Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.459
Filtrar
1.
Int J Nanomedicine ; 19: 6519-6546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957181

RESUMEN

Background: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/ß-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.


Asunto(s)
Gelatina , Glucósidos , Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Nanofibras , Neovascularización Fisiológica , Osteogénesis , Fenantrenos , Fenoles , Poliésteres , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Animales , Nanofibras/química , Gelatina/química , Poliésteres/química , Glucósidos/química , Glucósidos/farmacología , Fenoles/química , Fenoles/farmacología , Fenantrenos/química , Fenantrenos/farmacología , Fenantrenos/farmacocinética , Fenantrenos/administración & dosificación , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratas , Masculino , Regeneración Ósea/efectos de los fármacos , Membranas Artificiales , Técnicas de Cocultivo , Liberación de Fármacos , Diferenciación Celular/efectos de los fármacos
2.
Mikrochim Acta ; 191(7): 435, 2024 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-38949689

RESUMEN

A novel scaffold for in situ electrochemical detection of cell biomarkers was developed using electrospun nanofibers and commercial adhesive polymeric membranes. The electrochemical sensing of cell biomarkers requires the cultivation of the cells on/near the (bio)sensor surface in a manner to preserve an appropriate electroactive available surface and to avoid the surface passivation and sensor damage. This can be achieved by employing biocompatible nanofiber meshes that allow the cells to have a normal behavior and do not alter the electrochemical detection. For a better mechanical stability and ease of handling, nylon 6/6 nanofibers were collected on commercial polymeric membranes, at an optimal fiber density, obtaining a double-layered platform. To demonstrate the functionality of the fabricated scaffold, the screening of cellular stress has been achieved integrating melanoma B16-F10 cells and the (bio)sensor components on the transducer whereas the melanin exocytosis was successfully quantified using a commercial electrode. Either directly on the surface of the (bio)sensor or spatially detached from it, the integration of cell cultures in biosensing platforms based on electrospun nanofibers represents a powerful bioanalytical tool able to provide real-time information about the biomarker release, enzyme activity or inhibition, and monitoring of various cellular events.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Nanofibras , Nanofibras/química , Animales , Ratones , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Línea Celular Tumoral , Melaninas , Biomarcadores/análisis , Andamios del Tejido/química , Exocitosis , Melanoma Experimental/patología , Melanoma Experimental/diagnóstico
3.
J Nanobiotechnology ; 22(1): 399, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970101

RESUMEN

Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.


Asunto(s)
Axones , Macrófagos , Nanofibras , Regeneración Nerviosa , Traumatismos de la Médula Espinal , Animales , Axones/metabolismo , Nanofibras/química , Regeneración Nerviosa/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratas , Andamios del Tejido/química , Nanopartículas/química , Ratas Sprague-Dawley , Péptido Relacionado con Gen de Calcitonina/metabolismo , Femenino , Ratones Endogámicos C57BL
4.
ACS Sens ; 9(6): 3085-3095, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38840550

RESUMEN

Wearable gas sensors have drawn great attention for potential applications in health monitoring, minienvironment detection, and advanced soft electronic noses. However, it still remains a great challenge to simultaneously achieve excellent flexibility, high sensitivity, robustness, and gas permeability, because of the inherent limitation of widely used traditional organic flexible substrates. Herein, an electrospinning polyacrylonitrile (PAN) nanofiber network was designed as a flexible substrate, on which an ultraflexible wearable gas sensor was prepared with in situ assembled polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs) as a sensitive layer. The unique nanofiber network and strong binding force between substrate and sensing materials endow the wearable gas sensor with excellent robustness, flexibility, and gas permeability. The wearable sensor can maintain stable NH3 sensing performance while sustaining extreme bending and stretching (50% of strain). The Young's modulus of wearable PAN/MWCNTs/PANI sensor is as low as 18.9 MPa, which is several orders of magnitude smaller than those of reported flexible sensors. The water vapor transmission rate of the sensor is 0.38 g/(cm2 24 h), which enables the wearing comfort of the sensor. Most importantly, due to the effective exposure of sensing sites as well as the heterostructure effect between MWCNTs and PANI, the sensor shows high sensitivity to NH3 at room temperature, and the theoretical limit of detection is as low as 300 ppb. This work provides a new avenue for the realization of reliable and high-performance wearable gas sensors.


Asunto(s)
Resinas Acrílicas , Amoníaco , Compuestos de Anilina , Nanofibras , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Nanofibras/química , Nanotubos de Carbono/química , Compuestos de Anilina/química , Resinas Acrílicas/química , Amoníaco/análisis , Humanos , Gases/análisis , Gases/química
5.
Int J Nanomedicine ; 19: 6057-6084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911501

RESUMEN

Introduction: The design of delivery tools that efficiently transport drugs into cells remains a major challenge in drug development for most pathological conditions. Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer with poor prognosis and limited effective therapeutic options. Purpose: In TNBC treatment, chemotherapy remains the milestone, and doxorubicin (Dox) represents the first-line systemic treatment; however, its non-selective distribution causes a cascade of side effects. To address these problems, we developed a delivery platform based on the self-assembly of amphiphilic peptides carrying several moieties on their surfaces, aimed at targeting, enhancing penetration, and therapy. Methods: Through a single-step self-assembly process, we used amphiphilic peptides to obtain nanofibers decorated on their surfaces with the selected moieties. The surface of the nanofiber was decorated with a cell-penetrating peptide (gH625), an EGFR-targeting peptide (P22), and Dox bound to the cleavage sequence selectively recognized and cleaved by MMP-9 to obtain on-demand drug release. Detailed physicochemical and cellular analyses were performed. Results: The obtained nanofiber (NF-Dox) had a length of 250 nm and a diameter of 10 nm, and it was stable under dilution, ionic strength, and different pH environments. The biological results showed that the presence of gH625 favored the complete internalization of NF-Dox after 1h in MDA-MB 231 cells, mainly through a translocation mechanism. Interestingly, we observed the absence of toxicity of the carrier (NF) on both healthy cells such as HaCaT and TNBC cancer lines, while a similar antiproliferative effect was observed on TNBC cells after the treatment with the free-Dox at 50 µM and NF-Dox carrying 7.5 µM of Dox. Discussion: We envision that this platform is extremely versatile and can be used to efficiently carry and deliver diverse moieties. The knowledge acquired from this study will provide important guidelines for applications in basic research and biomedicine.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Nanofibras , Neoplasias de la Mama Triple Negativas , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/farmacocinética , Doxorrubicina/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Humanos , Nanofibras/química , Línea Celular Tumoral , Femenino , Sistemas de Liberación de Medicamentos/métodos , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Liberación de Fármacos , Supervivencia Celular/efectos de los fármacos , Péptidos/química , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Receptores ErbB/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
6.
J Colloid Interface Sci ; 672: 266-278, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38843679

RESUMEN

Diabetic wound, which is chronic skin disease, poses a significant challenge in clinical practice because of persistent inflammation and impaired angiogenesis. Recently, hydrogen has emerged as a novel therapeutic agent due to its superior antioxidant and anti-inflammatory properties. In this study, we engineered a poly (lactic-co-glycolic acid) (PLGA) electrospun nanofibre membrane loaded with citric acid (CA) and iron (Fe) nanoparticles, referred to as Fe@PLGA + CA. Our in vitro assays demonstrated that the Fe@PLGA + CA membrane continuously generated and released hydrogen molecules via a chemical reaction between Fe and CA in an acidic microenvironment created by CA. We also discovered that hydrogen can ameliorate fibroblast migration disorders by reducing the levels of matrix metalloproteinase 9 (MMP9). Furthermore, we confirmed that hydrogen can scavenge or biochemically neutralise accumulated reactive oxygen species (ROS), inhibit pro-inflammatory responses, and induce anti-inflammatory reactions. This, in turn, promotes vessel formation, wound-healing and accelerates skin regeneration. These findings open new possibilities for using elemental iron in skin dressings and bring us one step closer to implementing hydrogen-releasing biomedical materials in clinical practice.


Asunto(s)
Hidrógeno , Nanofibras , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Nanofibras/química , Hidrógeno/química , Hidrógeno/farmacología , Animales , Hierro/química , Nanopartículas del Metal/química , Membranas Artificiales , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Tamaño de la Partícula , Propiedades de Superficie
7.
Biomacromolecules ; 25(7): 4074-4086, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38838242

RESUMEN

The presence of oxidative stress in bone defects leads to delayed regeneration, especially in the aged population and patients receiving cancer treatment. This delay is attributed to the increased levels of reactive oxygen species (ROS) in these populations due to the accumulation of senescent cells. Tissue-engineered scaffolds are emerging as an alternative method to treat bone defects. In this study, we engineered tissue scaffolds tailored to modulate the adverse effects of oxidative stress and promote bone regeneration. We used polycaprolactone to fabricate nanofibrous mats by using electrospinning. We exploited the ROS-scavenging properties of cerium oxide nanoparticles to alleviate the high oxidative stress microenvironment caused by the presence of senescent cells. We characterized the nanofibers for their physical and mechanical properties and utilized an ionization-radiation-based model to induce senescence in bone cells. We demonstrate that the presence of ceria can modulate ROS levels, thereby reducing the level of senescence and promoting osteogenesis. Overall, this study demonstrates that ceria-infused nanofibrous scaffolds can be used for augmenting the osteogenic activity of senescent progenitor cells, which has important implications for engineering bone tissue scaffolds for patients with low regeneration capabilities.


Asunto(s)
Regeneración Ósea , Senescencia Celular , Cerio , Nanofibras , Osteogénesis , Especies Reactivas de Oxígeno , Ingeniería de Tejidos , Andamios del Tejido , Cerio/química , Cerio/farmacología , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Senescencia Celular/efectos de los fármacos , Nanofibras/química , Osteogénesis/efectos de los fármacos , Humanos , Ingeniería de Tejidos/métodos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poliésteres/química , Animales , Huesos/efectos de los fármacos
8.
Int J Biol Macromol ; 273(Pt 1): 132783, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825285

RESUMEN

In this study, a brand-new, easy, and environmentally friendly approach for chemically functionalizing 2,2,6,6-tetramethylpiperidinyloxyl radical (TEMPO)-oxidized cellulose nanofiber (TOCNF) to produce modified cellulose nanofiber (octadecylamine-citric acid-CNF) was proposed. Effects of octadecylamine (ODA)/TOCNF mass ratio on the chemical structure, morphology, surface hydrophobicity and oleophobicity were studied. According to Fourier transform infrared spectroscopy (FTIR) analysis, ODA was successfully grafted onto the TOCNF by simple citric acid (CA) esterification and amidation reactions. Scanning electron microscopy (SEM) showed that a new rough structure was formed on the ODA-CA-CNF surface. The water contact angle (WCA) and the castor oil contact angle (OCA) of the ODA-CA-CNF reached 139.6° and 130.6°, respectively. The high-grafting-amount ODA-CA-CNF was sprayed onto paper, and the OCA reached 118.4°, which indicated good oil-resistance performance. The low-grafting-amount ODA-CNF was applied in a pH-responsive indicator film, exhibiting a colour change in response to the pH level, which can be applied in smart food packaging. The ODA-CA-CNF with excellent water/oil-resistance properties and fluorine-free properties can replace petrochemical materials and can be used in the fields of fluorine-free oil-proof paper.


Asunto(s)
Celulosa , Óxidos N-Cíclicos , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras , Nanofibras/química , Celulosa/química , Óxidos N-Cíclicos/química , Aminas/química , Ácido Cítrico/química , Agua/química , Espectroscopía Infrarroja por Transformada de Fourier , Flúor/química , Propiedades de Superficie
9.
Int J Biol Macromol ; 273(Pt 2): 132640, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825280

RESUMEN

The high energy density and robust cycle properties of lithium-ion batteries contribute to their extensive range of applications. Polyolefin separators are often used for the purpose of storing electrolytes, hence ensuring the efficient internal ion transport. Nevertheless, the electrochemical performance of lithium-ion batteries is constrained by its limited interaction with electrolytes and poor capacity for cation transport. This work presents the preparation of a new bio-based nanofiber separator by combining oxidized lignin (OL) and halloysite nanotubes (HNTs) with polyimide (PI) using an electrospinning technique. Analysis was conducted to examine and compare the structure, morphology, thermal characteristics, and EIS of the separator with those of commercially available polypropylene separator (PP). The results indicate that the PI@OL and PI-OL@ 10 % HNTs separators exhibit higher lithium ion transference number and ionic conductivity. Moreover, the use of HNTs successfully impeded the proliferation of lithium dendrites, hence exerting a beneficial impact on both the cycle performance and multiplier performance of the battery. Consequently, after undergoing 300 iterations, the battery capacity of LiFePO4|PI-OL@ 10 % HNTs|Li stays at 92.1 %, surpassing that of PP (86.8 %) and PI@OL (89.6 %). These findings indicate that this new bio-based battery separator (PI-OL@HNTs) has the great potential to serve as a substitute for the commonly used PP separator in lithium metal batteries.


Asunto(s)
Arcilla , Suministros de Energía Eléctrica , Lignina , Litio , Nanofibras , Nanotubos , Litio/química , Nanotubos/química , Nanofibras/química , Lignina/química , Arcilla/química , Oxidación-Reducción , Resinas Sintéticas/química
10.
Int J Biol Macromol ; 273(Pt 1): 132924, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866282

RESUMEN

The continuous stimulation of periodontitis leads to a decrease in the number of stem cells within the lesion area and significantly impairing their regenerative capacity. Therefore, it is crucial to promote stem cell homing and regulate the local immune microenvironment to suppress inflammation for the regeneration of periodontitis-related tissue defects. Here, we fabricated a novel multifunctional bilayer nanofibrous membrane using electrospinning technology. The dense poly(caprolactone) (PCL) nanofibers served as the barrier layer to resist epithelial invasion, while the polyvinyl alcohol/chitooligosaccharides (PVA/COS) composite nanofiber membrane loaded with calcium beta-hydroxy-beta-methylbutyrate (HMB-Ca) acted as the functional layer. Material characterization tests revealed that the bilayer nanofibrous membrane presented desirable mechanical strength, stability, and excellent cytocompatibility. In vitro, PCL@PVA/COS/HMB-Ca (P@PCH) can not only directly promote rBMSCs migration and differentiation, but also induce macrophage toward pro-healing (M2) phenotype-polarization with increasing the secretion of anti-inflammatory and pro-healing cytokines, thus providing a favorable osteoimmune environment for stem cells recruitment and osteogenic differentiation. In vivo, the P@PCH membrane effectively recruited host MSCs to the defect area, alleviated inflammatory infiltration, and accelerated bone defects repair. Collectively, our data indicated that the P@PCH nanocomposite membrane might be a promising biomaterial candidate for guided tissue regeneration in periodontal applications.


Asunto(s)
Macrófagos , Células Madre Mesenquimatosas , Nanofibras , Nanofibras/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Animales , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Diferenciación Celular/efectos de los fármacos , Poliésteres/química , Periodontitis/terapia , Periodontitis/tratamiento farmacológico , Membranas Artificiales , Regeneración/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Andamios del Tejido/química , Ratones , Ratas , Humanos , Alcohol Polivinílico/química
11.
Int J Nanomedicine ; 19: 5681-5703, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882541

RESUMEN

Introduction: Diabetes mellitus is frequently associated with foot ulcers, which pose significant health risks and complications. Impaired wound healing in diabetic patients is attributed to multiple factors, including hyperglycemia, neuropathy, chronic inflammation, oxidative damage, and decreased vascularization. Rationale: To address these challenges, this project aims to develop bioactive, fast-dissolving nanofiber dressings composed of polyvinylpyrrolidone loaded with a combination of an antibiotic (moxifloxacin or fusidic acid) and anti-inflammatory drug (pirfenidone) using electrospinning technique to prevent the bacterial growth, reduce inflammation, and expedite wound healing in diabetic wounds. Results: The fabricated drug-loaded fibers exhibited diameters of 443 ± 67 nm for moxifloxacin/pirfenidone nanofibers and 488 ± 92 nm for fusidic acid/pirfenidone nanofibers. The encapsulation efficiency, drug loading and drug release studies for the moxifloxacin/pirfenidone nanofibers were found to be 70 ± 3% and 20 ± 1 µg/mg, respectively, for moxifloxacin, and 96 ± 6% and 28 ± 2 µg/mg, respectively, for pirfenidone, with a complete release of both drugs within 24 hours, whereas the fusidic acid/pirfenidone nanofibers were found to be 95 ± 6% and 28 ± 2 µg/mg, respectively, for fusidic acid and 102 ± 5% and 30 ± 2 µg/mg, respectively, for pirfenidone, with a release rate of 66% for fusidic acid and 80%, for pirfenidone after 24 hours. The efficacy of the prepared nanofiber formulations in accelerating wound healing was evaluated using an induced diabetic rat model. All tested formulations showed an earlier complete closure of the wound compared to the controls, which was also supported by the histopathological assessment. Notably, the combination of fusidic acid and pirfenidone nanofibers demonstrated wound healing acceleration on day 8, earlier than all tested groups. Conclusion: These findings highlight the potential of the drug-loaded nanofibrous system as a promising medicated wound dressing for diabetic foot applications.


Asunto(s)
Antibacterianos , Vendajes , Pie Diabético , Liberación de Fármacos , Ácido Fusídico , Moxifloxacino , Nanofibras , Piridonas , Cicatrización de Heridas , Pie Diabético/tratamiento farmacológico , Pie Diabético/terapia , Nanofibras/química , Animales , Moxifloxacino/administración & dosificación , Moxifloxacino/farmacología , Moxifloxacino/química , Moxifloxacino/farmacocinética , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Piridonas/química , Piridonas/farmacología , Piridonas/farmacocinética , Piridonas/administración & dosificación , Ácido Fusídico/administración & dosificación , Ácido Fusídico/farmacología , Ácido Fusídico/química , Ácido Fusídico/farmacocinética , Ratas , Masculino , Diabetes Mellitus Experimental , Povidona/química , Ratas Sprague-Dawley
12.
PLoS One ; 19(6): e0299312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843202

RESUMEN

This research presents a comprehensive study of sequential oxidative extraction (SOE) consisting of alkaline and acidic oxidation processes to extract nanocellulose from plant biomass. This proposed process is advantageous as its operation requires a minimum process with mild solvents, and yet successfully isolated high-quality nanofibrillated cellulose (NFC) from raw OPEFB. The SOE involved ammonium hydroxide (NH4OH, 2.6 M) and formic acid (HCOOH, 5.3 M) catalyzed by hydrogen peroxide (H2O2, 3.2 M). This approach was used to efficiently solubilize the lignin and hemicellulose from Oil Palm Empty Fruit Bunch (OPEFB) at the temperature of 100°C and 1 h extraction time, which managed to retain fibrous NFC. The extracted solid and liquor at each stage were studied extensively through physiochemical analysis. The finding indicated that approximately 75.3%dwb of hemicellulose, 68.9%dwb of lignin, and 42.0%dwb of extractive were solubilized in the first SOE cycle, while the second SOE cycle resulted in 92.3%dwb, 99.6%dwb and 99.8%dwb of solubilized hemicellulose, lignin, and extractive/ash, respectively. High-quality NFC (75.52%dwb) was obtained for the final extracted solid with 76.4% crystallinity, which is near the crystallinity of standard commercial NFC. The proposed process possesses an effective synergy in producing NFC from raw OPEFB with less cellulose degradation, and most of the degraded hemicellulose and lignin are solubilized in the liquor.


Asunto(s)
Arecaceae , Celulosa , Frutas , Lignina , Oxidación-Reducción , Celulosa/química , Frutas/química , Arecaceae/química , Lignina/química , Nanofibras/química , Aceite de Palma/química , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Peróxido de Hidrógeno/química
13.
J Nanobiotechnology ; 22(1): 322, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849858

RESUMEN

The ideal tissue engineering scaffold should facilitate rapid cell infiltration and provide an optimal immune microenvironment during interactions with the host. Electrospinning can produce two-dimensional (2D) membranes mimicking the extracellular matrix. However, their dense structure hinders cell penetration, and their thin form restricts scaffold utility. In this study, latticed hydrogels were three-dimensional (3D) printed onto electrospun membranes. This technique allowed for layer-by-layer assembly of the membranes into 3D scaffolds, which maintained their resilience impressively under both dry and wet conditions. We assessed the cellular and host responses of these 3D nanofiber scaffolds by comparing random membranes and mesh-like membranes with three different mesh sizes (250, 500, and 750 µm). It was found that scaffolds with a mesh size of 500 µm were superior for M2 macrophage phenotype polarization, vascularization, and matrix deposition. Furthermore, it was confirmed by subsequent experiments such as RNA sequencing that the mesh-like topology may promote polarization to the M2 phenotype by affecting the PI3K/AKT pathway. In conclusion, our work offers a novel method for transforming 2D nanofiber membranes into 3D scaffolds. This method boasts flexibility, allowing for the use of varied electrospun membranes and hydrogels in terms of structure and composition. It has vast potential in tissue repair and regeneration.


Asunto(s)
Hidrogeles , Nanofibras , Impresión Tridimensional , Medicina Regenerativa , Ingeniería de Tejidos , Andamios del Tejido , Nanofibras/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos , Hidrogeles/química , Animales , Ratones , Macrófagos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Células RAW 264.7 , Humanos
14.
ACS Nano ; 18(24): 15815-15830, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833572

RESUMEN

Amyloid-like fibrils are garnering keen interest in biotechnology as supramolecular nanofunctional units to be used as biomimetic platforms to control cell behavior. Recent insights into fibril functionality have highlighted their importance in tissue structure, mechanical properties, and improved cell adhesion, emphasizing the need for scalable and high-kinetics fibril synthesis. In this study, we present the instantaneous and bulk formation of amyloid-like nanofibrils from human platelet lysate (PL) using the ionic liquid cholinium tosylate as a fibrillating agent. The instant fibrillation of PL proteins upon supramolecular protein-ionic liquid interactions was confirmed from the protein conformational transition toward cross-ß-sheet-rich structures. These nanofibrils were utilized as building blocks for the formation of thin and flexible free-standing membranes via solvent casting to support cell self-aggregation. These PL-derived fibril membranes reveal a nanotopographically rough surface and high stability over 14 days under cell culture conditions. The culture of mesenchymal stem cells or tumor cells on the top of the membrane demonstrated that cells are able to adhere and self-organize in a three-dimensional (3D) spheroid-like microtissue while tightly folding the fibril membrane. Results suggest that nanofibril membrane incorporation in cell aggregates can improve cell viability and metabolic activity, recreating native tissues' organization. Altogether, these PL-derived nanofibril membranes are suitable bioactive platforms to generate 3D cell-guided microtissues, which can be explored as bottom-up strategies to faithfully emulate native tissues in a fully human microenvironment.


Asunto(s)
Plaquetas , Nanofibras , Humanos , Plaquetas/metabolismo , Plaquetas/química , Nanofibras/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Agregación Celular/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Amiloide/química , Amiloide/metabolismo , Membranas Artificiales
15.
Int J Nanomedicine ; 19: 5397-5418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863647

RESUMEN

Background: The healing of burn wounds is a complicated physiological process that involves several stages, including haemostasis, inflammation, proliferation, and remodelling to rebuild the skin and subcutaneous tissue integrity. Recent advancements in nanomaterials, especially nanofibers, have opened a new way for efficient healing of wounds due to burning or other injuries. Methods: This study aims to develop and characterize collagen-decorated, bilayered electrospun nanofibrous mats composed of PVP and PVA loaded with Resveratrol (RSV) and Ampicillin (AMP) to accelerate burn wound healing and tissue repair. Results: Nanofibers with smooth surfaces and web-like structures with diameters ranging from 200 to 400 nm were successfully produced by electrospinning. These fibres exhibited excellent in vitro properties, including the ability to absorb wound exudates and undergo biodegradation over a two-week period. Additionally, these nanofibers demonstrated sustained and controlled release of encapsulated Resveratrol (RSV) and Ampicillin (AMP) through in vitro release studies. The zone of inhibition (ZOI) of PVP-PVA-RSV-AMP nanofibers against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was found 31±0.09 mm and 12±0.03, respectively, which was significantly higher as compared to positive control. Similarly, the biofilm study confirmed the significant reduction in the formation of biofilms in nanofiber-treated group against both S. aureus and E. coli. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis proved the encapsulation of RSV and AMP successfully into nanofibers and their compatibility. Haemolysis assay (%) showed no significant haemolysis (less than 5%) in nanofiber-treated groups, confirmed their cytocompatibility with red blood cells (RBCs). Cell viability assay and cell adhesion on HaCaT cells showed increased cell proliferation, indicating its biocompatibility as well as non-toxic properties. Results of the in-vivo experiments on a burn wound model demonstrated potential burn wound healing in rats confirmed by H&E-stained images and also improved the collagen synthesis in nanofibers-treated groups evidenced by Masson-trichrome staining. The ELISA assay clearly indicated the efficient downregulation of TNF-alpha and IL-6 inflammatory biomarkers after treatment with nanofibers on day 10. Conclusion: The RSV and AMP-loaded nanofiber mats, developed in this study, expedite burn wound healing through their multifaceted approach.


Asunto(s)
Ampicilina , Quemaduras , Colágeno , Escherichia coli , Nanofibras , Alcohol Polivinílico , Povidona , Resveratrol , Staphylococcus aureus , Cicatrización de Heridas , Resveratrol/farmacología , Resveratrol/química , Resveratrol/administración & dosificación , Resveratrol/farmacocinética , Nanofibras/química , Quemaduras/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Colágeno/química , Povidona/química , Staphylococcus aureus/efectos de los fármacos , Alcohol Polivinílico/química , Humanos , Escherichia coli/efectos de los fármacos , Ampicilina/farmacología , Ampicilina/química , Ampicilina/farmacocinética , Ampicilina/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Ratas , Biopelículas/efectos de los fármacos , Masculino
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124535, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38830327

RESUMEN

In this study, we report on the fabrication of hybrid nanofibers for labeling and bioimaging applications. Our approach is involved for developing highly fluorescent nanofibers using a blend of polylactic acid, polyethyleneglycol, and perylenediimide dyes, through the solution blow spinning technique. The nanofibers are exhibited diameters ranging from 330 nm to 420 nm. Nanofibers showed excellent red and near-infrared fluorescence emissive properties in fluorescent spectroscopy. Moreover, the strong two-photon absorption phenomenon was observed for nanofibers under confocal microscopy. To assess the applicability of these fluorescent nanofibers in bioimaging settings, we employ two types of mammalian cells B16F1 melanoma cells and J774.A1 macrophages. Both cell types exhibit negligible cytotoxicity after 24 h incubation with the nanofibers, indicating the suitability of nanofibers for cell-based experiments. We also observe strong interactions between the nanofibers and cells, as evidenced by two major events: a) the acquisition of an elongated cellular morphology with the major cellular axis parallel to the nanofibers and b) the accumulation of actin filaments along the points of contact of the cells with the fibers. Our findings demonstrate the suitability of these newly developed fluorescent nanofibers in cell-based applications for guiding cellular behavior. We expect that these fluorescent nanofibers have the potential to serve as scaffold materials for long-time tracking of cell-fiber interactions in fluorescence microscopy.


Asunto(s)
Colorantes Fluorescentes , Nanofibras , Andamios del Tejido , Nanofibras/química , Animales , Ratones , Andamios del Tejido/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Línea Celular Tumoral , Poliésteres/química , Microscopía Confocal , Polietilenglicoles/química , Línea Celular , Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos
17.
Int J Biol Macromol ; 272(Pt 1): 132874, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838901

RESUMEN

Despite its advantages, electrospinning has limited effectiveness in 3D scaffolding due to the high density of fibers it produces. In this research, a novel electrospinning collector was developed to overcome this constraint. An aqueous suspension containing chitosan/polyvinyl alcohol nanofibers was prepared employing a unique falling film collector. Suspension molding by freeze-drying resulted in a 3D nanofibrous scaffold (3D-NF). The mineralized scaffold was obtained by brushite deposition on 3D-NF using wet chemical mineralization by new sodium tripolyphosphate and calcium chloride dihydrate precursors. The 3D-NF was optimized and compared with the conventional electrospun 2D nanofibrous scaffold (2D-NF) and the 3D freeze-dried scaffold (3D-FD). Both minor fibrous and major freeze-dried pore shapes were present in 3D-NFs with sizes of 16.11-24.32 µm and 97.64-234.41 µm, respectively. The scaffolds' porosity increased by 53 % to 73 % compared to 2D-NFs. Besides thermal stability, mineralization improved the 3D-NF's ultimate strength and elastic modulus by 2.2 and 4.7 times, respectively. In vitro cell studies using rat bone marrow mesenchymal cells confirmed cell infiltration up to 290 µm and scaffold biocompatibility. The 3D-NFs given nanofibers and brushite inclusion exhibited considerable osteoinductivity. Therefore, falling film collectors can potentially be applied to prepare 3D-NFs from electrospinning without post-processing.


Asunto(s)
Huesos , Quitosano , Células Madre Mesenquimatosas , Nanofibras , Alcohol Polivinílico , Ingeniería de Tejidos , Andamios del Tejido , Alcohol Polivinílico/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Quitosano/química , Nanofibras/química , Animales , Ratas , Células Madre Mesenquimatosas/citología , Porosidad , Fosfatos de Calcio/química , Materiales Biocompatibles/química
18.
Opt Express ; 32(11): 20024-20034, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859121

RESUMEN

An optical fiber sensing probe using a composite sensitive film of polyacrylonitrile (PAN) nanofiber membrane and gold nanomembrane is presented for the detection of a carcinoembryonic antigen (CEA), a biomarker associated with colorectal cancer and other diseases. The probe is based on a tilted fiber Bragg grating (TFBG) with a surface plasmon resonance (SPR) gold nanomembrane and a functionalized polyacrylonitrile (PAN) PAN nanofiber coating that selectively binds to CEA molecules. The performance of the probe is evaluated by measuring the spectral shift of the TFBG resonances as a function of CEA concentration in buffer. The probe exhibits a sensitivity of 0.46 dB/(µg/ml), a low limit of detection of 505.4 ng/mL in buffer, and a good selectivity and reproducibility. The proposed probe offers a simple, cost-effective, and a novel method for CEA detection that can be potentially applied for clinical diagnosis and monitoring of CEA-related diseases.


Asunto(s)
Resinas Acrílicas , Antígeno Carcinoembrionario , Oro , Nanofibras , Fibras Ópticas , Resonancia por Plasmón de Superficie , Antígeno Carcinoembrionario/análisis , Oro/química , Nanofibras/química , Resonancia por Plasmón de Superficie/instrumentación , Resonancia por Plasmón de Superficie/métodos , Resinas Acrílicas/química , Humanos , Técnicas Biosensibles/instrumentación , Membranas Artificiales , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Tecnología de Fibra Óptica/instrumentación
19.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928356

RESUMEN

The topology of the basement membrane (BM) affects cell physiology and pathology, and BM thickening is associated with various chronic lung diseases. In addition, the topology of commercially available poly (ethylene terephthalate) (PET) membranes, which are used in preclinical in vitro models, differs from that of the human BM, which has a fibrous and elastic structure. In this study, we verified the effect of BM thickness on the differentiation of normal human bronchial epithelial (NHBE) cells. To evaluate whether the thickness of poly-ε-carprolactone (PCL) mesh affects the differentiation of NHBE cells, cells were grown on thin- (6-layer) and thick-layer (80-layer) meshes consisting of electrospun PCL nanofibers using an air-liquid interface (ALI) cell culture system. It was found that the NHBE cells formed a normal pseudostratified epithelium composed of ciliated, goblet, and basal cells on the thin-layer PCL mesh; however, goblet cell hyperplasia was observed on the thick-layer PCL mesh. Differentiated NHBE cells cultured on the thick-layer PCL mesh also demonstrated increased epithelial-mesenchymal transition (EMT) compared to those cultured on the thin-layer PCL mesh. In addition, expression of Sox9, nuclear factor (NF)-κB, and oxidative stress-related markers, which are also associated with goblet cell hyperplasia, was increased in the differentiated NHBE cells cultured on the thick-layer PCL mesh. Thus, the use of thick electrospun PCL mesh led to NHBE cells differentiating into hyperplastic goblet cells via EMT and the oxidative stress-related signaling pathway. Therefore, the topology of the BM, for example, thickness, may affect the differentiation direction of human bronchial epithelial cells.


Asunto(s)
Membrana Basal , Diferenciación Celular , Células Epiteliales , Poliésteres , Humanos , Poliésteres/química , Membrana Basal/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Nanofibras/química , Células Cultivadas , Bronquios/citología , Bronquios/metabolismo
20.
Methods Enzymol ; 697: 247-268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38816125

RESUMEN

Drawing inspiration from cellular compartmentalization, enzymatic compartments play a pivotal role in bringing enzymes and substrates into confined environments, offering heightened catalytic efficiency and prolonged enzyme lifespan. Previously, we engineered bioinspired enzymatic compartments, denoted as TPE-Q18H@GPs, achieved through the spatiotemporally controllable self-assembly of the catalytic peptide TPE-Q18H within hollow porous glucan particles (GPs). This design strategy allows substrates and products to freely traverse, while retaining enzymatic aggregations. The confined environment led to the formation of catalytic nanofibers, resulting in enhanced substrate binding affinity and a more than two-fold increase in the second-order kinetic constant (kcat/Km) compared to TPE-Q18H nanofibers in a dispersed system. In this work, we will introduce how to synthesize the above-mentioned enzymatic compartments using salt-responsive catalytic peptides and GPs.


Asunto(s)
Glucanos , Péptidos , Glucanos/química , Péptidos/química , Nanofibras/química , Cinética , Porosidad , Biocatálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA