Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Eur J Med Res ; 29(1): 68, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245795

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a devastating chronic lung disease characterized by irreversible scarring of the lung parenchyma. Despite various interventions aimed at mitigating several different molecular aspects of the disease, only two drugs with limited clinical efficacy have so far been approved for IPF therapy. OBJECTIVE: We investigated the therapeutic efficacy of amifostine, a detoxifying drug clinically used for radiation-caused cytotoxicity, in bleomycin-induced murine pulmonary fibrosis. METHODS: C57BL6/J mice were intratracheally instilled with 3 U/kg of bleomycin. Three doses of amifostine (WR-2721, 200 mg/kg) were administered intraperitoneally on days 1, 3, and 5 after the bleomycin challenge. Bronchoalveolar lavage fluid (BALF) was collected on day 7 and day 21 for the assessment of lung inflammation, metabolites, and fibrotic injury. Human fibroblasts were treated in vitro with transforming growth factor beta 1 (TGF-ß1), followed by amifostine (WR-1065, 1-4 µg/mL) treatment. The effects of TGF-ß1 and amifostine on the mitochondrial production of reactive oxygen species (ROS) were assessed by live cell imaging of MitoSOX. Cellular metabolism was assessed by the extracellular acidification rate (ECAR), the oxygen consumption rate (OCR), and the concentrations of various energy-related metabolites as measured by mass spectrum (MS). Western blot analysis was performed to investigate the effect of amifostine on sirtuin 1 (SIRT1) and adenosine monophosphate activated kinase (AMPK). RESULTS: Three doses of amifostine significantly attenuated lung inflammation and pulmonary fibrosis. Pretreatment and post-treatment of human fibroblast cells with amifostine blocked TGF-ß1-induced mitochondrial ROS production and mitochondrial dysfunction in human fibroblast cells. Further, treatment of fibroblasts with TGF-ß1 shifted energy metabolism away from mitochondrial oxidative phosphorylation (OXPHOS) and towards glycolysis, as observed by an altered metabolite profile including a decreased ratio of NAD + /NADH and increased lactate concentration. Treatment with amifostine significantly restored energy metabolism and activated SIRT1, which in turn activated AMPK. The activation of AMPK was required to mediate the effects of amifostine on mitochondrial homeostasis and pulmonary fibrosis. This study provides evidence that repurposing of the clinically used drug amifostine may have therapeutic applications for IPF treatment. CONCLUSION: Amifostine inhibits bleomycin-induced pulmonary fibrosis by restoring mitochondrial function and cellular metabolism.


Asunto(s)
Amifostina , Fibrosis Pulmonar Idiopática , Neumonía , Humanos , Animales , Ratones , Bleomicina/efectos adversos , Factor de Crecimiento Transformador beta1 , Amifostina/efectos adversos , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , NAD/metabolismo , NAD/farmacología , NAD/uso terapéutico , Especies Reactivas de Oxígeno/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Pulmón , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Ratones Endogámicos C57BL
2.
Endocr Rev ; 44(6): 1047-1073, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37364580

RESUMEN

Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.


Asunto(s)
Hígado Graso , Enfermedades Neurodegenerativas , Humanos , Anciano , NAD/metabolismo , NAD/uso terapéutico , Envejecimiento/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Biología
3.
Drug Resist Updat ; 70: 100977, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37321064

RESUMEN

Drug resistance is a major challenge in cancer treatment. The substrates of NAD(P)H:quinone oxidoreductase 1 (NQO1) show a promising anticancer effect in clinical trials. We previously identified a natural NQO1 substrate 2-methoxy-6-acetyl-7-methyljuglone (MAM) with a potent anticancer effect. The present study was designed to explore the efficacy of MAM in fighting against drug-resistant non-small cell lung cancer (NSCLC). The anticancer effect of MAM was evaluated in cisplatin-resistant A549 and AZD9291-resistant H1975 cells. The interaction of MAM with NQO1 was measured by cellular thermal shift assay and drug affinity responsive target stability assay. The NQO1 activity and expression were measured using NQO1 recombinant protein, Western blotting, and immunofluorescence staining assay. The roles of NQO1 were examined by NQO1 inhibitor, small interfering RNA (siRNA), and short hairpin RNA (shRNA). The roles of reactive oxygen species (ROS), labile iron pool (LIP), and lipid peroxidation were determined. MAM induced significant cell death in drug-resistant cells with similar potency to that of parental cells, which were completely abolished by NQO1 inhibitor, NQO1 siRNA, and iron chelators. MAM activates and binds to NQO1, which triggers ROS generation, LIP increase, and lipid peroxidation. MAM significantly suppressed tumor growth in the tumor xenograft zebrafish model. These results showed that MAM induced ferroptosis by targeting NQO1 in drug-resistant NSCLC cells. Our findings provided a novel therapeutic strategy for fighting against drug resistance by induction of NQO1-mediated ferroptosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , NAD(P)H Deshidrogenasa (Quinona) , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , NAD/uso terapéutico , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ARN Interferente Pequeño/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Resistencia a Antineoplásicos
4.
Hepatol Int ; 17(6): 1444-1460, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37204655

RESUMEN

BACKGROUND: Lowered nicotinamide adenine dinucleotide (NAD+) levels in tumor cells drive tumor hyperprogression during immunotherapy, and its restoration activates immune cells. However, the effect of lenvatinib, a first-line treatment for unresectable hepatocellular carcinoma (HCC), on NAD+ metabolism in HCC cells, and the metabolite crosstalk between HCC and immune cells after targeting NAD+ metabolism of HCC cells remain unelucidated. METHODS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and ultra-high-performance liquid chromatography multiple reaction monitoring-mass spectrometry (UHPLC-MRM-MS) were used to detect and validate differential metabolites. RNA sequencing was used to explore mRNA expression in macrophages and HCC cells. HCC mouse models were used to validate the effects of lenvatinib on immune cells and NAD+ metabolism. The macrophage properties were elucidated using cell proliferation, apoptosis, and co-culture assays. In silico structural analysis and interaction assays were used to determine whether lenvatinib targets tet methylcytosine dioxygenase 2 (TET2). Flow cytometry was performed to assess changes in immune cells. RESULTS: Lenvatinib targeted TET2 to synthesize and increase NAD+ levels, thereby inhibiting decomposition in HCC cells. NAD+ salvage increased lenvatinib-induced apoptosis of HCC cells. Lenvatinib also induced CD8+ T cells and M1 macrophages infiltration in vivo. And lenvatinib suppressed niacinamide, 5-Hydroxy-L-tryptophan and quinoline secretion of HCC cells, and increased hypoxanthine secretion, which contributed to proliferation, migration and polarization function of macrophages. Consequently, lenvatinib targeted NAD+ metabolism and elevated HCC-derived hypoxanthine to enhance the macrophages polarization from M2 to M1. Glycosaminoglycan binding disorder and positive regulation of cytosolic calcium ion concentration were characteristic features of the reverse polarization. CONCLUSIONS: Targeting HCC cells NAD+ metabolism by lenvatinib-TET2 pathway drives metabolite crosstalk, leading to M2 macrophages reverse polarization, thereby suppressing HCC progression. Collectively, these novel insights highlight the role of lenvatinib or its combination therapies as promising therapeutic alternatives for HCC patients with low NAD+ levels or high TET2 levels.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Quinolinas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , NAD/metabolismo , NAD/farmacología , NAD/uso terapéutico , Linfocitos T CD8-positivos , Cromatografía Liquida , Línea Celular Tumoral , Espectrometría de Masas en Tándem , Macrófagos/metabolismo , Quinolinas/farmacología , Quinolinas/uso terapéutico , Hipoxantinas/metabolismo , Hipoxantinas/farmacología , Hipoxantinas/uso terapéutico
5.
J Integr Bioinform ; 20(2)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36880517

RESUMEN

Nicotinamide adenine dinucleotide (NAD) levels are essential for the normal physiology of the cell and are strictly regulated to prevent pathological conditions. NAD functions as a coenzyme in redox reactions, as a substrate of regulatory proteins, and as a mediator of protein-protein interactions. The main objectives of this study were to identify the NAD-binding and NAD-interacting proteins, and to uncover novel proteins and functions that could be regulated by this metabolite. It was considered if cancer-associated proteins were potential therapeutic targets. Using multiple experimental databases, we defined datasets of proteins that directly interact with NAD - the NAD-binding proteins (NADBPs) dataset - and of proteins that interact with NADBPs - the NAD-protein-protein interactions (NAD-PPIs) dataset. Pathway enrichment analysis revealed that NADBPs participate in several metabolic pathways, while NAD-PPIs are mostly involved in signalling pathways. These include disease-related pathways, namely, three major neurodegenerative disorders: Alzheimer's disease, Huntington's disease, and Parkinson's disease. Then, the complete human proteome was further analysed to select potential NADBPs. TRPC3 and isoforms of diacylglycerol (DAG) kinases, which are involved in calcium signalling, were identified as new NADBPs. Potential therapeutic targets that interact with NAD were identified, that have regulatory and signalling functions in cancer and neurodegenerative diseases.


Asunto(s)
Neoplasias , Enfermedades Neurodegenerativas , Humanos , NAD/metabolismo , NAD/uso terapéutico , Oxidación-Reducción , Transducción de Señal , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo
6.
Int J Med Sci ; 20(2): 262-266, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794157

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally, and it can proceed to cirrhosis and hepatocellular carcinoma, as well as cardiovascular disease, chronic renal disease, and other complications, resulting in a massive economic burden. At the moment, nicotinamide adenine dinucleotide (NAD+) is thought to be a possible treatment target for NAFLD, besides Cluster of differentiation 38(CD38) is the primary NAD+ degrading enzyme in mammals and may play a role in the pathophysiology of NAFLD. For example, CD38 regulates Sirtuin 1 activity and hence affects inflammatory responses. CD38 inhibitors enhance glucose intolerance and insulin resistance in mice and lipid accumulation in the liver is greatly decreased in CD38-deficient mice. This review describes the role of CD38 in the development of NAFLD in terms of Macrophage-1, insulin resistance, and abnormal lipid accumulation in order to offer recommendations for future NAFLD pharmacological trials.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Resistencia a la Insulina , Glicoproteínas de Membrana , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Resistencia a la Insulina/genética , Lípidos , Hígado/patología , NAD/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/patología , Humanos , Glicoproteínas de Membrana/metabolismo
7.
ACS Appl Bio Mater ; 6(1): 267-276, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36573905

RESUMEN

Colorectal cancer (CRC) is the third leading cause of cancer-related mortality. 5-Fluorouracil (5-FU) is the first choice for treatment of CRC, but it cannot avoid the negative effects from local high glucose (Glu) in tumor. Recently, 5-FU therapy has been combined with other treatment modalities for CRC synergistic therapy. Although these combination therapy strategies are more effective in cancer therapy, the toxicity side effects to the liver and cause metabolic acidosis still exist. Herein, we report an emerging amorphous honeycomb-like nitrogen-doped carbon (N/C) nanozyme with nicotinamide adenine dinucleotide (NADH) oxidase and catalase (CAT) activity and cascade it with natural glucose dehydrogenase (GDH) to realize NAD+ regeneration and further hyperglycemia management. In this case, by the coupling of N/C nanozyme with natural GDH to form a N/C-GDH system, the electron transfer route can switch from Glu to a common but limited electron receptor, i.e., NAD+ to ubiquitous large amounts of oxygen, achieving the purpose of sustainable consumption of Glu under NAD+ circulation and regeneration, and importantly escaping the generation of toxic H2O2. The combination of the N/C-GDH system and 5-FU on CRC cells was investigated to assess their synergistic bioeffects. Notably, our results showed that the N/C-GDH system and 5-FU in combination significantly suppress the proliferation of human colon cancer cells (HCT-116) by reducing the sugar level and induced apoptosis compared with either material or drug used alone. This work expands the nanozymes in blood Glu management as well as the promising cancer cell inhibition and provides the possibility of nonmetallic nanomaterials in the realization of effective treatment of cancer.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , NAD/metabolismo , NAD/uso terapéutico , Peróxido de Hidrógeno , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Línea Celular Tumoral
8.
Br J Haematol ; 200(6): 769-775, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36511451

RESUMEN

We assessed relapse patterns in paediatric patients with relapsed Langerhans cell histiocytosis (LCH) who were initially treated with the JLSG-96/02 protocol. We analysed 187 relapse events in 101 relapsed LCH patients [31 with multifocal bone (MFB) and 70 with multisystem (MS) at LCH diagnosis] among a total 317 patients enrolled in JLSG-96/-02 studies. Relapse of LCH was defined as an exacerbation of the non-active disease (NAD) condition. Of the 317 patients, 101 (31.9%) had the first relapse at 1.5 years after initiation of therapy. The first relapse and subsequent relapses did not differ between patients with MFB and MS disease. Of the 187 relapse events, relapse occurred as a single-system disease (n = 159; 85%), in which isolated bone relapse (n = 104; 55%) was the most common. Relapse at MS disease with the risk of organ involvement is extremely rare. After relapse(s), most patients underwent chemotherapy (122/187; 65%) and 87% of them achieved NAD status again. The incidence of permanent consequences was significantly higher in patients with relapses than in those without relapses. In the JLSG cohort, bone relapse most occurred in both MFB and MS patients. Most relapses could be effectively controlled by repeated administration of the initial chemotherapy.


Asunto(s)
Histiocitosis de Células de Langerhans , NAD , Niño , Humanos , Lactante , Resultado del Tratamiento , NAD/uso terapéutico , Recurrencia , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Análisis de Datos , Estudios Retrospectivos
9.
J Exp Clin Cancer Res ; 41(1): 349, 2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36527092

RESUMEN

BACKGROUND: To identify potential targets related to nicotinamide adenine dinucleotide (NAD+) metabolism in gliomas, we used RNA immunoprecipitation to identify a novel long noncoding RNA renamed malate dehydrogenase degradation helper (MDHDH) (NONCODE annotation ID: NONHSAT138800.2, NCBI Reference Sequence: NR_028345), which bound to MDH2 (malate dehydrogenase 2), that is downregulated in glioblastoma multiforme (GBM) and associated with metabolic regulation. However, its underlying mechanisms in the progression of GBM have not been well studied. METHODS: To investigate the clinical significance of MDHDH, we analyzed its expression levels in publicly available datasets and collected clinical samples from Shandong Provincial Hospital, affiliated with Shandong University. Functional assays, including FISH/CISH, CCK8, EdU, wound healing, and transwell assays, were used to determine the cellular/subcellular localization, tissue expression profile and anti-oncogenic role of MDHDH. Furthermore, RNA pulldown, mass spectrometry RNA immunoprecipitation, coimmunoprecipitation, JC-1 probe, and cell energy-production assays were used to determine the mechanisms of MDHDH in the development of GBM. Animal experiments were conducted to determine the antitumorigenic role of MDHDH in GBM in vivo. RESULTS: In public datasets, MDHDH expression was significantly downregulated in GBM and LGG compared with GTEx normal brain tissues. The results of the tissue microarray showed that the MDHDH expression level negatively correlated with the tumor grade. Altered MDHDH expression led to significant changes in the proliferation, migration and invasion of GBM cells both in vitro and in vivo. Mechanistically, we found that MDHDH directly bound to MDH2 and PSMA1 (20S proteasomal core subunit alpha-type 1) as a molecular scaffold and accelerated the degradation of MDH2 by promoting the binding of ubiquitinated MDH2 to the proteasome. The degradation of MDH2 subsequently led to changes in the mitochondrial membrane potential and NAD+/NADH ratio, which impeded glycolysis in glioma cells. CONCLUSIONS: In conclusion, this study broadened our understanding of the functions of lncRNAs in GBM. We demonstrated that the tumor suppressor MDHDH might act as a clinical biomarker and that the overexpression of MDHDH might be a novel synergistic strategy for enhancing metabolism-based, epigenetic-based, and autophagy regulation-based therapies with clinical benefits for glioblastoma multiforme patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , ARN Largo no Codificante , Animales , Glioblastoma/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , NAD/genética , NAD/metabolismo , NAD/uso terapéutico , Neoplasias Encefálicas/patología , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Glioma/genética , Autofagia/genética
10.
Vascul Pharmacol ; 147: 107126, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36351515

RESUMEN

Diabetic mellitus (DM) complicated with myocardial infarction (MI) is a serious clinical issue that remained poorly comprehended. The aim of the present study was to investigate the role of NAD+ in attenuating cardiac damage following MI in diabetic mice. The cardiac dysfunction in DM mice with MI was more severe compared with the non-diabetic mice and NAD+ administration could significantly improve the cardiac function in both non-diabetic and diabetic mice after MI for both 7 days and 28 days. Moreover, application of NAD+ could markedly reduce the cardiac injury area of DM complicated MI mice. Notably, the level of NAD+ was robustly decreased in the cardiac tissue of MI mice, which was further reduced in the DM complicated mice and NAD+ administration could significantly restore the NAD+ level. Furthermore, NAD+ was verified to facilitate the angiogenesis in the MI area of both diabetic mice and non-diabetic mice by microfil perfusion assay and immunofluorescence. Additionally, we demonstrated that NAD+ promoted cardiac angiogenesis after myocardial infarction in diabetic mice by promoting the M2 polarization of macrophages. At the molecular level, NAD+ promoted the secretion of VEGF in macrophages and therefore facilitating migration and tube formation of endothelial cells. Mechanistically, NAD+ was found to promote the generation of pro-angionesis VEGF165 and inhibit the generation of anti-angionesis VEGF165b via regulating the alternative splicing factors of VEGF (SRSF1 and SRSF6) in macrophages. The effects of NAD+ were readily reversible on deficiency of it. Collectively, our data showed that NAD+ could attenuate myocardial injury via regulating the alternative splicing of VEGF and promoting angiogenesis in diabetic mice after myocardial infarction. NAD+ administration may therefore be considered a potential new approach for the treatment of diabetic patients with myocardial infarction.


Asunto(s)
Diabetes Mellitus , Infarto del Miocardio , Animales , Ratones , Empalme Alternativo , Células Endoteliales , Macrófagos , NAD/farmacología , NAD/uso terapéutico , Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
J Ovarian Res ; 15(1): 114, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266675

RESUMEN

BACKGROUND: Epithelial ovarian cancer (OC) is the most lethal gynecological malignancy and patients present with significant metastatic burden, particularly to the adipose-rich microenvironment of the omentum. Recent evidence has highlighted the importance of metabolic adaptations in enabling this metastasis, leading to significant interest in evolving the arsenal of tools used to study OC metabolism. In this study, we demonstrate the capability of genetically encoded fluorescent biosensors to study OC, with a focus on 3D organoid models that better recapitulate in vivo tumor microenvironments. MATERIALS AND METHODS: Plasmids encoding the metabolic biosensors HyPer, iNap, Peredox, and Perceval were transfected into 15 ovarian cancer cell lines to assay oxidative stress, NADPH/NADP+, NADH/NAD+, and ATP/ADP, respectively. Fluorescence readings were used to assay dynamic metabolic responses to omental conditioned media (OCM) and 100 µM carboplatin treatment. SKOV3 cells expressing HyPer were imaged as 2D monolayers, 3D organoids, and as in vivo metastases via an intravital omental window. We further established organoids from ascites collected from Stage III/IV OC patients with carboplatin-resistant or carboplatin-sensitive tumors (n = 8 total). These patient-derived organoids (PDOs) were engineered to express HyPer, and metabolic readings of oxidative stress were performed during treatment with 100 µM carboplatin. RESULTS: Exposure to OCM or carboplatin induced heterogenous metabolic changes in 15 OC cell lines, as measured using metabolic sensors. Oxidative stress of in vivo omental metastases, measured via intravital imaging of metastasizing SKOV3-HyPer cells, was more closely recapitulated by SKOV3-HyPer organoids than by 2D monolayers. Finally, carboplatin treatment of HyPer-expressing PDOs induced higher oxidative stress in organoids derived from carboplatin-resistant patients than from those derived from carboplatin-sensitive patients. CONCLUSIONS: Our study showed that biosensors provide a useful method of studying dynamic metabolic changes in preclinical models of OC, including 3D organoids and intravital imaging. As 3D models of OC continue to evolve, the repertoire of biosensors will likely serve as valuable tools to probe the metabolic changes of clinical importance in OC.


Asunto(s)
Técnicas Biosensibles , Neoplasias Ováricas , Humanos , Femenino , Carboplatino/uso terapéutico , Carcinoma Epitelial de Ovario , NADP/uso terapéutico , NAD/uso terapéutico , Medios de Cultivo Condicionados , Neoplasias Ováricas/metabolismo , Adenosina Difosfato/uso terapéutico , Adenosina Trifosfato/uso terapéutico , Microambiente Tumoral
12.
Phytomedicine ; 107: 154377, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116200

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a life-threatening lung disease and characterized by pulmonary edema and atelectasis. Inula japonica Thunb. is a commonly used traditional Chinese medicine for the treatment of lung diseases. However, the potential effect and mechanism of total terpenoids of I. japonica (TTIJ) on ALI remain obscure. PURPOSE: This study focused on the protective effect of TTIJ on lipopolysaccharide (LPS)-induced ALI in mice and its potential mechanism. STUDY DESIGN AND METHODS: A mouse model of ALI was established by intratracheal instillation of LPS to investigate the protective effect of TTIJ. RNA-seq and bioinformatics were then performed to reveal the underlying mechanism. Finally, western blot and real-time qPCR were used to verify the effects of TTIJ on the inflammation and oxidative stress. RESULTS: TTIJ notably attenuated LPS-induced histopathological changes of lung. The RNA-seq result suggested that the protective effect of TTIJ on LPS-induced ALI were associated with the Toll-like receptor 4 (TLR4) and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathways. Pretreatment with TTIJ significantly reduced the inflammation and oxidative stress via regulating levels of pro-inflammatory and anti-oxidative cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD), and glutathione (GSH), in LPS-induced ALI mice. TTIJ treatment could suppress the cyclooxygenase-2 (COX-2) expression level and the phosphorylation of p65, p38, ERK, and JNK through the inactivation of the MAPK/NF-κB signaling pathway in a TLR4-independent manner. Meanwhile, TTIJ treatment upregulated expression levels of proteins involved in the Nrf2 signaling pathway, such as heme oxygenase-1 (HO-1), NAD(P)H: quinoneoxidoreductase-1 (NQO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM), via activating the Nrf2 receptor, which was confirmed by the luciferase assay. CONCLUSION: TTIJ could activate the Nrf2 receptor to alleviate the inflammatory response and oxidative stress in LPS-induced ALI mice, which suggested that TTIJ could serve as the potential agent in the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Inula , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Hemo-Oxigenasa 1/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Ratones , NAD/metabolismo , NAD/farmacología , NAD/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Terpenos/farmacología , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
Food Funct ; 13(20): 10587-10600, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36156620

RESUMEN

Chronic kidney disease (CKD) with diverse aetiologies is emerging as a challenging kidney disorder associated with inflammation and interstitial fibrosis. Carvacrol (CVL) is a bioactive monoterpenoid found abundantly in oregano, thyme, and bergamot, having diverse pharmacological benefits. However, the effect of CVL against fibrotic changes in the kidneys is poorly defined. In the current study, a robust mouse model of renal fibrosis induced through unilateral ureteral obstruction (UUO) is used to investigate the anti-fibrotic activity of CVL. The mice were treated with two different oral doses of CVL (25 mg kg-1 and 50 mg kg-1 body weight) for 14 consecutive days. The UUO induction resulted in impaired renal function, severe histological damage, and collagen deposition in the obstructed kidney. Our findings revealed profound activation of transforming growth factor-ß1 (TGF-ß1) and NF-κB (p65) signaling along with the downregulation of antioxidant proteins, nuclear factor-erythroid factor 2-related factor 2 (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO1), and superoxide dismutase (SOD) in the obstructed kidney. CVL administration markedly recovered antioxidant proteins and kidney histological changes. In addition, CVL blunted the NF-κB (p65) phosphorylation and reduced the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and cyclooxygenase 2 (COX-2) compared to the UUO control group. CVL also alleviated the increased fibrotic protein levels of TGF-ß1, pSmad2/3, collagen I, collagen III, fibronectin, and myofibroblast activation and epithelial-mesenchymal transition (EMT) markers, including alpha-smooth muscle actin (α-SMA), E-cadherin, and vimentin in the kidneys. Findings from in vitro study also confirmed that CVL inhibits the EMT process in TGF-ß1 stimulated renal tubular epithelial cells (NRK 52E cells). Collectively, our findings indicate that CVL administration attenuates kidney fibrosis by targeting oxidative stress and inflammation.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Actinas/metabolismo , Animales , Antioxidantes/metabolismo , Cadherinas/metabolismo , Colágeno/metabolismo , Ciclooxigenasa 2/metabolismo , Cimenos , Fibronectinas/metabolismo , Fibrosis , Inflamación/metabolismo , Interleucina-6/metabolismo , Riñón , Enfermedades Renales/metabolismo , Ratones , NAD/metabolismo , NAD/farmacología , NAD/uso terapéutico , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Oxidorreductasas/metabolismo , Quinonas/farmacología , Superóxido Dismutasa/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/farmacología , Factores de Necrosis Tumoral/uso terapéutico , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/patología , Obstrucción Ureteral/terapia , Vimentina/metabolismo
14.
Sci Rep ; 12(1): 15963, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153399

RESUMEN

Melatonin (MT), a neurohormone with immunomodulatory properties, is one of the metabolites produced in the brain from tryptophan (TRP) that has already strong links with the neuropathogenesis of Multiple sclerosis (MS). However, the exact molecular mechanisms behind that are not fully understood. There is some evidence showing that MS and MT are interconnected via different pathways: Relapses of MS has a direct correlation with a low level of MT secretion and a growing body of evidence suggest that MT be therapeutic in Experimental Autoimmune Encephalomyelitis (EAE, a recognise animal model of MS) severity. Previous studies have demonstrated that the kynurenine pathway (KP), the main pathway of TRP catabolism, plays a key role in the pathogenesis of MS in humans and in EAE. The present study aimed to investigate whether MT can improve clinical signs in the EAE model by modulating the KP. C57BL/6 mice were induced with EAE and received different doses of MT. Then the onset and severity of EAE clinical symptoms were recorded. Two biological factors, aryl hydrocarbon receptor (AhR) and NAD+ which closely interact in the KP were also assessed. The results indicated that MT treatment at all tested doses significantly decrease the EAE clinical scores and the number of demyelinating plaques. Furthermore, MT treatment reduced the mRNA expression of the KP regulatory enzyme indoleamine 2,3-dioxygenase 1(IDO-1) and other KP enzymes. We also found that MT treatment reduces the mRNA expression of the AhR and inhibits the enzyme Nicotinamide N-Methyltransferase (Nnmt) overexpression leading to an increase in NAD+ levels. Collectively, this study suggests that MT treatment may significantly attenuates the severity of EAE by altering the KP, AhR and NAD+ metabolism.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Melatonina , Esclerosis Múltiple , Animales , Factores Biológicos/uso terapéutico , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , NAD/uso terapéutico , Nicotinamida N-Metiltransferasa , ARN Mensajero/uso terapéutico , Receptores de Hidrocarburo de Aril/genética , Índice de Severidad de la Enfermedad , Triptófano/metabolismo
15.
Leuk Lymphoma ; 63(10): 2265-2275, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35975791

RESUMEN

CD38 is a glycoprotein expressed on chronic lymphocytic leukemia (CLL) cells, which functions to amplify B-cell receptor signaling and regulate nicotinamide adenine dinucleotide metabolism. Increased CD38 expression on CLL cells is associated with an unfavorable disease course, resulting in shorter overall survival. While the role of CD38 as a negative prognostic marker in CLL has been established for over two decades, the therapeutic benefit to be derived by patients from its inhibition has, till date remained an unresolved subject. With the development of high-affinity anti-CD38 targeting drugs, tremendous insight has been gained on which functions of CD38 are detrimental to CLL cell survival as well as the mechanisms of leukemic cell death engaged by these anti-CD38 agents. The current review attempts to resolve how the enzyamtic and receptorial functions of CD38 contribute to CLL pathogenesis, our ability to exploit these functions for immunotherapeutic effect and development of novel strategies targeting CD38.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , ADP-Ribosil Ciclasa 1 , Humanos , Inmunoterapia , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/terapia , NAD/uso terapéutico , Pronóstico , Receptores de Antígenos de Linfocitos B/metabolismo
16.
J Control Release ; 349: 876-889, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35907592

RESUMEN

NAD(P)H:quinone oxidoreductase 1 (NQO1) is an enzyme significantly overexpressed in pancreatic ductal adenocarcinoma (PDAC) tumors compared to the associated normal tissues. NQO1 bioactivatable drugs, such as ß-lapachone (ß-lap), can be catalyzed to generate reactive oxygen species (ROS) for direct tumor killing. However, the extremely narrow therapeutic window caused by methemoglobinemia and hemolytic anemia severely restricts its further clinical translation despite considerable efforts in the past 20 years. Previously, we demonstrated that albumin could be utilized to deliver cytotoxic drugs selectively into KRAS-mutant PDAC with a much expanded therapeutic window due to KRAS-enhanced macropinocytosis and reduced neonatal Fc receptor (FcRn) expression in PDAC. Herein, we analyzed the expression patterns of albumin and FcRn across major organs in LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mice. The tumors were the predominant tissues with both elevated albumin and reduced FcRn expression, thus making them an ideal target for albumin-based drug delivery. Quantitative proteomics analysis of tissue samples from 5 human PDAC patients further confirmed the elevated albumin/FcRn ratio. Given such a compelling biological rationale, we designed a nanoparticle albumin-bound prodrug of ß-lap, nab-(pro-ß-lap), to achieve PDAC targeted delivery and expand the therapeutic window of ß-lap. We found that nab-(pro-ß-lap) uptake was profoundly enhanced by KRAS mutation. Compared to the solution formulation of the parent drug ß-lap, nab-(pro-ß-lap) showed enhanced safety due to much lower rates of methemoglobinemia and hemolytic anemia, which was confirmed both in vitro and in vivo. Furthermore, nab-(pro-ß-lap) significantly inhibited tumor growth in subcutaneously implanted KPC xenografts and enhanced the pharmacodynamic endpoints (e.g., PARP1 hyperactivation, γ-H2AX). Thus, nab-(pro-ß-lap), with improved safety and antitumor efficacy, offers a drug delivery strategy with translational viability for ß-lap in pancreatic cancer therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Metahemoglobinemia , Naftoquinonas , Neoplasias Pancreáticas , Profármacos , Albúminas/metabolismo , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Metahemoglobinemia/tratamiento farmacológico , Ratones , NAD/metabolismo , NAD/uso terapéutico , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinonas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pancreáticas
17.
Lung ; 200(3): 393-400, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35652971

RESUMEN

INTRODUCTION: To date, no validated predictors of response before neoadjuvant therapy (NAD) are currently available in locally advanced non-small-cell lung cancer (NSCLC). In this study, different peripheral blood markers were investigated before NAD (pre-NAD) and after NAD/before surgery (post-NAD) to evaluate their influence on the treatment outcomes. METHODS: Patients affected by locally advanced NSCLC (cT1-T4/N0-2/M0) who underwent NAD followed by surgery from January 1996 to December 2019 were considered for this retrospective analysis. The impact of peripheral blood markers on downstaging post-NAD and on overall survival (OS) was evaluated using multivariate logistic and Cox regression models. Time to event analysis was performed by means of Kaplan-Meier survival curves and Log Rank tests at 5 years from surgery. RESULTS: Two hundred and seventy-two consecutive patients were included. Most of the patients had Stage III NSCLC (83.5%). N2 disease was reported in 188 (69.1%) patients. Surgical resection was performed in patients with stable disease or downstaging post-NAD. Nodal downstaging was observed in 80% of clinical N2 (cN2) patients. The median follow-up of the total series was 74 months (range 6-302). Five-year OS in the overall population and in N2 population was 74.6% and 73.5%, respectively. The pre-surgery platelets level (PLT) (p = 0.019) and the variation (pre-NAD/post-NAD) of the neutrophil/lymphocyte ratio (p = 0.024) were identified as independent prognostic factors of OS. The preoperative PLT value (p value = 0.031) was confirmed as the only predictor of NAD response. CONCLUSIONS: The clinical role of peripheral blood markers in locally advanced NSCLC needs to be further investigated. Based on these preliminary results, these factors may be used as auxiliary markers for the prediction of response to neoadjuvant treatment and as prognostic factors for stratification in multimodal approaches.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/cirugía , NAD/uso terapéutico , Terapia Neoadyuvante , Estadificación de Neoplasias , Pronóstico , Estudios Retrospectivos
18.
Phytomedicine ; 100: 154075, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35413646

RESUMEN

BACKGROUND: Osmundacetone (OSC) is a bioactive phenolic compound isolated from Phellinus igniarius and that was shown to exert cytotoxic effects on cancer cells in our previous work. The antiproliferative impact of OSC on non-small cell lung cancer (NSCLC) and the underlying mechanisms, however, have not been studied. PURPOSE: This study aimed to explore the antiproliferative effect of OSC on NSCLC cells and the mechanisms involved. METHODS: Cell viability, colony formation and cell cycle distribution were measured following exposure to OSC in vitro. The anticancer activity of OSC was also examined using a xenograft growth assay in vivo. Furthermore, serum metabolomics analysis by GC-MS was done to detect alterations in the metabolic profile. Next, expression of GLS1 and GLUD1, the key enzymes in glutamine metabolism, was evaluated using RT-PCR and western blot. α-KG and NADH metabolites were assessed by ELISA. Mitochondrial functions and morphology were evaluated using the JC-1 probe and transmission electron microscopy, respectively. The ATP production rate in mitochondria of cells with OSC treatment was determined using a Seahorse XFe24 Analyzer. RESULTS: OSC selectively reduced the proliferation of A549 and H460 cells. OSC triggered G2/M cell cycle arrest and decreased the cell clone formation. A mouse xenograft model revealed that OSC inhibited tumor growth in vivo. Findings of serum metabolomics analyses indicated that the anticancer function of OSC was related to disorders of glutamine metabolism. Such a speculation was further verified by the expression level of GLUD1, which was downregulated by OSC treatment. Concentrations of the related metabolites α-KG and NADH were reduced in response to OSC treatment. Moreover, OSC led to disorganization of the mitochondrial ultrastructure and a decrease in mitochondrial membrane potential. OSC also decreased ATP production via oxidative phosphorylation (OXPHOS) but did not affect glycolysis in NSCLC cells. CONCLUSION: The key role of OSC in mitochondrial energy metabolism in NSCLC cells is to suppress tumor development and cell proliferation downregulating GLUD1 to inhibit the glutamine/glutamate/α-KG metabolic axis and OXPHOS. It indicats that OSC might be a potential natural agent for personalized medicine and an anticancer metabolic modulator in NSCLC chemotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenosina Trifosfato/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Puntos de Control de la Fase G2 del Ciclo Celular , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Ácido Glutámico/uso terapéutico , Glutamina/metabolismo , Humanos , Cetonas , Neoplasias Pulmonares/patología , Ratones , Mitocondrias/metabolismo , NAD/metabolismo , NAD/farmacología , NAD/uso terapéutico
19.
EMBO Mol Med ; 14(5): e12860, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35298089

RESUMEN

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca2+ dysregulation linked to Ca2+ influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD+ ) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD+ glycohydrolase-producing modulators of Ca2+ signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers. Muscle NAD+ levels were also fully restored, while the levels of the two main products of CD38, nicotinamide and ADP-ribose, were reduced, in heart, diaphragm, and limb. In cardiomyocytes from mdx/CD38-/- mice, the pathological spontaneous Ca2+ activity was reduced, as well as in myotubes from DMD patients treated with isatuximab (SARCLISA® ) a monoclonal anti-CD38 antibody. Finally, treatment of mdx and utrophin-dystrophin-deficient (mdx/utr-/- ) mice with CD38 inhibitors resulted in improved skeletal muscle performances. Thus, we demonstrate that CD38 actively contributes to DMD physiopathology. We propose that a selective anti-CD38 therapeutic intervention could be highly relevant to develop for DMD patients.


Asunto(s)
Distrofia Muscular de Duchenne , ADP-Ribosil Ciclasa 1 , Animales , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Miocitos Cardíacos/patología , NAD/genética , NAD/uso terapéutico , NAD+ Nucleosidasa/genética , Fenotipo
20.
Crit Care Med ; 50(2): e189-e198, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637412

RESUMEN

OBJECTIVES: To investigate the therapeutic potential and underlying mechanisms of exogenous nicotinamide adenine dinucleotide+ on postresuscitation myocardial and neurologic dysfunction in a rat model of cardiac arrest. DESIGN: Thirty-eight rats were randomized into three groups: 1) Sham, 2) Control, and 3) NAD. Except for the sham group, untreated ventricular fibrillation for 6 minutes followed by cardiopulmonary resuscitation was performed in the control and NAD groups. Nicotinamide adenine dinucleotide+ (20 mg/kg) was IV administered at the onset of return of spontaneous circulation. SETTING: University-affiliated research laboratory. SUBJECTS: Sprague-Dawley rats. INTERVENTIONS: Nicotinamide adenine dinucleotide+. MEASUREMENTS AND MAIN RESULTS: Hemodynamic and myocardial function were measured at baseline and within 4 hours following return of spontaneous circulation. Survival analysis and Neurologic Deficit Score were performed up to 72 hours after return of spontaneous circulation. Adenosine triphosphate (adenosine triphosphate) level was measured in both brain and heart tissue. Mitochondrial respiratory chain function, acetylation level, and expression of Sirtuin3 and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 (NDUFA9) in isolated mitochondrial protein from both brain and heart tissue were evaluated at 4 hours following return of spontaneous circulation. The results demonstrated that nicotinamide adenine dinucleotide+ treatment improved mean arterial pressure (at 1 hr following return of spontaneous circulation, 94.69 ± 4.25 mm Hg vs 89.57 ± 7.71 mm Hg; p < 0.05), ejection fraction (at 1 hr following return of spontaneous circulation, 62.67% ± 6.71% vs 52.96% ± 9.37%; p < 0.05), Neurologic Deficit Score (at 24 hr following return of spontaneous circulation, 449.50 ± 82.58 vs 339.50 ± 90.66; p < 0.05), and survival rate compared with that of the control group. The adenosine triphosphate level and complex I respiratory were significantly restored in the NAD group compared with those of the control group. In addition, nicotinamide adenine dinucleotide+ treatment activated the Sirtuin3 pathway, down-regulating acetylated-NDUFA9 in the isolated mitochondria protein. CONCLUSIONS: Exogenous nicotinamide adenine dinucleotide+ treatment attenuated postresuscitation myocardial and neurologic dysfunction. The responsible mechanisms may involve the preservation of mitochondrial complex I respiratory capacity and adenosine triphosphate production, which involves the Sirtuin3-NDUFA9 deacetylation.


Asunto(s)
Paro Cardíaco/complicaciones , Insuficiencia Cardíaca/tratamiento farmacológico , NAD/farmacología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Resucitación/normas , Animales , Modelos Animales de Enfermedad , Paro Cardíaco/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , NAD/uso terapéutico , Enfermedades del Sistema Nervioso/prevención & control , Ratas , Ratas Sprague-Dawley/lesiones , Ratas Sprague-Dawley/metabolismo , Resucitación/métodos , Resucitación/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA