Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.246
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mikrochim Acta ; 191(7): 433, 2024 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951214

RESUMEN

A cancer-targeted glutathione (GSH)-gated theranostic probe (CGT probe) for intracellular miRNA imaging and combined treatment of self-sufficient starvation therapy (ST) and chemodynamic therapy (CDT) was developed. The CGT probe is constructed using MnO2 nanosheet (MS) as carrier material to adsorb the elaborately designed functional DNAs. It can be internalized by cancer cells via specific recognition between the AS1411 aptamer and nucleolin. After CGT probe entering the cancer cells, the overexpressed GSH, as gate-control, can degrade MS to Mn2+ which can be used for CDT by Fenton-like reaction. Simultaneously, Mn2+-mediated CDT can further cascade with the enzyme-like activities (catalase-like activity and glucose oxidase-like activity) of CGT probe, achieving self-sufficient ST/CDT synergistic therapy. Meanwhile, the anchored DNAs are released, achieving in situ signal amplification via disubstituted-catalytic hairpin assembly (DCHA) and FRET (fluorescence resonance energy transfer) imaging of miR-21. The in vitro and in vivo experiments demonstrated that accurate and sensitive miRNA detection can be achieved using the CGT probe. Overall, the ingenious CGT probe opens a new avenue for the development of early clinical diagnosis and cancer therapy.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Glutatión , Compuestos de Manganeso , MicroARNs , Óxidos , Humanos , Glutatión/química , Glutatión/metabolismo , Animales , Compuestos de Manganeso/química , Óxidos/química , Aptámeros de Nucleótidos/química , Ratones , Ratones Desnudos , Nanomedicina Teranóstica/métodos , Nucleolina , Neoplasias/diagnóstico por imagen , Nanoestructuras/química , Oligodesoxirribonucleótidos/química , Ratones Endogámicos BALB C , Colorantes Fluorescentes/química
2.
Nanotheranostics ; 8(4): 473-496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38961885

RESUMEN

Cardiotoxicity, the often-overlooked second leading cause of death in cancer patients, has been associated with certain anticancer drugs. These drugs can induce cardiac damage through various pathways, and their adverse effects on the heart are not fully understood. Cardiotoxicity is a major issue in cancer treatment, particularly with chemotherapeutics, because it can cause cardiac dysfunction such as hypotension, heart failure, and even death. Doxorubicin, 5-fluorouracil, and trastuzumab, all of which are very potent anticancer drugs, are known to cause cardiotoxicity. When it comes to lowering cardiotoxicity and alleviating the harmful effects of chemotherapy medications, nanomedicine has the potential to transport therapeutic molecules. Nanotheranostics offers novel options for identifying and treating cardiotoxicity resulting from a wide range of substances, including anticancer medications. Additionally, theranostics platforms such as micellar systems, carbon-based nanomedicine, solid lipid nanoparticles, polymeric nanoparticles, and liposomes can transport chemotherapeutic medications while minimising their cardiotoxicity. The present level of understanding of the molecular and cellular processes that lead to cardiotoxicity in reaction to both traditional chemotherapy and targeted drug delivery systems is summarised in this article. This review delves into nanomedicine and nanotheranostics, with an emphasis on reducing anticancer medication-induced cardiac toxicity. Nanotheranostics provide potential solutions for early diagnosis and tailored therapy of heart injury by combining diagnostic and therapeutic capabilities into nanomedicine.


Asunto(s)
Antineoplásicos , Cardiotoxicidad , Nanomedicina , Nanomedicina Teranóstica , Humanos , Antineoplásicos/efectos adversos , Antineoplásicos/química , Cardiotoxicidad/etiología , Nanomedicina/métodos , Nanomedicina Teranóstica/métodos , Animales , Cardiopatías/inducido químicamente , Neoplasias/tratamiento farmacológico , Nanopartículas/química
3.
Int J Nanomedicine ; 19: 6485-6497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946886

RESUMEN

Angiogenesis is a physiological process of forming new blood vessels that has pathological importance in seemingly unrelated illnesses like cancer, diabetes, and various inflammatory diseases. Treatment targeting angiogenesis has shown promise for these types of diseases, but current anti-angiogenic agents have critical limitations in delivery and side-effects. This necessitates exploration of alternative approaches like biomolecule-based drugs. Proteins, lipids, and oligonucleotides have recently become popular in biomedicine, specifically as biocompatible components of therapeutic drugs. Their excellent bioavailability and potential bioactive and immunogenic properties make them prime candidates for drug discovery or drug delivery systems. Lipid-based liposomes have become standard vehicles for targeted nanoparticle (NP) delivery, while protein and nucleotide NPs show promise for environment-sensitive delivery as smart NPs. Their therapeutic applications have initially been hampered by short circulation times and difficulty of fabrication but recent developments in nanofabrication and NP engineering have found ways to circumvent these disadvantages, vastly improving the practicality of biomolecular NPs. In this review, we are going to briefly discuss how biomolecule-based NPs have improved anti-angiogenesis-based therapy.


Asunto(s)
Inhibidores de la Angiogénesis , Neovascularización Patológica , Nanomedicina Teranóstica , Humanos , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/administración & dosificación , Nanomedicina Teranóstica/métodos , Neovascularización Patológica/tratamiento farmacológico , Animales , Liposomas/química , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Oligonucleótidos/química , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacocinética , Oligonucleótidos/farmacología , Proteínas/química , Proteínas/administración & dosificación , Lípidos/química , Nanopartículas/química
4.
Theranostics ; 14(9): 3634-3652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948059

RESUMEN

Rationale: Molecular imaging of microenvironment by hypoxia-activatable fluorescence probes has emerged as an attractive approach to tumor diagnosis and image-guided treatment. Difficulties remain in its translational applications due to hypoxia heterogeneity in tumor microenvironments, making it challenging to image hypoxia as a reliable proxy of tumor distribution. Methods: We report a modularized theranostics platform to fluorescently visualize hypoxia via light-modulated signal compensation to overcome tumor heterogeneity, thereby serving as a diagnostic tool for image-guided surgical resection and photodynamic therapy. Specifically, the platform integrating dual modules of fluorescence indicator and photodynamic moderator using supramolecular host-guest self-assembly, which operates cooperatively as a cascaded "AND" logic gate. First, tumor enrichment and specific fluorescence turn-on in hypoxic regions were accessible via tumor receptors and cascaded microenvironment signals as simultaneous inputs of the "AND" gate. Second, image guidance by a lighted fluorescence module and light-mediated endogenous oxygen consumption of a photodynamic module as dual inputs of "AND" gate collaboratively enabled light-modulated signal compensation in situ, indicating homogeneity of enhanced hypoxia-related fluorescence signals throughout a tumor. Results: In in vitro and in vivo analyses, the biocompatible platform demonstrated several strengths including a capacity for dual tumor targeting to progressively facilitate specific fluorescence turn-on, selective signal compensation, imaging-time window extension conducive to precise normalized image-guided treatment, and the functionality of tumor glutathione depletion to improve photodynamic efficacy. Conclusion: The hypoxia-activatable, image-guided theranostic platform demonstrated excellent potential for overcoming hypoxia heterogeneity in tumors.


Asunto(s)
Imagen Óptica , Nanomedicina Teranóstica , Animales , Nanomedicina Teranóstica/métodos , Humanos , Imagen Óptica/métodos , Ratones , Microambiente Tumoral , Línea Celular Tumoral , Colorantes Fluorescentes/química , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Ratones Desnudos , Cirugía Asistida por Computador/métodos
5.
J Mater Chem B ; 12(25): 6257-6274, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38845545

RESUMEN

Despite enormous advancements in its management, cancer is the world's primary cause of mortality. Therefore, tremendous strides were made to produce intelligent theranostics with mitigated side effects and improved specificity and efficiency. Thus, we developed a pH-sensitive theranostic platform composed of dextran immobilized zinc oxide nanoparticles, loaded with doxorubicin and radiolabeled with the technetium-99m radionuclide (99mTc-labelled DOX-loaded ZnO@dextran). The platform measured 11.5 nm in diameter with -12 mV zeta potential, 88% DOX loading efficiency and 98.5% radiolabeling efficiency. It showed DOX release in a pH-responsive manner, releasing 93.1% cumulatively at pH 5 but just 7% at pH 7.4. It showed improved intracellular uptake, which resulted in a high growth suppressive effect against MCF-7 cancer cells as compared to the free DOX. It boasted a 4 times lower IC50 than DOX, indicating its significant anti-proliferative potential (0.14 and 0.55 µg ml-1, respectively). The in vitro biological evaluation revealed that its molecular mode of anti-proliferative action included downregulating Cdk-2, which provoked G1/S cell cycle arrest, and upregulating both the intracellular ROS level and caspase-3, which induced apoptosis and necrosis. The in vivo experiments in Ehrlich-ascites carcinoma bearing mice demonstrated that DOX-loaded ZnO@dextran showed a considerable 4-fold increase in anti-tumor efficacy compared to DOX. Moreover, by utilizing the diagnostic radionuclide (99mTc), the radiolabeled platform (99mTc-labelled DOX-loaded ZnO@dextran) was in vivo monitored in tumor-bearing mice, revealing high tumor accumulation (14% ID g-1 at 1 h p.i.) and reduced uptake in non-target organs with a 17.5 T/NT ratio at 1 h p.i. Hence, 99mTc-labelled DOX-loaded ZnO@dextran could be recommended as a rectified tumor-targeted theranostic platform.


Asunto(s)
Apoptosis , Puntos de Control del Ciclo Celular , Proliferación Celular , Doxorrubicina , Nanomedicina Teranóstica , Óxido de Zinc , Doxorrubicina/farmacología , Doxorrubicina/química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Humanos , Animales , Apoptosis/efectos de los fármacos , Ratones , Concentración de Iones de Hidrógeno , Proliferación Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células MCF-7 , Nanopartículas/química , Distribución Tisular , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Dextranos/química , Portadores de Fármacos/química , Tecnecio/química , Tamaño de la Partícula
6.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865273

RESUMEN

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Asunto(s)
Dendrímeros , Flúor , Nanomedicina Teranóstica , Dendrímeros/química , Animales , Nanomedicina Teranóstica/métodos , Humanos , Ratones , Flúor/química , Paclitaxel/química , Paclitaxel/uso terapéutico , Imagen por Resonancia Magnética/métodos , Línea Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/terapia , Imagen por Resonancia Magnética con Fluor-19/métodos , Ratones Desnudos , Medios de Contraste/química
7.
J Control Release ; 371: 429-444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849096

RESUMEN

Protein-based nanoparticles have garnered significant attention in theranostic applications due to their superior biocompatibility, exceptional biodegradability and ease of functionality. Compared to other nanocarriers, protein-based nanoparticles offer additional advantages, including biofunctionality and precise molecular recognition abilities, which make them highly effective in navigating complex biological environments. Moreover, proteins can serve as powerful tools with self-assembling structures and reagents that enhance cell penetration. And their derivation from abundant renewable sources and ability to degrade into harmless amino acids further enhance their suitability for biomedical applications. However, protein-based nanoparticles have so far not realized their full potential. In this review, we summarize recent advances in the use of protein nanoparticles in tumor diagnosis and treatment and outline typical methods for preparing protein nanoparticles. The review of protein nanoparticles may provide useful new insights into the development of biomaterial fabrication.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Neoplasias , Proteínas , Nanomedicina Teranóstica , Humanos , Neoplasias/tratamiento farmacológico , Nanomedicina Teranóstica/métodos , Nanopartículas/química , Animales , Proteínas/administración & dosificación , Proteínas/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química
8.
J Nucl Med ; 65(7): 1087-1094, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844360

RESUMEN

Benchtop 99Mo/99mTc and 188W/188Re generators enable economical production of molecular theranostic 99mTc and 188Re radiopharmaceuticals, provided that simple, kit-based chemistry exists to radiolabel targeting vectors with these radionuclides. We have previously described a diphosphine platform that efficiently incorporates 99mTc into receptor-targeted peptides. Here, we report its application to label a prostate-specific membrane antigen (PSMA)-targeted peptide with 99mTc and 188Re for diagnostic imaging and systemic radiotherapy of prostate cancer. Methods: Two diphosphine-dipeptide bioconjugates, DP1-PSMAt and DP2-PSMAt, were formulated into kits for radiolabeling with 99mTc and 188Re. The resulting radiotracers were studied in vitro, in prostate cancer cells, and in vivo in mouse xenograft models, to assess similarity of uptake and biodistribution for each 99mTc/188Re pair of agents. Results: Both DP1-PSMAt and DP2-PSMAt could be efficiently radiolabeled with 99mTc and 188Re using kit-based methods to furnish the isostructural compounds M-DP1-PSMAt and M-DP2-PSMAt (M = [99mTc]Tc, [188Re]Re). All 99mTc/188Re radiotracers demonstrated specific uptake in PSMA-expressing prostate cancer cells, with negligible uptake in prostate cancer cells that did not express PSMA or in which PSMA uptake was blocked. M-DP1-PSMAt and M-DP2-PSMAt also exhibited high tumor uptake (18-30 percentage injected dose per gram at 2 h after injection), low retention in nontarget organs, fast blood clearance, and excretion predominantly via a renal pathway. Importantly, each pair of 99mTc/188Re radiotracers showed near-identical biologic behavior in these experiments. Conclusion: We have prepared and developed novel pairs of isostructural PSMA-targeting 99mTc/188Re theranostic agents. These generator-based theranostic agents have potential to provide access to the benefits of PSMA-targeted diagnostic imaging and systemic radiotherapy in health care settings that do not routinely have access to either reactor-produced 177Lu radiopharmaceuticals or PET/CT infrastructure.


Asunto(s)
Neoplasias de la Próstata , Radioisótopos , Renio , Tecnecio , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/metabolismo , Ratones , Renio/química , Animales , Humanos , Tecnecio/química , Radioisótopos/química , Línea Celular Tumoral , Distribución Tisular , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Radiofármacos/química , Radiofármacos/farmacocinética , Nanomedicina Teranóstica , Péptidos/química , Medicina de Precisión
9.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892434

RESUMEN

Many different types of nanoparticles have been suggested for tumor-targeted theranosis. However, most systems were prepared through a series of complicated processes and could not even overcome the blood-immune barriers. For the accurate diagnosis and effective treatment of cancers, herein we suggested the lipid micellar structure capturing quantum dot (QD) for cancer theranosis. The QD/lipid micelles (QDMs) were prepared using a simple self-assembly procedure and then conjugated with anti-epidermal growth factor receptor (EGFR) antibodies for tumor targeting. As a therapeutic agent, Bcl2 siRNA-cholesterol conjugates were loaded on the surface of QDMs. The EGFR-directed QDMs containing Bcl2 siRNA, so-called immuno-QDM/siBcl2 (iQDM/siBcl2), exhibited the more effective delivery of QDs and siBcl2 to target human colorectal cancer cells in cultures as well as in mouse xenografts. The effective in vivo targeting of iQDM/siBcl2 resulted in a more enhanced therapeutic efficacy of siBcl2 to the target cancer in mice. Based on the results, anti-EGFR QDM capturing therapeutic siRNA could be suggested as an alternative modality for tumor-targeted theranosis.


Asunto(s)
Receptores ErbB , Proteínas Proto-Oncogénicas c-bcl-2 , Puntos Cuánticos , ARN Interferente Pequeño , Puntos Cuánticos/química , Animales , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Humanos , ARN Interferente Pequeño/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Ratones , Línea Celular Tumoral , Nanopartículas/química , Lípidos/química , Nanomedicina Teranóstica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Micelas
10.
ACS Biomater Sci Eng ; 10(7): 4269-4278, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38916153

RESUMEN

This study investigates the remarkable attributes of sulfur-doped carbon nanodots (CDs) synthesized in high yield and a narrow size distribution (4.8 nm). These CDs exhibit notable features, including potential bioelimination through renal clearance and efficient photothermal conversion in the near-infrared region with multicolor photoluminescence across the visible spectrum. Our research demonstrates high biocompatibility and effective near-infrared (NIR)-triggered photothermal toxicity when targeting mammospheres and patient-derived tumor organoids. Moreover, the study delves into the intricate cellular responses induced by CD-mediated hyperthermia. This involves efficient tumor mass death, activation of the p38-mitogen-activated protein kinase (MAPK) pathway, and upregulation of genes associated with apoptosis, hypoxia, and autophagy. The interaction of CDs with mammospheres reveals their ability to penetrate the complex microenvironment, impeded at 4 °C, indicating an energy-dependent endocytosis mechanism. This observation underscores the CDs' potential for targeted drug delivery, particularly in anticancer therapeutics. This investigation contributes to understanding the multifunctional properties of sulfur-doped CDs and highlights their promising applications in cancer therapeutics. Utilizing 3-D tumor-in-a-dish patients' organoids enhances translational potential, providing a clinically relevant platform for assessing therapeutic efficacy in a context mirroring the physiological conditions of cancerous tissues.


Asunto(s)
Neoplasias de la Mama , Carbono , Nanomedicina Teranóstica , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Carbono/química , Carbono/uso terapéutico , Femenino , Fototerapia/métodos , Puntos Cuánticos/uso terapéutico , Puntos Cuánticos/química , Nanopartículas/química , Nanopartículas/uso terapéutico , Línea Celular Tumoral , Hipertermia Inducida/métodos , Animales
11.
Biomacromolecules ; 25(7): 4233-4245, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38838045

RESUMEN

In the area of drug delivery aided by stimuli-responsive polymers, the biodegradability of nanocarriers is one of the major challenges that needs to be addressed with the utmost sincerity. Herein, a hydrogen sulfide (H2S) responsive hydrophobic dansyl-based trigger molecule is custom designed and successfully incorporated into the water-soluble polyurethane backbone, which is made of esterase enzyme susceptible urethane bonds. The amphiphilic polyurethanes, PUx (x = 2 and 3) with a biotin chain end, formed self-assembled nanoaggregates. A hemolysis and cytotoxicity profile of doxorubicin (DOX)-loaded biotinylated PU3 nanocarriers revealed that it is nonhemolytic and has excellent selectivity toward HeLa cells (biotin receptor-positive cell lines) causing ∼60% cell death while maintaining almost 100% cell viability for HEK 293T cells (biotin receptor-negative cell lines). Furthermore, better cellular internalization of DOX-loaded fluorescent nanocarriers in HeLa cells than in HEK 293T cells confirmed receptor-mediated endocytosis. Thus, this work ensures that the synthesized polymers serve as biodegradable nanocarriers for anticancer therapeutics.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Poliuretanos , Humanos , Poliuretanos/química , Células HeLa , Doxorrubicina/farmacología , Doxorrubicina/química , Células HEK293 , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Nanomedicina Teranóstica/métodos , Biotinilación , Biotina/química , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química
12.
Theranostics ; 14(8): 3043-3079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855174

RESUMEN

In 1853, the perception of prostate cancer (PCa) as a rare ailment prevailed, was described by the eminent Londoner surgeon John Adams. Rapidly forward to 2018, the landscape dramatically altered. Currently, men face a one-in-nine lifetime risk of PCa, accentuated by improved diagnostic methods and an ageing population. With more than three million men in the United States alone grappling with this disease, the overall risk of succumbing to stands at one in 39. The intricate clinical and biological diversity of PCa poses serious challenges in terms of imaging, ongoing monitoring, and disease management. In the field of theranostics, diagnostic and therapeutic approaches that harmoniously merge targeted imaging with treatments are integrated. A pivotal player in this arena is radiotheranostics, employing radionuclides for both imaging and therapy, with prostate-specific membrane antigen (PSMA) at the forefront. Clinical milestones have been reached, including FDA- and/or EMA-approved PSMA-targeted radiodiagnostic agents, such as [18F]DCFPyL (PYLARIFY®, Lantheus Holdings), [18F]rhPSMA-7.3 (POSLUMA®, Blue Earth Diagnostics) and [68Ga]Ga-PSMA-11 (Locametz®, Novartis/ ILLUCCIX®, Telix Pharmaceuticals), as well as PSMA-targeted radiotherapeutic agents, such as [177Lu]Lu-PSMA-617 (Pluvicto®, Novartis). Concurrently, ligand-drug and immune therapies designed to target PSMA are being advanced through rigorous preclinical research and clinical trials. This review delves into the annals of PSMA-targeted radiotheranostics, exploring its historical evolution as a signature molecule in PCa management. We scrutinise its clinical ramifications, acknowledge its limitations, and peer into the avenues that need further exploration. In the crucible of scientific inquiry, we aim to illuminate the path toward a future where the enigma of PCa is deciphered and where its menace is met with precise and effective countermeasures. In the following sections, we discuss the intriguing terrain of PCa radiotheranostics through the lens of PSMA, with the fervent hope of advancing our understanding and enhancing clinical practice.


Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata , Radiofármacos , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia , Glutamato Carboxipeptidasa II/metabolismo , Masculino , Antígenos de Superficie/metabolismo , Radiofármacos/uso terapéutico , Medicina Nuclear/métodos , Medicina Nuclear/historia , Nanomedicina Teranóstica/métodos , Radioisótopos/uso terapéutico , Historia del Siglo XXI , Historia del Siglo XX
13.
Carbohydr Polym ; 340: 122328, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857995

RESUMEN

This article presents a novel approach to treating prostate cancer using a nanocarrier composed of folic acid (FA), ß-cyclodextrin (ß-CD), and magnetic graphene oxide (MGO) as a theranostic agent. The carrier is designed to improve the solubility and bioavailability of curcumin, a potential therapeutic substance against prostate cancer. Folic acid receptors overexpressed on the surface of solid tumors, including prostate cancer, may facilitate targeted drug delivery to tumor cells while avoiding nonspecific effects on healthy tissues. The anticancer efficacy of Folic acid-curcumin@ß-CD-MGO in vitro was also examined on LNCaP (an androgen-dependent) and PC3 (an androgen-independent) prostate cancer cells. The relaxivity of nanoparticles in MRI images was also investigated as a diagnostic factor. The results showed a concentration-dependent inhibitory effect on cell proliferation, induction of oxidative damage, and apoptotic effects. Also, nanoparticle relaxometry shows that this agent can be used as a negative contrast agent in MRI images. Overall, this study represents a promising theranostic agent to improve the delivery and trace of curcumin and enhance its therapeutic potential in the treatment of prostate cancer.


Asunto(s)
Proliferación Celular , Curcumina , Ácido Fólico , Grafito , Neoplasias de la Próstata , Nanomedicina Teranóstica , beta-Ciclodextrinas , Curcumina/química , Curcumina/farmacología , Masculino , Grafito/química , Grafito/farmacología , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , beta-Ciclodextrinas/química , Nanomedicina Teranóstica/métodos , Ácido Fólico/química , Ácido Fólico/farmacología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Portadores de Fármacos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Receptores de Folato Anclados a GPI/metabolismo , Liberación de Fármacos , Nanopartículas de Magnetita/química
14.
J Mater Sci Mater Med ; 35(1): 32, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896160

RESUMEN

This study leverages nanotechnology by encapsulating indocyanine green (ICG) and paclitaxel (Tax) using zeolitic imidazolate frameworks-8 (ZIF-8) as a scaffold. This study aims to investigate the chemo-photothermal therapeutic potential of ZIF-8@ICG@Tax nanoparticles (NPs) in the treatment of non-small cell lung cancer (NSCLC). An "all-in-one" theranostic ZIF-8@ICG@Tax NPs was conducted by self-assembly based on electrostatic interaction. First, the photothermal effect, stability, pH responsiveness, drug release, and blood compatibility of ZIF-8@ICG@Tax were evaluated through in vitro testing. Furthermore, the hepatic and renal toxicity of ZIF-8@ICG@Tax were assessed through in vivo testing. Additionally, the anticancer effects of these nanoparticles were investigated both in vitro and in vivo. Uniform and stable chemo-photothermal ZIF-8@ICG@Tax NPs had been successfully synthesized and had outstanding drug releasing capacities. Moreover, ZIF-8@ICG@Tax NPs showed remarkable responsiveness dependent both on pH in the tumor microenvironment and NIR irradiation, allowing for targeted drug delivery and controlled drug release. NIR irradiation can enhance the tumor cell response to ZIF-8@ICG@Tax uptake, thereby promoting the anti-tumor growth in vitro and in vivo. ZIF-8@ICG@Tax and NIR irradiation have demonstrated remarkable synergistic anti-tumor growth properties compared to their individual components. This novel theranostic chemo-photothermal NPs hold great potential as a viable treatment option for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Liberación de Fármacos , Verde de Indocianina , Neoplasias Pulmonares , Nanopartículas , Paclitaxel , Nanomedicina Teranóstica , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Verde de Indocianina/química , Humanos , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Concentración de Iones de Hidrógeno , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Paclitaxel/química , Paclitaxel/farmacología , Ratones , Zeolitas/química , Rayos Infrarrojos , Fototerapia/métodos , Ratones Endogámicos BALB C , Línea Celular Tumoral , Células A549 , Estructuras Metalorgánicas/química , Ratones Desnudos , Sistemas de Liberación de Medicamentos , Imidazoles
15.
Int J Nanomedicine ; 19: 5479-5492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863646

RESUMEN

Background: In recent years, PD-L1 has been primarily utilized as an immune checkpoint marker in cancer immunotherapy. However, due to tumor heterogeneity, the response rate to such therapies often falls short of expectations. In addition to its role in immunotherapy, PD-L1 serves as a specific target on the surface of tumor cells for targeted diagnostic and therapeutic interventions. There is an absence of a fully developed PD-L1-targeted diagnostic and therapeutic probe for clinical use, which constrains the exploration and clinical exploitation of this target. Methods and Results: In this study, we engineered a PD-L1-targeted probe with multimodal imaging and dual therapeutic functionalities utilizing organic melanin nanoparticles. Functionalization with the WL12-SH peptide endowed the nanoprobe with specific targeting capabilities. Subsequent radiolabeling with 89Zr (half-life: 100.8 hours) and chelation of Mn2+ ions afforded the probe the capacity for simultaneous PET and MRI imaging modalities. Cellular uptake assays revealed pronounced specificity, with -positive cells exhibiting significantly higher uptake than -negative counterparts (p < 0.05). Dual-modal PET/MRI imaging delineated rapid and sustained accumulation at the neoplastic site, yielding tumor-to-non-tumor (T/NT) signal ratios at 24 hours post-injection of 16.67±3.45 for PET and 6.63±0.64 for MRI, respectively. We conjugated the therapeutic radionuclide 131I (half-life: 8.02 days) to the construct and combined low-dose radiotherapy and photothermal treatment (PTT), culminating in superior antitumor efficacy while preserving a high safety profile. The tumors in the cohort receiving the dual-modality therapy exhibited significantly reduced volume and weight compared to those in the control and monotherapy groups. Conclusion: We developed and applied a novel -targeted multimodal theranostic nanoprobe, characterized by its high specificity and superior imaging capabilities as demonstrated in PET/MRI modalities. Furthermore, this nanoprobe facilitates potent therapeutic efficacy at lower radionuclide doses when used in conjunction with PTT.


Asunto(s)
Antígeno B7-H1 , Imagen por Resonancia Magnética , Imagen Multimodal , Nanopartículas , Tomografía de Emisión de Positrones , Nanomedicina Teranóstica , Nanomedicina Teranóstica/métodos , Animales , Antígeno B7-H1/metabolismo , Tomografía de Emisión de Positrones/métodos , Nanopartículas/química , Humanos , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Línea Celular Tumoral , Ratones , Melaninas/química , Circonio/química , Radioisótopos/química , Femenino , Inmunoterapia/métodos
16.
ACS Macro Lett ; 13(6): 768-774, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829688

RESUMEN

The low therapeutic efficacy and potential long-term toxicity of antitumor treatments seriously limit the clinical application of phototherapies. Herein, we develop a degradable phototheranostic nanoplatform for NIR-II fluorescence bioimaging-guided synergistic photothermal (PTT) and photodynamic therapies (PDT) and immune activation to inhibit tumor growth. The phototheranostic nanoplatform (CX@PSS) consists of multidisulfide-containing polyurethane loaded with a photosensitizer CX, which can be specifically degraded in the GSH overexpressed tumor microenvironment (TME) and exhibits good NIR-II fluorescence, photodynamic, and photothermal properties. Under 808 nm light irradiation, CX@PSS exhibits efficient photothermal conversion and ROS generation, which further induces immunogenic cell death (ICD), releasing tumor-associated antigens and activating the immune response. In vitro and in vivo studies confirm the potential of CX@PSS in NIR II FL imaging-guided tumor treatments by synergistic PTT, PDT, and immune activation. This work is expected to provide a new pathway for clinical applications of imaging-guided tumor diagnosis and treatments.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Nanomedicina Teranóstica , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Ratones , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Nanomedicina Teranóstica/métodos , Fotoquimioterapia/métodos , Imagen Óptica/métodos , Rayos Infrarrojos , Nanopartículas/química , Nanopartículas/uso terapéutico , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Terapia Fototérmica/métodos , Poliuretanos/química , Poliuretanos/farmacología
17.
J Control Release ; 371: 158-178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782062

RESUMEN

Glycosylated nanoplatforms have emerged as promising tools in the field of cancer theranostics, integrating both therapeutic and diagnostic functionalities. These nanoscale platforms are composed of different materials such as lipids, polymers, carbons, and metals that can be modified with glycosyl moieties to enhance their targeting capabilities towards cancer cells. This review provides an overview of different modification strategies employed to introduce glycosylation onto nanoplatforms, including chemical conjugation, enzymatic methods, and bio-orthogonal reactions. Furthermore, the potential applications of glycosylated nanoplatforms in cancer theranostics are discussed, focusing on their roles in drug delivery, imaging, and combination therapy. The ability of these nanoplatforms to selectively target cancer cells through specific interactions with overexpressed glycan receptors is highlighted, emphasizing their potential for enhancing efficacy and reducing the side effects compared to conventional therapies. In addition, the incorporation of diagnostic components onto the glycosylated nanoplatforms provided the capability of simultaneous imaging and therapy and facilitated the real-time monitoring of treatment response. Finally, challenges and future perspectives in the development and translation of glycosylated nanoplatforms for clinical applications are addressed, including scalability, biocompatibility, and regulatory considerations. Overall, this review underscores the significant progress made in the field of glycosylated nanoplatforms and their potential to revolutionize cancer theranostics.


Asunto(s)
Neoplasias , Nanomedicina Teranóstica , Humanos , Glicosilación , Neoplasias/terapia , Neoplasias/diagnóstico , Neoplasias/metabolismo , Nanomedicina Teranóstica/métodos , Animales , Sistemas de Liberación de Medicamentos , Nanopartículas , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico
18.
Cardiovasc Res ; 120(8): 819-838, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696700

RESUMEN

Despite the emergence of novel diagnostic, pharmacological, interventional, and prevention strategies, atherosclerotic cardiovascular disease remains a significant cause of morbidity and mortality. Nanoparticle (NP)-based platforms encompass diverse imaging, delivery, and pharmacological properties that provide novel opportunities for refining diagnostic and therapeutic interventions for atherosclerosis at the cellular and molecular levels. Macrophages play a critical role in atherosclerosis and therefore represent an important disease-related diagnostic and therapeutic target, especially given their inherent ability for passive and active NP uptake. In this review, we discuss an array of inorganic, carbon-based, and lipid-based NPs that provide magnetic, radiographic, and fluorescent imaging capabilities for a range of highly promising research and clinical applications in atherosclerosis. We discuss the design of NPs that target a range of macrophage-related functions such as lipoprotein oxidation, cholesterol efflux, vascular inflammation, and defective efferocytosis. We also provide examples of NP systems that were developed for other pathologies such as cancer and highlight their potential for repurposing in cardiovascular disease. Finally, we discuss the current state of play and the future of theranostic NPs. Whilst this is not without its challenges, the array of multifunctional capabilities that are possible in NP design ensures they will be part of the next frontier of exciting new therapies that simultaneously improve the accuracy of plaque diagnosis and more effectively reduce atherosclerosis with limited side effects.


Asunto(s)
Aterosclerosis , Macrófagos , Nanopartículas Multifuncionales , Placa Aterosclerótica , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/diagnóstico , Aterosclerosis/prevención & control , Animales , Macrófagos/metabolismo , Nanopartículas Multifuncionales/metabolismo , Sistema de Administración de Fármacos con Nanopartículas , Nanomedicina Teranóstica , Valor Predictivo de las Pruebas
20.
Lancet Oncol ; 25(6): e260-e269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821100

RESUMEN

Theranostics has become a major area of innovation and progress in cancer care over the last decade. In view of the introduction of approved therapeutics in neuroendocrine tumours and prostate cancer in the last 10 years, the ability to provide access to these treatments has emerged as a key factor in ensuring global benefits from this cancer therapy approach. In this Series paper we explore the issues that affect access to and availability of theranostic radiopharmaceuticals, including supply and regulatory issues that might affect the availability of theranostic treatments for patients with cancer.


Asunto(s)
Radiofármacos , Nanomedicina Teranóstica , Humanos , Radiofármacos/uso terapéutico , Neoplasias/terapia , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA