pseudomonas aeruginosa FtsEX alone with or without bound ATP, in complex with EnvC, and in a FtsEX-EnvC-AmiB supercomplex. In combination with biochemical studies, the structures reveal that ATP binding is likely to activate FtsEX-EnvC and promote its association with AmiB. Furthermore, the AmiB activation mechanism is shown to involve a RH rearrangement. In the activated state of the complex, the inhibitory helix of EnvC is released, freeing it to associate with the RH of AmiB, which liberates its active site for PG cleavage. These regulatory helices are found in many EnvC proteins and amidases throughout gram-negative bacteria, suggesting that the activation mechanism is broadly conserved and a potential target for lysis-inducing antibiotics that misregulate the complex.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Hidrólisis , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Amidohidrolasas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Pared Celular/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Peptidoglicano/metabolismo , Endopeptidasas/metabolismo , Proteínas de Escherichia coli/metabolismo
4.
PLoS Genet ; 18(5): e1010222, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35604931

RESUMEN

Insertion of new material into the Escherichia coli peptidoglycan (PG) sacculus between the cytoplasmic membrane and the outer membrane requires a well-organized balance between synthetic and hydrolytic activities to maintain cell shape and avoid lysis. Since most bacteria carry multiple enzymes carrying the same type of PG hydrolytic activity, we know little about the specific function of given enzymes. Here we show that the DD-carboxy/endopeptidase PBP4 localizes in a PBP1A/LpoA and FtsEX dependent fashion at midcell during septal PG synthesis. Midcell localization of PBP4 requires its non-catalytic domain 3 of unknown function, but not the activity of PBP4 or FtsE. Microscale thermophoresis with isolated proteins shows that PBP4 interacts with NlpI and the FtsEX-interacting protein EnvC, an activator of amidases AmiA and AmiB, which are needed to generate denuded glycan strands to recruit the initiator of septal PG synthesis, FtsN. The domain 3 of PBP4 is needed for the interaction with NlpI and EnvC, but not PBP1A or LpoA. In vivo crosslinking experiments confirm the interaction of PBP4 with PBP1A and LpoA. We propose that the interaction of PBP4 with EnvC, whilst not absolutely necessary for mid-cell recruitment of either protein, coordinates the activities of PBP4 and the amidases, which affects the formation of denuded glycan strands that attract FtsN. Consistent with this model, we found that the divisome assembly at midcell was premature in cells lacking PBP4, illustrating how the complexity of interactions affect the timing of cell division initiation.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Transportadoras de Casetes de Unión a ATP/metabolismo , Amidohidrolasas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endopeptidasas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Peptidoglicano/metabolismo
5.
Mol Immunol ; 140: 87-96, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673375

RESUMEN

Interferon stimulated gene 15 (ISG15) is one of the most robustly upregulated interferon stimulated genes (ISGs) and also a ubiquitin-like modifier which has been reported to play an important role in host defense against pathogens. Cytosolic nucleic acids detected by DNA sensors induce type Ⅰ interferons (IFN-Ⅰs) and ISGs in host cells. Streptococcus pneumoniae (S. pn) autolysin LytA triggers bacterial lysis and then S. pn-derived genomic DNA (hereafter referred to as S. pn-DNA) can be released and accumulates in the cytoplasm of host cells. However, it remains elusive whether LytA-mediated S. pn-DNA release is involved in ISG15 induction. Here we verified that ISG15 conjugation system can be widely activated by S. pn and cytosolic S. pn-DNA in host cells. Moreover, the phagocytosis of macrophages to the mutant strain S. pn D39 ΔlytA was enhanced when compared to S. pn D39, which in turn increased S. pn-DNA uptake into macrophages and augmented ISG15 expression. ISG15 might upregulate proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) in macrophages and further promoted the clearance of S. pn in the absence of LytA. These results indicate that S. pn autolysis blunts ISG15 induction through preventing bacteria internalization and reducing cytosolic S. pn-DNA accumulation in macrophages, revealing a new strategy of S. pn for avoiding elimination. This study will help us to further understand the role of ISG15 during S. pn infection as well as the regulatory mechanisms of immune responses mediated by bacterial autolysis and bacterial DNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citocinas/metabolismo , Citoplasma/microbiología , ADN Bacteriano/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Streptococcus pneumoniae/metabolismo , Animales , Citosol/metabolismo , Interacciones Huésped-Patógeno , Interferón beta/farmacología , Ratones , Modelos Biológicos , Mutación/genética , Fagocitosis , Células RAW 264.7 , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
6.
Science ; 373(6558): 1040-1046, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34446607

RESUMEN

The antitumor efficacy of cancer immunotherapy can correlate with the presence of certain bacterial species within the gut microbiome. However, many of the molecular mechanisms that influence host response to immunotherapy remain elusive. In this study, we show that members of the bacterial genus Enterococcus improve checkpoint inhibitor immunotherapy in mouse tumor models. Active enterococci express and secrete orthologs of the NlpC/p60 peptidoglycan hydrolase SagA that generate immune-active muropeptides. Expression of SagA in nonprotective E. faecalis was sufficient to promote immunotherapy response, and its activity required the peptidoglycan sensor NOD2. Notably, SagA-engineered probiotics or synthetic muropeptides also augmented anti-PD-L1 antitumor efficacy. Taken together, our data suggest that microbiota species with specialized peptidoglycan remodeling activity and muropeptide-based therapeutics may enhance cancer immunotherapy and could be leveraged as next-generation adjuvants.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Enterococcus/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma Experimental/terapia , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Peptidoglicano/metabolismo , Animales , Carga Bacteriana , Proteínas Bacterianas/metabolismo , Enterococcus/enzimología , Enterococcus faecalis/metabolismo , Enterococcus faecium/metabolismo , Microbioma Gastrointestinal , Inmunoterapia , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Proteína Adaptadora de Señalización NOD2/metabolismo , Fragmentos de Péptidos/metabolismo , Probióticos , Transducción de Señal
7.
Int J Mol Sci ; 21(22)2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198289

RESUMEN

The combination of the choline binding domain of the amidase N-acetylmuramoyl-L-alanine (CLytA)-D-amino acid oxidase (DAAO) (CLytA-DAAO) and D-Alanine induces cell death in several pancreatic and colorectal carcinoma and glioblastoma cell lines. In glioblastoma cell lines, CLytA-DAAO-induced cell death was inhibited by a pan-caspase inhibitor, suggesting a classical apoptotic cell death. Meanwhile, the cell death induced in pancreatic and colon carcinoma cell lines is some type of programmed necrosis. In this article, we studied the mechanisms that trigger CLytA-DAAO-induced cell death in pancreatic and colorectal carcinoma and glioblastoma cell lines and we acquire a further insight into the necrotic cell death induced in pancreatic and colorectal carcinoma cell lines. We have analyzed the intracellular calcium mobilization, mitochondrial membrane potential, PARP-1 participation and AIF translocation. Although the mitochondrial membrane depolarization plays a crucial role, our results suggest that CLytA-DAAO-induced cell death is context dependent. We have previously detected pancreatic and colorectal carcinoma cell lines (Hs766T and HT-29, respectively) that were resistant to CLytA-DAAO-induced cell death. In this study, we have examined the putative mechanism underlying the resistance in these cell lines, evaluating both detoxification mechanisms and the inflammatory and survival responses. Overall, our results provide a better understanding on the cell death mechanism induced by CLytA-DAAO, a promising therapy against cancer.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Neoplasias Colorrectales/metabolismo , D-Aminoácido Oxidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Neoplasias Pancreáticas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Antineoplásicos/farmacología , Apoptosis , Biopsia , Calcio/metabolismo , Muerte Celular , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Inflamación , Potencial de la Membrana Mitocondrial , Subunidad p50 de NF-kappa B/metabolismo , Necrosis , Estrés Oxidativo , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Cells ; 9(11)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158165

RESUMEN

Peptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells. Numerous autolysins with various substrate specificities participate in PG remodeling. Expression of these enzymes must be tightly regulated, as an excess of hydrolytic activity can be detrimental for the bacteria. In non-tuberculous mycobacteria such as Mycobacterium abscessus, the function of PG-modifying enzymes has been poorly investigated. In this study, we characterized the function of the PG amidase, Ami1 from M. abscessus. An ami1 deletion mutant was generated and the phenotypes of the mutant were evaluated with respect to susceptibility to antibiotics and virulence in human macrophages and zebrafish. The capacity of purified Ami1 to hydrolyze muramyl-dipeptide was demonstrated in vitro. In addition, the screening of a 9200 compounds library led to the selection of three compounds inhibiting Ami1 in vitro. We also report the structural characterization of Ami1 which, combined with in silico docking studies, allows us to propose a mode of action for these inhibitors.


Asunto(s)
Mycobacterium abscessus/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Animales , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Humanos , Larva/microbiología , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/patogenicidad , Mycobacterium abscessus/ultraestructura , N-Acetil Muramoil-L-Alanina Amidasa/antagonistas & inhibidores , Fenotipo , Homología Estructural de Proteína , Células THP-1 , Virulencia , Pez Cebra
9.
Artículo en Inglés | MEDLINE | ID: mdl-31552200

RESUMEN

Non-encapsulated Streptococcus pneumoniae often possess two genes, aliB-like ORF 1 and aliB-like ORF 2, in place of capsule genes. AliB-like ORF 1 is thought to encode a substrate binding protein of an ABC transporter which binds peptide SETTFGRDFN, found in 50S ribosomal subunit protein L4 of Enterobacteriaceae. Here, we investigated the effect of binding of AliB-like ORF 1 peptide on the transcriptome and proteome of non-encapsulated pneumococci. We found upregulation of gene expression of a metacaspase and a gene encoding N-acetylmuramoyl-L-alanine amidase, both of which are proposed to be involved in programmed cell death in prokaryotic cells. Proteome profiling indicated upregulation of transcriptional regulators and downregulation of metabolism-associated genes. Exposure to the peptide specifically triggered death in pneumococci which express AliB-like ORF 1, with the bacteria having an apoptotic appearance by electron microscopy. We propose that binding of the AliB-like ORF 1 peptide ligand by the pneumococcus signals a challenging environment with hostile bacterial species leading to death of a proportion of the pneumococcal population.


Asunto(s)
Antiinfecciosos/farmacología , Enterobacteriaceae/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Péptidos/farmacología , Proteínas Ribosómicas/farmacología , Streptococcus pneumoniae/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caspasas/metabolismo , Perfilación de la Expresión Génica , Lipoproteínas/genética , Lipoproteínas/metabolismo , Microscopía Electrónica , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Unión Proteica , Proteoma/análisis , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/ultraestructura
10.
Res Microbiol ; 170(8): 374-380, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31376483

RESUMEN

FtsEX is a member of a small subclass of ABC transporters that uses mechano-transmission to perform work in the periplasm. FtsEX controls periplasmic peptidoglycan (PG) hydrolase activities in many Gram negative and positive organisms to ensure the safe separation of daughter cells during division. In these organisms FtsEX localizes to the Z ring and uses its ATPase activity to regulate its periplasmic effectors. In Escherichia coli, FtsEX also participates in building the divisome and coordinates PG synthesis with PG hydrolysis. This review discusses studies that are beginning to elucidate the mechanisms of FtsEX's various roles in cell division.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Fenómenos Biomecánicos/fisiología , Pared Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo
11.
Microbiology (Reading) ; 165(9): 1013-1023, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31264955

RESUMEN

Mycobacteriophages are viruses that infect and kill mycobacteria. The peptidoglycan hydrolase, lysin A (LysA), coded by one of the most potent mycobacteriophages, D29, carries two catalytic domains at its N-terminus and a cell wall-binding domain at its C-terminus. Here, we have explored the importance of the centrally located lysozyme-like catalytic domain (LD) of LysA in phage physiology. We had previously identified an R198A substitution that causes inactivation of the LD when it is present alone on a polypeptide. Here, we show that upon incorporation of the same mutation (i.e. R350A) in full-length LysA, the protein demonstrates substantially reduced activity in vitro, even in the presence of the N-terminal catalytic domain, and has less efficient mycobacterial cell lysis ability when it is expressed in Mycobacterium smegmatis. These data suggest that an active LD is required for the full-length protein to function optimally. Moreover, a mutant D29 phage harbouring this substitution (D29R350A) in its LysA protein shows significantly delayed host M. smegmatis lysis. However, the mutant phage demonstrates an increase in burst size and plaque diameter. Taken together, our data show the importance of an intact LD region in D29 LysA PG hydrolase, and indicate an evolutionary advantage over other phages that lack such a domain in their endolysins.


Asunto(s)
Endopeptidasas/genética , Micobacteriófagos , Mycobacterium smegmatis/virología , N-Acetil Muramoil-L-Alanina Amidasa/genética , Dominio Catalítico/genética , Pared Celular/metabolismo , Endopeptidasas/química , Endopeptidasas/metabolismo , Mutación , Micobacteriófagos/genética , Micobacteriófagos/crecimiento & desarrollo , Micobacteriófagos/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
12.
J Med Microbiol ; 68(4): 667-677, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30888314

RESUMEN

PURPOSE: To determine the effect of allicin on Staphylococcus aureus cell wall peptidoglycans by the application of MALDI-TOF mass spectrometry on whole cells and to relate this to current knowledge of wall-processing enzymes. METHODOLOGY: Two different S. aureus strains were grown for 48 h after which period each culture was split into two, one part was then treated with sub-inhibitory levels of allicin while the other part left untreated as a control. After a further 24 h whole cells were recovered and analysed by MALDI-TOF mass spectrometry. RESULTS: Changes in the mass spectra between the treated and untreated cells revealed fragmented peptidoglycans identified by mass calculation only in the treated cells. These peptidoglycan fragments where identified as the products of specific peptidoglycan hydrolases. CONCLUSIONS: Allicin is known to target cysteine thiol groups. These are absent in peptidoglycan hydrolases and we might have expected identical results in both of the treated and untreated cells. Peptidoglycan synthesis enzymes such as the Fem family of enzymes do contain cysteines. Fem enzymes A, B and X all have a conserved conformation of 99 % for over 100 S. aureus strains and are therefore potential targets for allicin. Examination of FemA structure showed that cysteine102 is accessible from the surface. We propose that allicin has an inhibitory mechanism alongside others of targeting FemA and possibly other Fem enzymes by curtailing glycine bridging and leading to fragmentation. This study provided an insight into yet another antimicrobial mechanism of allicin.


Asunto(s)
Pared Celular/efectos de los fármacos , Peptidoglicano/metabolismo , Staphylococcus aureus/efectos de los fármacos , Ácidos Sulfínicos/farmacología , Pared Celular/química , Disulfuros , Hidrólisis , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Staphylococcus aureus/enzimología
13.
Cell Rep ; 25(1): 57-67.e5, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30282038

RESUMEN

Tuberculosis claims >1 million lives annually, and its causative agent Mycobacterium tuberculosis is a highly successful pathogen. Protein kinase B (PknB) is reported to be critical for mycobacterial growth. Here, we demonstrate that PknB-depleted M. tuberculosis can replicate normally and can synthesize peptidoglycan in an osmoprotective medium. Comparative phosphoproteomics of PknB-producing and PknB-depleted mycobacteria identify CwlM, an essential regulator of peptidoglycan synthesis, as a major PknB substrate. Our complementation studies of a cwlM mutant of M. tuberculosis support CwlM phosphorylation as a likely molecular basis for PknB being essential for mycobacterial growth. We demonstrate that growing mycobacteria produce two forms of CwlM: a non-phosphorylated membrane-associated form and a PknB-phosphorylated cytoplasmic form. Furthermore, we show that the partner proteins for the phosphorylated and non-phosphorylated forms of CwlM are FhaA, a fork head-associated domain protein, and MurJ, a proposed lipid II flippase, respectively. From our results, we propose a model in which CwlM potentially regulates both the biosynthesis of peptidoglycan precursors and their transport across the cytoplasmic membrane.


Asunto(s)
Mycobacterium tuberculosis/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Secuencia de Aminoácidos , Pared Celular/enzimología , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/crecimiento & desarrollo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/deficiencia
14.
Mol Microbiol ; 110(1): 114-127, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30039535

RESUMEN

Chronic infection with Helicobacter pylori can lead to the development of gastric ulcers and stomach cancers. The helical cell shape of H. pylori promotes stomach colonization. Screens for loss of helical shape have identified several periplasmic peptidoglycan (PG) hydrolases and non-enzymatic putative scaffolding proteins, including Csd5. Both over and under expression of the PG hydrolases perturb helical shape, but the mechanism used to coordinate and localize their enzymatic activities is not known. Using immunoprecipitation and mass spectrometry we identified Csd5 interactions with cytosolic proteins CcmA, a bactofilin required for helical shape, and MurF, a PG precursor synthase, as well as the inner membrane spanning ATP synthase. A combination of Csd5 domain deletions, point mutations, and transmembrane domain chimeras revealed that the N-terminal transmembrane domain promotes MurF, CcmA, and ATP synthase interactions, while the C-terminal SH3 domain mediates PG binding. We conclude that Csd5 promotes helical shape as part of a membrane associated, multi-protein shape complex that includes interactions with the periplasmic cell wall, a PG precursor synthesis enzyme, the bacterial cytoskeleton, and ATP synthase.


Asunto(s)
Pared Celular/metabolismo , Citoesqueleto/metabolismo , Helicobacter pylori/citología , Helicobacter pylori/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Péptido Sintasas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Eliminación de Gen , Helicobacter pylori/genética , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/genética , Péptido Sintasas/química , Péptido Sintasas/genética , Periplasma/metabolismo , Análisis de Secuencia de Proteína
15.
Sci Rep ; 8(1): 5723, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636524

RESUMEN

The recruitment of myeloid cells to the lung is of utmost importance for the elimination of invading pathogens. We investigated the Streptococcus pneumoniae-dependent induction mechanism of KLF4 in macrophages as a potential regulator of the macrophage immune response. We demonstrated that only viable pneumococci, which have direct contact to the host cells and release LytA-dependent DNA, induced KLF4. Exogenous supplementation of pneumococcal, other bacterial, eukaryotic foreign (human) or self (mouse) DNA to autolysis-deficient pneumococci restored (at least in part) pneumococci-related KLF4 induction. Experiments using TLR9, TRIF and MyD88 knockout macrophages revealed that TLR9, TRIF and MyD88 were partly involved in the S. pneumoniae-induced KLF4 expression. BMMs missing important DNA receptor related molecules (ASC-/-, STING-/-) showed no differences in pneumococci-related KLF4 expression. Similar results were observed with IFNAR-/- BMMs and Type I IFN stimulated cells. LyzMcre mediated knockdown of KLF4 in BMMs resulted in a decreased secretion of proinflammatory cytokines and enhanced IL-10 release. In summary, we showed that pneumococci-related KLF4 induction in macrophages is mediated via a PAMP-DAMP induction mechanism involving a hitherto unknown host cell DNA sensor leading to a more proinflammatory macrophage phenotype.


Asunto(s)
ADN Bacteriano/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Macrófagos/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Infecciones Neumocócicas/genética , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/fisiología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Comunicación Autocrina , Cápsulas Bacterianas/inmunología , Citocinas/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Mediadores de Inflamación/metabolismo , Factor 4 Similar a Kruppel , Macrófagos/inmunología , Ratones , Comunicación Paracrina , Fagocitosis/inmunología , Infecciones Neumocócicas/inmunología , Receptor Toll-Like 9/metabolismo
16.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28970228

RESUMEN

To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative phage peptidoglycan hydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N-acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic.IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens, may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens.


Asunto(s)
Agrobacterium tumefaciens/fisiología , Bacteriólisis , Bacteriófagos/enzimología , Expresión Génica , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Proteínas Virales/metabolismo , Agrobacterium tumefaciens/genética , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/genética , Filogenia , Dominios Proteicos , Proteínas Virales/química , Proteínas Virales/genética , Aguas Residuales/virología
17.
PLoS One ; 12(7): e0181920, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28753679

RESUMEN

Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis. However, serotype 2 strains are genotypically and phenotypically heterogeneous. Though a multitude of virulence factors have been described for S. suis serotype 2, the lack of a clear definition regarding which ones are truly "critical" has created inconsistencies that have only recently been highlighted. Herein, the involvement of two factors previously described as being critical for S. suis serotype 2 virulence, whether the dipeptidyl peptidase IV and autolysin, were evaluated with regards to different ascribed functions using prototype strains belonging to important sequence types. Results demonstrate a lack of reproducibility with previously published data. In fact, the role of the dipeptidyl peptidase IV and autolysin as critical virulence factors could not be confirmed. Though certain in vitro functions may be ascribed to these factors, their roles are not unique for S. suis, probably due to compensation by other factors. As such, variations and discrepancies in experimental design, including in vitro assays, cell lines, and animal models, are an important source of differences between results. Moreover, the use of different sequence types in this study demonstrates that the role attributed to a virulence factor may vary according to the S. suis serotype 2 strain background. Consequently, it is necessary to establish standard experimental designs according to the experiment and purpose in order to facilitate comparison between laboratories. Alongside, studies should include strains of diverse origins in order to prevent erroneous and biased conclusions that could affect future studies.


Asunto(s)
Proyectos de Investigación , Serogrupo , Streptococcus suis/patogenicidad , Factores de Virulencia/metabolismo , Adhesinas Bacterianas/metabolismo , Animales , Biopelículas/crecimiento & desarrollo , Dipeptidil Peptidasa 4/metabolismo , Modelos Animales de Enfermedad , Fibronectinas/metabolismo , Ratones Endogámicos C57BL , Viabilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Infecciones Estreptocócicas/sangre , Infecciones Estreptocócicas/microbiología , Streptococcus suis/enzimología
18.
Biochem Biophys Res Commun ; 478(2): 881-6, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27514447

RESUMEN

The quenching enzyme AIO6 (AiiO-AIO6) has been reported as a feed additive preparation for application in aquaculture and biological control of pathogenic Aeromonas hydrophila. We developed an economical strategy to express AIO6BS (AiiO-AIO6BS, codon optimized AIO6 in Bacillus subtilis) in Bacillus subtilis for facilitating its widespread application. Promoter p43 without the signal peptide was used for secretory expression of AIO6BS in B. subtilis. Western blotting analysis demonstrated that AIO6BS was successfully expressed and secreted into the cell culture. Expression analysis of AIO6BS in the single or double mutant of the lytC and lytD genes for cell autolysis in B. subtilis 1A751 and cell autolysis-resistant engineered strain LM2531 derived from the wild type 168 indicated that the release of the heterologous protein AIO6BS was not simply mediated by cell lysis. Expression level of AIO6BS did not change in the mutants of B. subtilis that harbored mutations in the secA, tatAC, or ecsA genes compared with that in the parent wild type strain. These results suggested the AIO6BS protein was likely secreted via a non-classical secretion pathway. The expression analysis of the various N- or C-terminal truncated gene products indicated that AIO6BS probably acts as an export signal to direct its self-secretion across the cell membrane.


Asunto(s)
Bacillus subtilis/genética , Sistemas de Secreción Bacterianos/genética , Codón/química , Regulación Bacteriana de la Expresión Génica , N-Acetil Muramoil-L-Alanina Amidasa/genética , Vías Secretoras/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Codón/metabolismo , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Regiones Promotoras Genéticas , Ingeniería de Proteínas , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Proteína SecA
19.
PLoS Pathog ; 12(3): e1005500, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26975045

RESUMEN

Bacterial uptake by phagocytic cells is a vital event in the clearance of invading pathogens such as Streptococcus pneumoniae. A major role of the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes against invasive pneumococcal disease is described in this study. Phagocytosis experiments using different serotypes demonstrated that PSGL-1 is involved in the recognition, uptake and killing of S. pneumoniae. Co-localization of several clinical isolates of S. pneumoniae with PSGL-1 was demonstrated, observing a rapid and active phagocytosis in the presence of PSGL-1. Furthermore, the pneumococcal capsular polysaccharide and the main autolysin of the bacterium--the amidase LytA--were identified as bacterial ligands for PSGL-1. Experimental models of pneumococcal disease including invasive pneumonia and systemic infection showed that bacterial levels were markedly increased in the blood of PSGL-1-/- mice. During pneumonia, PSGL-1 controls the severity of pneumococcal dissemination from the lung to the bloodstream. In systemic infection, a major role of PSGL-1 in host defense is to clear the bacteria in the systemic circulation controlling bacterial replication. These results confirmed the importance of this receptor in the recognition and clearance of S. pneumoniae during invasive pneumococcal disease. Histological and cellular analysis demonstrated that PSGL-1-/- mice have increased levels of T cells migrating to the lung than the corresponding wild-type mice. In contrast, during systemic infection, PSGL-1-/- mice had increased numbers of neutrophils and macrophages in blood, but were less effective controlling the infection process due to the lack of this functional receptor. Overall, this study demonstrates that PSGL-1 is a novel receptor for S. pneumoniae that contributes to protection against invasive pneumococcal disease.


Asunto(s)
Leucocitos/inmunología , Glicoproteínas de Membrana/inmunología , Infecciones Neumocócicas/inmunología , Neumonía Neumocócica/inmunología , Streptococcus pneumoniae/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/inmunología , Macrófagos/patología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Neutrófilos/inmunología , Fagocitosis/inmunología , Sepsis/microbiología
20.
Nat Commun ; 7: 10859, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26924467

RESUMEN

Bacterial pathogens produce complex carbohydrate capsules to protect against bactericidal immune molecules. Paradoxically, the pneumococcal capsule sensitizes the bacterium to antimicrobial peptides found on epithelial surfaces. Here we show that upon interaction with antimicrobial peptides, encapsulated pneumococci survive by removing capsule from the cell surface within minutes in a process dependent on the suicidal amidase autolysin LytA. In contrast to classical bacterial autolysis, during capsule shedding, LytA promotes bacterial survival and is dispersed circumferentially around the cell. However, both autolysis and capsule shedding depend on the cell wall hydrolytic activity of LytA. Capsule shedding drastically increases invasion of epithelial cells and is the main pathway by which pneumococci reduce surface bound capsule during early acute lung infection of mice. The previously unrecognized role of LytA in removing capsule to combat antimicrobial peptides may explain why nearly all clinical isolates of pneumococci conserve this enzyme despite the lethal selective pressure of antibiotics.


Asunto(s)
Cápsulas Bacterianas/fisiología , Células Epiteliales/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Streptococcus pneumoniae/metabolismo , Animales , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica/fisiología , Ratones , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/genética , Infecciones Neumocócicas/microbiología , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA