Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.881
Filtrar
Más filtros











Intervalo de año de publicación
1.
Hum Genomics ; 18(1): 74, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956740

RESUMEN

BACKGROUND: Evidence has revealed a connection between cuproptosis and the inhibition of tumor angiogenesis. While the efficacy of a model based on cuproptosis-related genes (CRGs) in predicting the prognosis of peripheral organ tumors has been demonstrated, the impact of CRGs on the prognosis and the immunological landscape of gliomas remains unexplored. METHODS: We screened CRGs to construct a novel scoring tool and developed a prognostic model for gliomas within the various cohorts. Afterward, a comprehensive exploration of the relationship between the CRG risk signature and the immunological landscape of gliomas was undertaken from multiple perspectives. RESULTS: Five genes (NLRP3, ATP7B, SLC31A1, FDX1, and GCSH) were identified to build a CRG scoring system. The nomogram, based on CRG risk and other signatures, demonstrated a superior predictive performance (AUC of 0.89, 0.92, and 0.93 at 1, 2, and 3 years, respectively) in the training cohort. Furthermore, the CRG score was closely associated with various aspects of the immune landscape in gliomas, including immune cell infiltration, tumor mutations, tumor immune dysfunction and exclusion, immune checkpoints, cytotoxic T lymphocyte and immune exhaustion-related markers, as well as cancer signaling pathway biomarkers and cytokines. CONCLUSION: The CRG risk signature may serve as a robust biomarker for predicting the prognosis and the potential viability of immunotherapy responses. Moreover, the key candidate CRGs might be promising targets to explore the underlying biological background and novel therapeutic interventions in gliomas.


Asunto(s)
Biomarcadores de Tumor , Glioma , Microambiente Tumoral , Humanos , Glioma/genética , Glioma/inmunología , Glioma/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/genética , Nomogramas , Femenino , Masculino , Perfilación de la Expresión Génica , Persona de Mediana Edad
2.
CNS Neurosci Ther ; 30(7): e14816, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38948951

RESUMEN

AIM: This study aimed to explore the mechanisms of transient receptor potential (TRP) channels on the immune microenvironment and develop a TRP-related signature for predicting prognosis, immunotherapy response, and drug sensitivity in gliomas. METHODS: Based on the unsupervised clustering algorithm, we identified novel TRP channel clusters and investigated their biological function, immune microenvironment, and genomic heterogeneity. In vitro and in vivo experiments revealed the association between TRPV2 and macrophages. Subsequently, based on 96 machine learning algorithms and six independent glioma cohorts, we constructed a machine learning-based TRP channel signature (MLTS). The performance of the MLTS in predicting prognosis, immunotherapy response, and drug sensitivity was evaluated. RESULTS: Patients with high expression levels of TRP channel genes had worse prognoses, higher tumor mutation burden, and more activated immunosuppressive microenvironment. Meanwhile, TRPV2 was identified as the most essential regulator in TRP channels. TRPV2 activation could promote macrophages migration toward malignant cells and alleviate glioma prognosis. Furthermore, MLTS could work independently of common clinical features and present stable and superior prediction performance. CONCLUSION: This study investigated the comprehensive effect of TRP channel genes in gliomas and provided a promising tool for designing effective, precise treatment strategies.


Asunto(s)
Neoplasias Encefálicas , Glioma , Aprendizaje Automático , Canales de Potencial de Receptor Transitorio , Microambiente Tumoral , Glioma/genética , Glioma/inmunología , Microambiente Tumoral/fisiología , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Animales , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Ratones , Masculino , Femenino
3.
Mol Brain ; 17(1): 42, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956588

RESUMEN

Glioblastoma (GBM) is an aggressive nervous system tumor with a poor prognosis. Although, surgery, radiation therapy, and chemotherapy are the current standard protocol for GBM patients, there is still a poor prognosis in these patients. Temozolomide (TMZ) as a first-line therapeutic agent in GBM can easily cross from the blood-brain barrier to inhibit tumor cell proliferation. However, there is a high rate of TMZ resistance in GBM patients. Since, there are limited therapeutic choices for GBM patients who develop TMZ resistance; it is required to clarify the molecular mechanisms of chemo resistance to introduce the novel therapeutic targets. MicroRNAs (miRNAs) regulate chemo resistance through regulation of drug metabolism, absorption, DNA repair, apoptosis, and cell cycle. In the present review we discussed the role of miRNAs in TMZ response of GBM cells. It has been reported that miRNAs mainly induced TMZ sensitivity by regulation of signaling pathways and autophagy in GBM cells. Therefore, miRNAs can be used as the reliable diagnostic/prognostic markers in GBM patients. They can also be used as the therapeutic targets to improve the TMZ response in GBM cells.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Glioblastoma , MicroARNs , Temozolomida , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Animales , Dacarbazina/análogos & derivados , Dacarbazina/uso terapéutico , Dacarbazina/farmacología , Autofagia/efectos de los fármacos , Autofagia/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
4.
Oncol Res ; 32(7): 1173-1184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948026

RESUMEN

Background: Inhibitor of NF-κB kinase-interacting protein (IKIP) is known to promote proliferation of glioblastoma (GBM) cells, but how it affects migration and invasion by those cells is unclear. Methods: We compared levels of IKIP between glioma tissues and normal brain tissue in clinical samples and public databases. We examined the effects of IKIP overexpression and knockdown on the migration and invasion of GBM using transwell and wound healing assays, and we compared the transcriptomes under these different conditions to identify the molecular mechanisms involved. Results: Based on data from our clinical samples and from public databases, IKIP was overexpressed in GBM tumors, and its expression level correlated inversely with survival. IKIP overexpression in GBM cells inhibited migration and invasion in transwell and wound healing assays, whereas IKIP knockdown exerted the opposite effects. IKIP overexpression in GBM cells that were injected into mouse brain promoted tumor growth but inhibited tumor invasion of surrounding tissue. The effects of IKIP were associated with downregulation of THBS1 mRNA and concomitant inhibition of THBS1/FAK signaling. Conclusions: IKIP inhibits THBS1/FAK signaling to suppress migration and invasion of GBM cells.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Quinasa 1 de Adhesión Focal , Glioblastoma , Invasividad Neoplásica , Transducción de Señal , Trombospondina 1 , Humanos , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Animales , Ratones , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Trombospondina 1/metabolismo , Trombospondina 1/genética , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Proliferación Celular
5.
Front Immunol ; 15: 1397486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863709

RESUMEN

Introduction: Gliomas represent the most prevalent and aggressive tumors within the central nervous system. Despite the current standard treatments, the median survival time for glioblastoma patients remains dismal, hovering around 14 months. While attempts have been made to inhibit the PD-1/PD-L1 and CTLA-4/CD80-CD86 axes through immunotherapy, the outcomes have yet to demonstrate significant efficacy. The immune checkpoint Butyrophilin 3A1 (BTN3A1) can either be involved in advantageous or detrimental function depending on the cancer type. Methods: In our study, we utilized a Moroccan cohort to delve into the role of BTN3A1 in gliomas. A transcriptomic analysis was conducted on 34 patients, which was then corroborated through a protein analysis in 27 patients and validated using the TCGA database (n = 667). Results: Our results revealed an elevated expression of BTN3A1 in glioblastoma (grade 4), as evidenced in both the TCGA database and our cohort of Moroccan glioma patients. Within the TCGA cohort, BTN3A1 expression was notably higher in patients with wild-type IDH. We observed a positive correlation between BTN3A1 expression and immune infiltration of B cells, CD8+ T cells, naive CD4+ T cells, and M2 macrophages. Patients exhibiting increased BTN3A1 expression also presented elevated levels of TGF-ß, IL-10, and TIM-3 compared to those with reduced BTN3A1 expression. Notably, patients with high BTN3A1 expression were associated with a poorer prognosis than their counterparts with lower expression. Conclussion: Our findings suggest that BTN3A1 might promote the establishment of an immunosuppressive microenvironment. Consequently, targeting BTN3A1 could offer novel therapeutic avenues for the management of advanced gliomas.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Butirofilinas , Glioma , Humanos , Masculino , Femenino , Pronóstico , Butirofilinas/genética , Butirofilinas/metabolismo , Glioma/inmunología , Glioma/genética , Glioma/mortalidad , Persona de Mediana Edad , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Biomarcadores de Tumor/genética , Adulto , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Anciano , Regulación Neoplásica de la Expresión Génica
6.
J Cell Mol Med ; 28(11): e18392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864705

RESUMEN

Deciphering the lncRNA-associated competitive endogenous RNA (ceRNA) network is essential in decoding glioblastoma multiforme (GBM) pathogenesis by regulating miRNA availability and controlling mRNA stability. This study aimed to explore novel biomarkers for GBM by constructing a lncRNA-miRNA-mRNA network. A ceRNA network in GBM was constructed using lncRNA, mRNA and miRNA expression profiles from the TCGA and GEO datasets. Seed nodes were identified by protein-protein interaction (PPI) network analysis of deregulated-mRNAs (DEmRNAs) in the ceRNA network. A lncRNA-miRNA-seed network was constructed by mapping the seed nodes into the preliminary ceRNA network. The impact of the seed nodes on the overall survival (OS) of patients was assessed by the GSCA database. Functional enrichment analysis of the deregulated-lncRNAs (DElncRNA) in the ceRNA network and genes interacting with OS-related genes in the PPI network were performed. Finally, the positive correlation between seed nodes and their associated lncRNAs and the expression level of these molecules in GBM tissue compared with normal samples was validated using the GEPIA database. Our analyzes revealed that three novel regulatory axes AL161785.1/miR-139-5p/MS4A6A, LINC02611/miR-139-5p/MS4A6A and PCED1B-AS1/miR-433-3p/MS4A6A may play essential roles in GBM pathogenesis. MS4A6A is upregulated in GBM and closely associated with shorter survival time of patients. We also identified that MS4A6A expression positively correlates with genes related to tumour-associated macrophages, which induce macrophage infiltration and immune suppression. The functional enrichment analysis demonstrated that DElncRNAs are mainly involved in neuroactive ligand-receptor interaction, calcium/MAPK signalling pathway, ribosome, GABAergic/Serotonergic/Glutamatergic synapse and immune system process. In addition, genes related to MS4A6A contribute to immune and inflammatory-related biological processes. Our findings provide novel insights to understand the ceRNA regulation in GBM and identify novel prognostic biomarkers or therapeutic targets.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma , MicroARNs , ARN Largo no Codificante , ARN Mensajero , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/mortalidad , Glioblastoma/metabolismo , ARN Largo no Codificante/genética , Pronóstico , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Mapas de Interacción de Proteínas/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/metabolismo , Perfilación de la Expresión Génica , Biología Computacional/métodos , Bases de Datos Genéticas , ARN Endógeno Competitivo
7.
Endocr Regul ; 58(1): 144-152, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861539

RESUMEN

Objective. Serine hydroxymethyltransferase (SHMT2) plays a multifunctional role in mitochondria (folate-dependent tRNA methylation, translation, and thymidylate synthesis). The endoplasmic reticulum stress, hypoxia, and glucose and glutamine supply are significant factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) pathway of endoplasmic reticulum stress strongly suppressed glioblastoma cell proliferation and modified the sensitivity of these cells to hypoxia and glucose or glutamine deprivations. The present study aimed to investigate the regulation of the SHMT2 gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in sensitivity of this gene expression to hypoxia and nutrient supply. Methods. The control U87MG glioblastoma cells (transfected by an empty vector) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (500 ng/ml for 4 h). For glucose and glutamine deprivations, cells were exposed in DMEM without glucose and glutamine, respectively for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of the SHMT2 gene was studied by real-time qPCR and normalized to ACTB. Results. It was found that inhibition of ERN1 endoribonuclease and protein kinase in glioblastoma cells led to a down-regulation of SHMT2 gene expression in U87MG cells. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease, but tunicamycin strongly increased its expression. Moreover, the expression of the SHMT2 gene was not affected in U87MG cells after silencing of XBP1. Hypoxia up-regulated the expression level of the SHMT2 gene in both control and ERN1 knockdown U87MG cells. The expression of this gene was significantly up-regulated in glioblastoma cells under glucose and glutamine deprivations and ERN1 knockdown significantly increased the sensitivity of the SHMT2 gene to these nutrient deprivation conditions. Conclusion. The results of the present study demonstrate that the expression of the SHMT2 gene responsible for serine metabolism and formation of folate one-carbon is controlled by ERN1 protein kinase and induced by hypoxia as well as glutamine and glucose deprivation conditions in glioblastoma cells and reflects the ERN1-mediated reprogramming of sensitivity this gene expression to nutrient deprivation.


Asunto(s)
Estrés del Retículo Endoplásmico , Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glicina Hidroximetiltransferasa , Humanos , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Estrés del Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/genética , Línea Celular Tumoral , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Glucosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula/fisiología , Hipoxia de la Célula/genética , Glutamina/metabolismo , Técnicas de Silenciamiento del Gen
8.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 585-591, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38825904

RESUMEN

Objective: To investigate the clinical, radiological, and pathological features of anaplastic gangliogliomas (AGGs) and to determine whether these tumors represent a distinct entity. Methods: Consecutive 667 cases of ganglioglioma (GG) diagnosed at the Xuanwu Hospital, Capital Medical University, Beijing, China between January 2015 and July 2023 were screened. Among these cases, 9 pathologically confirmed AGG cases were identified. Their clinical, radiological, treatment, and outcome data were analyzed retrospectively. Most of the tumor samples were subject to next-generation sequencing, while a subset of them were subject to DNA methylation profiling. Results: Among the 9 patients, there were five males and four females, with a median age of 8 years. Epileptic seizures (5/9) were the most frequently presented symptom. Radiological examinations showed three types of radiological manifestations: four cases showed abnormal MRI signals with no significant mass effects and mild enhancement; two cases demonstrated a mixed solid-cystic density lesion with peritumoral edema, which showed significant heterogeneous enhancement and obvious mass effects, and one case displayed cystic cavity formation with nodules on MRI, which showed evident enhancements. All cases exhibited mutations that were predicted to activate the MAP kinase signaling pathway, including seven with BRAF p.V600E mutation and two with NF1 mutation. Five AGGs with mutations involving the MAP kinase signaling pathway also had concurrent mutations, including three with CDKN2A homozygous deletion, one with a TERT promoter mutation, one with a H3F3A mutation, and one with a PTEN mutation. Conclusions: AGG exhibits a distinct spectrum of pathology, genetic mutations and clinical behaviors, differing from GG. Given these characteristics suggest that AGG may be a distinct tumor type, further expansion of the case series is needed. Therefore, a comprehensive integration of clinical, histological, and molecular analyses is required to correctly diagnose AGG. It will also help guide treatments and prognostication.


Asunto(s)
Neoplasias Encefálicas , Metilación de ADN , Ganglioglioma , Imagen por Resonancia Magnética , Mutación , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas B-raf , Humanos , Ganglioglioma/patología , Ganglioglioma/genética , Masculino , Femenino , Niño , Estudios Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Proteínas Proto-Oncogénicas B-raf/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Telomerasa/genética , Histonas/genética , Histonas/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Epilepsia/patología , Epilepsia/genética
9.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 605-609, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38825907

RESUMEN

Objective: To investigate the clinicopathological features of children with metachronous or synchronous primary tumors and to identify related genetic tumor syndromes. Methods: The clinicopathological data of 4 children with multiple primary tumors diagnosed in the Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China from 2011 to 2023 were collected. The histological, immunophenotypic and molecular characteristics were examined using H&E staining, immunohistochemical staining, PCR, Sanger sequencing and next-generation sequencing (NGS). The patients were followed up. Results: Case 1 was an 8-year-old boy with the adrenal cortical carcinoma, and 5 years later a poorly differentiated gastric adenocarcinoma was detected. Case 2 was a 2-year-old boy, presented with a left ventricular choroid plexus carcinoma, and a hepatoblastoma was detected 8 months later. Case 3 was a 9-month-old girl, diagnosed with renal rhabdoid tumor first and intracranial atypical teratoid/rhabdoid tumor (AT/RT) 3 months later. Case 4 was a 7-year-old boy and had a sigmoid colon adenocarcinoma 3 years after the diagnosis of a glioblastoma. The morphology and immunohistochemical features of the metachronous or synchronous primary tumors in the 4 cases were similar to the corresponding symptom-presenting/first-diagnosed tumors. No characteristic germ line mutations were detected in cases 1 and 2 by relevant molecular detection, and the rhabdoid tumor predisposition syndrome was confirmed in case 3 using NGS. Case 4 was clearly related to constitutional mismatch repair deficiency as shown by the molecular testing and clinical features. Conclusions: Childhood multiple primary tumors are a rare disease with histological morphology and immunophenotype similar to the symptom-presenting tumors. They are either sporadic or associated with a genetic (tumor) syndrome. The development of both tumors can occur simultaneously (synchronously) or at different times (metachronously). Early identification of the children associated with genetic tumor syndromes can facilitate routine tumor screening and early treatment.


Asunto(s)
Hepatoblastoma , Neoplasias Renales , Neoplasias Hepáticas , Neoplasias Primarias Múltiples , Tumor Rabdoide , Neoplasias Gástricas , Humanos , Masculino , Niño , Femenino , Preescolar , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Múltiples/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Renales/patología , Neoplasias Renales/genética , Lactante , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Hepatoblastoma/genética , Hepatoblastoma/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/diagnóstico , Neoplasias del Plexo Coroideo/genética , Neoplasias del Plexo Coroideo/patología , Neoplasias del Plexo Coroideo/diagnóstico , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/patología , Neoplasias de la Corteza Suprarrenal/patología , Neoplasias de la Corteza Suprarrenal/genética , Teratoma/patología , Teratoma/genética , Teratoma/cirugía , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteína SMARCB1/genética , Homólogo 1 de la Proteína MutL/genética , Neoplasias Primarias Secundarias/patología , Neoplasias Primarias Secundarias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/patología
10.
CNS Oncol ; 13(1): 2351789, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38864820

RESUMEN

Glioblastoma is the most common malignant primary brain tumor. Despite its infiltrative nature, extra-cranial glioblastoma metastases are rare. We present a case of a 63-year-old woman with metastatic glioblastoma in the lungs. Sarcomatous histology, a reported risk factor for disseminated disease, was found. Genomic alterations of TP53 mutation, TERT mutation, PTEN mutation, and +7/-10 were also uncovered. Early evidence suggests these molecular aberrations are common in metastatic glioblastoma. Treatment with third-line lenvatinib resulted in a mixed response. This case contributes to the growing body of evidence for the role of genomic alterations in predictive risk in metastatic glioblastoma. There remains an unmet need for treatment of metastatic glioblastoma.


Glioblastoma is the most common malignant primary brain tumor. Glioblastoma can spread into healthy tissue, but metastases beyond the brain are rare. We present a case of a 63-year-old woman with metastatic glioblastoma in the lungs. We identified risk factors associated with spread beyond the brain, including factors related to tissue structure and specific molecular alterations. Treatment with third-line lenvatinib resulted in a mixed response. This case adds to the limited existing data for the use of molecular alterations to serve as risk factors for metastatic glioblastoma. Treatment options are needed for this devastating disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Pulmonares , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/secundario , Glioblastoma/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario
11.
Sci Adv ; 10(23): eadj7706, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848360

RESUMEN

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.


Asunto(s)
Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioma , Células Madre Neoplásicas , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Resistencia a Antineoplásicos/genética , Glioma/genética , Glioma/patología , Glioma/metabolismo , Glioma/tratamiento farmacológico , Temozolomida/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico
12.
Neoplasia ; 54: 101008, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823209

RESUMEN

Successful treatment of glioblastoma multiforme (GBM), an aggressive form of primary brain neoplasm, mandates the need to develop new therapeutic strategies. In this study, we investigated the potential of PBI-05204 in targeting GBM stem cells (GSCs) and the underlying mechanisms. Treatment with PBI-05204 significantly reduced both the number and size of tumor spheres derived from patient-derived GSCs (GBM9, GSC28 and TS543), and suppressed the tumorigenesis of GBM9 xenografts. Moreover, PBI-05204 treatment led to a significant decrease in the expression of CD44 and NANOG, crucial markers of progenitor stem cells, in GBM9 and GSC28 GSCs. This treatment also down-regulated GRP78 expression in both GSC types. Knocking down GRP78 expression through GRP78 siRNA transfection in GBM9 and GSC28 GSCs also resulted in reduced spheroid size and CD44 expression. Combining PBI-05204 with GRP78 siRNA further decreased spheroid numbers compared to GRP78 siRNA treatment alone. PBI-05204 treatment led to increased expression of pRIP1K and pRIP3K, along with enhanced binding of RIPK1/RIPK3 in GBM9 and GSC28 cells, resembling the effects observed in GRP78-silenced GSCs, suggesting that PBI-05204 induced necroptosis in these cells. Furthermore, oleandrin, a principle active cardiac glycoside component of PBI-05204, showed the ability to inhibit the self-renewal capacity in GSCs. These findings highlight the potential of PBI-05204 as a promising candidate for the development of novel therapies that target GBM stem cells.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Glioblastoma , Proteínas de Choque Térmico , Células Madre Neoplásicas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Ratones , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Línea Celular Tumoral , Extractos Vegetales/farmacología , Necroptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética
13.
Acta Neurochir (Wien) ; 166(1): 266, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874628

RESUMEN

Increased use of whole genome sequencing (WGS) in neuro-oncology for diagnostics and research purposes necessitates a renewed conversation about informed consent procedures and governance structures for sharing personal health data. There is currently no consensus on how to obtain informed consent for WGS in this population. In this narrative review, we analyze the formats and contents of frameworks suggested in literature for WGS in oncology and assess their benefits and limitations. We discuss applicability, specific challenges, and legal context for patients with (recurrent) glioblastoma. This population is characterized by the rarity of the disease, extremely limited prognosis, and the correlation of the stage of the disease with cognitive abilities. Since this has implications for the informed consent procedure for WGS, we suggest that the content of informed consent should be tailor-made for (recurrent) glioblastoma patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Difusión de la Información , Consentimiento Informado , Secuenciación Completa del Genoma , Humanos , Glioblastoma/genética , Neoplasias Encefálicas/genética , Difusión de la Información/métodos , Recurrencia Local de Neoplasia/genética
14.
BMC Neurol ; 24(1): 202, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877400

RESUMEN

BACKGROUND: Intratumoral hemorrhage, though less common, could be the first clinical manifestation of glioma and is detectable via MRI; however, its exact impacts on patient outcomes remain unclear and controversial. The 2021 WHO CNS 5 classification emphasised genetic and molecular features, initiating the necessity to establish the correlation between hemorrhage and molecular alterations. This study aims to determine the prevalence of intratumoral hemorrhage in glioma subtypes and identify associated molecular and clinical characteristics to improve patient management. METHODS: Integrated clinical data and imaging studies of patients who underwent surgery at the Department of Neurosurgery at Peking Union Medical College Hospital from January 2011 to January 2022 with pathological confirmation of glioma were retrospectively reviewed. Patients were divided into hemorrhage and non-hemorrhage groups based on preoperative magnetic resonance imaging. A comparison and survival analysis were conducted with the two groups. In terms of subgroup analysis, we classified patients into astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant, 1p/19q-codeleted; glioblastoma, IDH-wildtype; pediatric-type gliomas; or circumscribed glioma using integrated histological and molecular characteristics, according to WHO CNS 5 classifications. RESULTS: 457 patients were enrolled in the analysis, including 67 (14.7%) patients with intratumoral hemorrhage. The hemorrhage group was significantly older and had worse preoperative Karnofsky performance scores. The hemorrhage group had a higher occurrence of neurological impairment and a higher Ki-67 index. Molecular analysis indicated that CDKN2B, KMT5B, and PIK3CA alteration occurred more in the hemorrhage group (CDKN2B, 84.4% vs. 62.2%, p = 0.029; KMT5B, 25.0% vs. 8.9%, p = 0.029; and PIK3CA, 81.3% vs. 58.5%, p = 0.029). Survival analysis showed significantly worse prognoses for the hemorrhage group (hemorrhage 18.4 months vs. non-hemorrhage 39.1 months, p = 0.01). In subgroup analysis, the multivariate analysis showed that intra-tumoral hemorrhage is an independent risk factor only in glioblastoma, IDH-wildtype (162 cases of 457 overall, HR = 1.72, p = 0.026), but not in other types of gliomas. The molecular alteration of CDK6 (hemorrhage group p = 0.004, non-hemorrhage group p < 0.001), EGFR (hemorrhage group p = 0.003, non-hemorrhage group p = 0.001), and FGFR2 (hemorrhage group p = 0.007, non-hemorrhage group p = 0.001) was associated with shorter overall survival time in both hemorrhage and non-hemorrhage groups. CONCLUSIONS: Glioma patients with preoperative intratumoral hemorrhage had unfavorable prognoses compared to their nonhemorrhage counterparts. CDKN2B, KMT5B, and PIK3CA alterations were associated with an increased occurrence of intratumoral hemorrhage, which might be future targets for further investigation of intratumoral hemorrhage.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Masculino , Femenino , Glioma/complicaciones , Glioma/genética , Glioma/cirugía , Glioma/patología , Persona de Mediana Edad , Estudios Retrospectivos , Pronóstico , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Anciano , Estudios de Cohortes , Adulto Joven
15.
Cell Commun Signal ; 22(1): 333, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890642

RESUMEN

Glioblastoma (GBM) is the most common malignant brain tumor and has a dismal prognosis even under the current first-line treatment, with a 5-year survival rate less than 7%. Therefore, it is important to understand the mechanism of treatment resistance and develop new anti-tumor strategies. Induction of programmed cell death (PCD) has become a promising anti-tumor strategy, but its effectiveness in treating GBM remains controversial. On the one hand, PCD triggers tumor cell death and then release mediators to draw in immune cells, creating a pro-inflammatory tumor microenvironment (TME). One the other hand, mounting evidence suggests that PCD and inflammatory TME will force tumor cells to evolve under survival stress, leading to tumor recurrence. The purpose of this review is to summarize the role of PCD and inflammatory TME in the tumor evolution of GBM and promising methods to overcome tumor evolution.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Inflamación , Microambiente Tumoral , Glioblastoma/patología , Glioblastoma/genética , Humanos , Inflamación/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Apoptosis , Animales
16.
Cells ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891074

RESUMEN

Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.


Asunto(s)
Neoplasias Encefálicas , Reprogramación Celular , Evolución Clonal , Glioblastoma , Humanos , Glioblastoma/patología , Glioblastoma/genética , Evolución Clonal/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Reprogramación Celular/genética , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología
17.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891890

RESUMEN

Glioblastoma (GBM) is the most common malignant brain tumor in adults. Despite advancements in treatment, the prognosis for patients with GBM remains poor due to its aggressive nature and resistance to therapy. CRISPR-based genetic screening has emerged as a powerful tool for identifying genes crucial for tumor progression and treatment resistance, offering promising targets for tumor therapy. In this review, we provide an overview of the recent advancements in CRISPR-based genetic screening approaches and their applications in GBM. We highlight how these approaches have been used to uncover the genetic determinants of GBM progression and responsiveness to various therapies. Furthermore, we discuss the ongoing challenges and future directions of CRISPR-based screening methods in advancing GBM research.


Asunto(s)
Neoplasias Encefálicas , Sistemas CRISPR-Cas , Pruebas Genéticas , Glioblastoma , Glioblastoma/genética , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Pruebas Genéticas/métodos , Edición Génica/métodos , Animales
18.
J Cancer Res Clin Oncol ; 150(6): 315, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909166

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a high-grade and heterogeneous subtype of glioma that presents a substantial challenge to human health, characterized by a poor prognosis and low survival rates. Despite its known involvement in regulating leukemia and melanoma, the function and mechanism of DNAJC1 in GBM remain poorly understood. METHODS: Utilizing data from the TCGA, CGGA, and GEO databases, we investigated the expression pattern of DNAJC1 and its correlation with clinical characteristics in GBM specimens. Loss-of-function experiments were conducted to explore the impact of DNAJC1 on GBM cell lines, with co-culture experiments assessing macrophage infiltration and functional marker expression. RESULTS: Our analysis demonstrated frequent overexpression of DNAJC1 in GBM, significantly associated with various clinical characteristics including WHO grade, IDH status, chromosome 1p/19q codeletion, and histological type. Moreover, Kaplan‒Meier and ROC analyses revealed DNAJC1 as a negative prognostic predictor and a promising diagnostic biomarker for GBM patients. Functional studies indicated that silencing DNAJC1 impeded cell proliferation and migration, induced cell cycle arrest, and enhanced apoptosis. Mechanistically, DNAJC1 was implicated in stimulating extracellular matrix reorganization, triggering the epithelial-mesenchymal transition (EMT) process, and initiating immunosuppressive macrophage infiltration. CONCLUSIONS: Our findings underscore the pivotal role of DNAJC1 in GBM pathogenesis, suggesting its potential as a diagnostic and therapeutic target for this challenging disease.


Asunto(s)
Neoplasias Encefálicas , Progresión de la Enfermedad , Matriz Extracelular , Glioblastoma , Macrófagos , Humanos , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/inmunología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Pronóstico , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Línea Celular Tumoral , Animales , Masculino , Femenino , Ratones , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Apoptosis , Persona de Mediana Edad
19.
Methods Mol Biol ; 2809: 245-261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38907902

RESUMEN

Mutation-containing immunogenic peptides from tumor cells, also named as neoantigens, have various amino acid descriptors and physical-chemical properties characterized intrinsic features, which are useful in prioritizing the immunogenicity potentials of neoantigens and predicting patients' survival. Here, we describe a glioma neoantigen intrinsic feature database, GNIFdb, that hosts computationally predicted HLA-I restricted neoantigens of gliomas, their intrinsic features, and the tools for calculating intrinsic features and predicting overall survival of gliomas. We illustrate the application of GNIFdb in searching for possible neoantigen candidates from ATF6 that plays important roles in tumor growth and resistance to radiotherapy in glioblastoma. We also demonstrate the application of intrinsic feature associated tools in GNIFdb to predict the overall survival of primary IDH wild-type glioblastoma.


Asunto(s)
Antígenos de Neoplasias , Antígenos de Histocompatibilidad Clase I , Humanos , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Neoplasias/inmunología , Simulación por Computador , Glioma/inmunología , Glioma/genética , Glioma/patología , Biología Computacional/métodos , Glioblastoma/inmunología , Glioblastoma/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Mutación
20.
Acta Neuropathol Commun ; 12(1): 101, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902810

RESUMEN

Within the past decade, incremental integration of molecular characteristics into the classification of central nervous system neoplasms increasingly facilitated precise diagnosis and advanced stratification, beyond potentially providing the foundation for advanced targeted therapies. We report a series of three cases of infant-type hemispheric glioma (IHG) involving three infants diagnosed with neuroepithelial tumors of the cerebral hemispheres harboring a novel, recurrent TRIM24::MET fusion. Histopathology showed glial tumors with either low-grade or high-grade characteristics, while molecular characterization found an additional homozygous CDKN2A/B deletion in two cases. Two patients showed leptomeningeal dissemination, while multiple supra- and infratentorial tumor manifestations were found in one case. Following subtotal resection (two cases) and biopsy (one case), treatment intensity of adjuvant chemotherapy regimens did not reflect in the progression patterns within the reported cases. Two patients showed progression after first-line treatment, of which one patient died not responding to tyrosine kinase inhibitor cabozantinib. As the detection of a recurrent TRIM24::MET fusion expands the spectrum of renowned driving fusion genes in IHG, this comparative illustration may indicate a distinct clinico-pathological heterogeneity of tumors bearing this driver alteration. Upfront clinical trials of IHG promoting further characterization and the implementation of individualized therapies involving receptor tyrosine kinase inhibition are required.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogénicas c-met , Humanos , Proteínas Proto-Oncogénicas c-met/genética , Glioma/genética , Glioma/patología , Masculino , Femenino , Lactante , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas de Fusión Oncogénica/genética , Proteínas Portadoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA