Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.232
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4698, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844770

RESUMEN

Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina , Microburbujas , Receptor de Muerte Celular Programada 1 , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Doxorrubicina/análogos & derivados , Animales , Humanos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/inmunología , Glioma/patología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Femenino , Sistemas de Liberación de Medicamentos , Ondas Ultrasónicas , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Glioblastoma/patología , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones Endogámicos C57BL , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Polietilenglicoles
2.
Front Immunol ; 15: 1361351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846954

RESUMEN

Background: Gliomas constitute a category of malignant tumors originating from brain tissue, representing the majority of intracranial malignancies. Previous research has demonstrated the pivotal role of CLEC7A in the progression of various cancers, yet its specific implications within gliomas remain elusive. The primary objective of this study was to investigate the prognostic significance and immune therapeutic potential of CLEC7A in gliomas through the integration of bioinformatics and clinical pathological analyses. Methods: This investigation involved examining and validating the relationship between CLEC7A and glioma using samples from Hospital, along with data from TCGA, GEO, GTEx, and CGGA datasets. Subsequently, we explored its prognostic value, biological functions, expression location, and impact on immune cells within gliomas. Finally, we investigated its potential impact on the chemotaxis and polarization of macrophages. Results: The expression of CLEC7A is upregulated in gliomas, and its levels escalate with the malignancy of tumors, establishing it as an independent prognostic factor. Functional enrichment analysis revealed a significant correlation between CLEC7A and immune function. Subsequent examination of immune cell differential expression demonstrated a robust association between CLEC7A and M2 macrophages. This conclusion was further substantiated through single-cell analysis, immunofluorescence, and correlation studies. Finally, the knockout of CLEC7A in M2 macrophages resulted in a noteworthy reduction in macrophage chemotaxis and polarization factors. Conclusion: CLEC7A expression is intricately linked to the pathology and molecular characteristics of gliomas, establishing its role as an independent prognostic factor for gliomas and influencing macrophage function. It could be a promising target for immunotherapy in gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Lectinas Tipo C , Macrófagos , Microambiente Tumoral , Humanos , Glioma/inmunología , Glioma/genética , Glioma/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Pronóstico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
3.
J Cell Mol Med ; 28(11): e18463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847472

RESUMEN

Accumulating evidence suggests that a wide variety of cell deaths are deeply involved in cancer immunity. However, their roles in glioma have not been explored. We employed a logistic regression model with the shrinkage regularization operator (LASSO) Cox combined with seven machine learning algorithms to analyse the patterns of cell death (including cuproptosis, ferroptosis, pyroptosis, apoptosis and necrosis) in The Cancer Genome Atlas (TCGA) cohort. The performance of the nomogram was assessed through the use of receiver operating characteristic (ROC) curves and calibration curves. Cell-type identification was estimated by using the cell-type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) and single sample gene set enrichment analysis methods. Hub genes associated with the prognostic model were screened through machine learning techniques. The expression pattern and clinical significance of MYD88 were investigated via immunohistochemistry (IHC). The cell death score represents an independent prognostic factor for poor outcomes in glioma patients and has a distinctly superior accuracy to that of 10 published signatures. The nomogram performed well in predicting outcomes according to time-dependent ROC and calibration plots. In addition, a high-risk score was significantly related to high expression of immune checkpoint molecules and dense infiltration of protumor cells, these findings were associated with a cell death-based prognostic model. Upregulated MYD88 expression was associated with malignant phenotypes and undesirable prognoses according to the IHC. Furthermore, high MYD88 expression was associated with poor clinical outcomes and was positively related to CD163, PD-L1 and vimentin expression in the in-horse cohort. The cell death score provides a precise stratification and immune status for glioma. MYD88 was found to be an outstanding representative that might play an important role in glioma.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Glioma , Aprendizaje Automático , Nomogramas , Humanos , Glioma/genética , Glioma/inmunología , Glioma/patología , Pronóstico , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Muerte Celular/genética , Masculino , Femenino , Curva ROC , Perfilación de la Expresión Génica , Persona de Mediana Edad , Transcriptoma , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
4.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720342

RESUMEN

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Células Supresoras de Origen Mieloide/inmunología , Glioma/inmunología , Glioma/terapia , Glioma/patología , Glioblastoma/inmunología , Glioblastoma/terapia , Glioblastoma/patología , Animales , Inmunoterapia/métodos , Linfocitos T Reguladores/inmunología
5.
Front Immunol ; 15: 1388769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726003

RESUMEN

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , MicroARNs , Organoides , Microambiente Tumoral , Humanos , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Organoides/inmunología , MicroARNs/genética , Microambiente Tumoral/inmunología , Transducción de Señal , Células Tumorales Cultivadas , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Técnicas de Cultivo Tridimensional de Células/métodos
6.
J Immunother Cancer ; 12(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724464

RESUMEN

BACKGROUND: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation. METHODS: We have designed a bispecific T-cell engager (BiTE) capable of cross-linking CD3 on T cells with NKG2DL-expressing GBM cells. We then engineered the G207 virus to express the NKG2D BiTE and secrete it from infected cells. The efficacy of the free BiTE and BiTE delivered by G207 was evaluated in combination with conventional therapies in GBM cells and against patient-derived GSCs in the context of T-cell activation and target cell viability. RESULTS: NKG2D BiTE-mediated cross-linking of GBM cells and T cells causes antigen-independent T-cell activation, pro-inflammatory cytokine release, and tumor cell death, thereby combining direct viral oncolysis with BiTE-mediated cytotoxicity. Surface NKG2DL expression was further elevated on GBM cells following pretreatment with sublethal doses of TMZ and radiation to induce the DDR, increasing sensitivity towards G207-NKG2D BiTE and achieving synergistic cytotoxicity. We also demonstrate a novel strategy for targeting GSCs that are non-permissive to G207 infection but remain sensitive to NKG2D BiTE. CONCLUSIONS: We propose a potential model for targeting GSCs in heterogeneous tumors, whereby differentiated GBM cells infected with G207-NKG2D BiTE produce NKG2D BiTE locally, directing T-cell cytotoxicity towards the GSC subpopulations in the tumor microenvironment.


Asunto(s)
Glioblastoma , Subfamilia K de Receptores Similares a Lectina de Células NK , Células Madre Neoplásicas , Viroterapia Oncolítica , Humanos , Glioblastoma/terapia , Glioblastoma/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Células Madre Neoplásicas/metabolismo , Viroterapia Oncolítica/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral
7.
Front Immunol ; 15: 1369972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690285

RESUMEN

Background: Temozolomide (TMZ) is a key component in the treatment of gliomas. Hypermutation induced by TMZ can be encountered in routine clinical practice, and its significance is progressively gaining recognition. However, the relationship between TMZ-induced hypermutation and the immunologic response remains controversial. Case presentation: We present the case of a 38-year-old male patient who underwent five surgeries for glioma. Initially diagnosed with IDH-mutant astrocytoma (WHO grade 2) during the first two surgeries, the disease progressed to grade 4 in subsequent interventions. Prior to the fourth surgery, the patient received 3 cycles of standard TMZ chemotherapy and 9 cycles of dose-dense TMZ regimens. Genomic and immunologic analyses of the tumor tissue obtained during the fourth surgery revealed a relatively favorable immune microenvironment, as indicated by an immunophenoscore of 5, suggesting potential benefits from immunotherapy. Consequently, the patient underwent low-dose irradiation combined with immunoadjuvant treatment. After completing 4 cycles of immunotherapy, the tumor significantly shrank, resulting in a partial response. However, after a 6-month duration of response, the patient experienced disease progression. Subsequent analysis of the tumor tissue obtained during the fifth surgery revealed the occurrence of hypermutation, with mutation signature analysis attributing TMZ treatment as the primary cause. Unfortunately, the patient succumbed shortly thereafter, with a survival period of 126 months. Conclusion: Patients subjected to a prolonged regimen of TMZ treatment may exhibit heightened vulnerability to hypermutation. This hypermutation induced by TMZ holds the potential to function as an indicator associated with unfavorable response to immunotherapy in gliomas.


Asunto(s)
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Glioma , Mutación , Temozolomida , Humanos , Temozolomida/uso terapéutico , Masculino , Adulto , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Glioma/genética , Glioma/terapia , Glioma/tratamiento farmacológico , Antineoplásicos Alquilantes/uso terapéutico , Inmunoterapia/métodos , Resultado Fatal , Microambiente Tumoral/inmunología
8.
Neurol India ; 72(2): 297-303, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691473

RESUMEN

BACKGROUND: Immune microenvironment is involved in tumor initiation and progression, and its effect on glioblastoma (GBM) is still unknown. OBJECT: We sought to investigate the association between immune status and GBM. METHODS: Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, and we identified two immune subtypes based on 29 immune-associated gene sets. RESULTS: Through single-sample gene set enrichment analysis (ssGSEA), we found that the high-immunity subtype had the most tumor-infiltrating immune cells and immune checkpoint molecules in GBM patients. Furthermore, we could more effectively identify immune signature pathways in GBM. CONCLUSION: After validation with the GEO dataset, we conclude that the identified GBM high-immune subtypes may be amenable to the application of novel immune therapy for GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Microambiente Tumoral , Humanos , Glioblastoma/genética , Glioblastoma/inmunología , Glioblastoma/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Perfilación de la Expresión Génica , Transcriptoma , Proteínas de Punto de Control Inmunitario/genética , Regulación Neoplásica de la Expresión Génica
10.
Neuromolecular Med ; 26(1): 21, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750318

RESUMEN

Numerous studies have explored the various functions of Slc40a1 in cancer development. However, the role of Slc40a1 in primary glioblastoma requires further investigation. Initially, we observed that GBM patients with high Slc40a1 expression had a more favorable prognosis than those with low Slc40a1 expression, as evidenced by an analysis of the TIMER database. Subsequent analysis using the cancer genome atlas (TCGA) database enabled us to identify potential underlying mechanisms involved. Further analyses, including GO, KEGG, GSEA, immune infiltration, and correlation analyses, revealed that Slc40a1 primarily affected cytokine interactions, particularly with Ccl14 and Il18, resulting in changes in the immune microenvironment and ultimately leading to a better prognosis in GBM patients. We validated our findings by examining a tissue microarray with 180 samples and confirmed that GBM patients with high SLC40A1 protein expression exhibited more favorable prognostic outcomes than those with low SLC40A1 protein expression. Immunofluorescence analysis also revealed a significant correlation between SLC40A1 protein expression and the protein expression of IL18 and CCL14. These findings suggest that Slc40a1 may play a role in GBM pathogenesis by modulating the tumor immune microenvironment through the regulation of Il18 and Ccl14. Hence, targeting Slc40a1 might offer potential benefits for immunotherapeutic interventions and prognostic assessments in GBM patients.


Asunto(s)
Neoplasias Encefálicas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Microambiente Tumoral , Glioblastoma/inmunología , Glioblastoma/genética , Humanos , Microambiente Tumoral/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Pronóstico , Femenino , Masculino , Interleucina-18/genética , Citocinas , Proteínas de Transporte de Catión/genética , Persona de Mediana Edad , Anciano
11.
Cancer Immunol Immunother ; 73(7): 133, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753169

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a primary brain tumor with a dismal prognosis, often resistant to immunotherapy and associated with immune suppression. This study aimed to assess the impact of steroids and Stupp-regimen treatment on peripheral blood immune parameters in GBM patients and their association with outcomes. METHODS: Using cytometry panels and bioplex assays, we analyzed the immune phenotype and serum cytokines of 54 GBM patients and 21 healthy volunteers. RESULTS: GBM patients exhibited decreased lymphoid cell numbers (CD4, CD8 T cells, NKT cells) with heightened immune checkpoint expression and increased myeloid cell numbers (especially neutrophils), along with elevated pro-inflammatory cytokine levels. Steroid use decreased T and NK cell numbers, while radio-chemotherapy led to decreased lymphoid cell numbers, increased myeloid cell numbers, and heightened immune checkpoint expression. Certain immune cell subsets were identified as potential outcome predictors. CONCLUSION: Overall, these findings shed light on the peripheral immune landscape in GBM, emphasizing the immunosuppressive effects of treatment. Baseline immune parameters may serve as prognostic indicators for treatment response.


Asunto(s)
Neoplasias Encefálicas , Quimioradioterapia , Glioblastoma , Humanos , Glioblastoma/inmunología , Glioblastoma/terapia , Glioblastoma/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Quimioradioterapia/métodos , Adulto , Anciano , Pronóstico , Citocinas/metabolismo , Citocinas/sangre
12.
Front Immunol ; 15: 1393173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779679

RESUMEN

Glioma is a malignant tumor of the central nervous system (CNS). Currently, effective treatment options for gliomas are still lacking. Neutrophils, as an important member of the tumor microenvironment (TME), are widely distributed in circulation. Recently, the discovery of cranial-meningeal channels and intracranial lymphatic vessels has provided new insights into the origins of neutrophils in the CNS. Neutrophils in the brain may originate more from the skull and adjacent vertebral bone marrow. They cross the blood-brain barrier (BBB) under the action of chemokines and enter the brain parenchyma, subsequently migrating to the glioma TME and undergoing phenotypic changes upon contact with tumor cells. Under glycolytic metabolism model, neutrophils show complex and dual functions in different stages of cancer progression, including participation in the malignant progression, immune suppression, and anti-tumor effects of gliomas. Additionally, neutrophils in the TME interact with other immune cells, playing a crucial role in cancer immunotherapy. Targeting neutrophils may be a novel generation of immunotherapy and improve the efficacy of cancer treatments. This article reviews the molecular mechanisms of neutrophils infiltrating the central nervous system from the external environment, detailing the origin, functions, classifications, and targeted therapies of neutrophils in the context of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Inmunoterapia , Neutrófilos , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Glioma/inmunología , Glioma/terapia , Glioma/patología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Inmunoterapia/métodos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Animales , Barrera Hematoencefálica/inmunología , Infiltración Neutrófila/inmunología
13.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791110

RESUMEN

Vascular co-option is a consequence of the direct interaction between perivascular cells, known as pericytes (PCs), and glioblastoma multiforme (GBM) cells (GBMcs). This process is essential for inducing changes in the pericytes' anti-tumoral and immunoreactive phenotypes. Starting from the initial stages of carcinogenesis in GBM, PCs conditioned by GBMcs undergo proliferation, acquire a pro-tumoral and immunosuppressive phenotype by expressing and secreting immunosuppressive molecules, and significantly hinder the activation of T cells, thereby facilitating tumor growth. Inhibiting the pericyte (PC) conditioning mechanisms in the GBM tumor microenvironment (TME) results in immunological activation and tumor disappearance. This underscores the pivotal role of PCs as a key cell in the TME, responsible for tumor-induced immunosuppression and enabling GBM cells to evade the immune system. Other cells within the TME, such as tumor-associated macrophages (TAMs) and microglia, have also been identified as contributors to this immunomodulation. In this paper, we will review the role of these three cell types in the immunosuppressive properties of the TME. Our conclusion is that the cellular heterogeneity of immunocompetent cells within the TME may lead to the misinterpretation of cellular lineage identification due to different reactive stages and the identification of PCs as TAMs. Consequently, novel therapies could be developed to disrupt GBM-PC interactions and/or PC conditioning through vascular co-option, thereby exposing GBMcs to the immune system.


Asunto(s)
Neoplasias Encefálicas , Pericitos , Microambiente Tumoral , Pericitos/inmunología , Pericitos/patología , Pericitos/metabolismo , Humanos , Microambiente Tumoral/inmunología , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Glioma/inmunología , Glioma/patología , Glioma/metabolismo , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/metabolismo , Progresión de la Enfermedad , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología
14.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791312

RESUMEN

Glioblastomas (GBM) are the most common primary malignant brain tumors, comprising 2% of all cancers in adults. Their location and cellular and molecular heterogeneity, along with their highly infiltrative nature, make their treatment challenging. Recently, our research group reported promising results from a prospective phase II clinical trial involving allogeneic vaccination with dendritic cells (DCs). To date, six out of the thirty-seven reported cases remain alive without tumor recurrence. In this study, we focused on the characterization of infiltrating immune cells observed at the time of surgical resection. An analytical model employing a neural network-based predictive algorithm was used to ascertain the potential prognostic implications of immunological variables on patients' overall survival. Counterintuitively, immune phenotyping of tumor-associated macrophages (TAMs) has revealed the extracellular marker PD-L1 to be a positive predictor of overall survival. In contrast, the elevated expression of CD86 within this cellular subset emerged as a negative prognostic indicator. Fundamentally, the neural network algorithm outlined here allows a prediction of the responsiveness of patients undergoing dendritic cell vaccination in terms of overall survival based on clinical parameters and the profile of infiltrated TAMs observed at the time of tumor excision.


Asunto(s)
Neoplasias Encefálicas , Células Dendríticas , Glioblastoma , Inmunoterapia , Humanos , Células Dendríticas/inmunología , Glioblastoma/terapia , Glioblastoma/inmunología , Glioblastoma/mortalidad , Glioblastoma/patología , Inmunoterapia/métodos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Masculino , Femenino , Persona de Mediana Edad , Antígeno B7-H1/metabolismo , Pronóstico , Adulto , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Anciano , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
15.
Medicine (Baltimore) ; 103(19): e38091, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728467

RESUMEN

To screen immune-related prognostic biomarkers in low-grade glioma (LGG), and reveal the potential regulatory mechanism. The differential expressed genes (DEGs) between alive and dead patients were initially identified, then the key common genes between DEGs and immune-related genes were obtained. Regarding the key DEGs associated with the overall survival (OS), their clinical value was assessed by Kaplan-Meier, RCS, logistic regression, ROC, and decision curve analysis methods. We also assessed the role of immune infiltration on the association between key DEGs and OS. All the analyses were based on the TGCA-LGG data. Finally, we conducted the molecular docking analysis to explore the targeting binding of key DEGs with the therapeutic agents in LGG. Among 146 DEGs, only interleukin-6 (IL-6) was finally screened as an immune-related biomarker. High expression of IL-6 significantly correlated with poor OS time (all P < .05), showing a linear relationship. The combination of IL-6 with IDH1 mutation had the most favorable prediction performance on survival status and they achieved a good clinical net benefit. Next, we found a significant relationship between IL-6 and immune microenvironment score, and the immune microenvironment played a mediating effect on the association of IL-6 with survival (all P < .05). Detailly, IL-6 was positively related to M1 macrophage infiltration abundance and its biomarkers (all P < .05). Finally, we obtained 4 therapeutic agents in LGG targeting IL-6, and their targeting binding relationships were all verified. IL6, as an immune-related biomarker, was associated with the prognosis in LGG, and it can be a therapeutic target in LGG.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Glioma , Interleucina-6 , Microambiente Tumoral , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Glioma/inmunología , Glioma/genética , Glioma/mortalidad , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Pronóstico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Biomarcadores de Tumor/genética , Femenino , Estimación de Kaplan-Meier , Regulación Neoplásica de la Expresión Génica
16.
Comput Biol Med ; 175: 108532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703547

RESUMEN

BACKGROUND: Glioma is a malignant brain tumor originating from glial cells, and there still a challenge to accurately predict the prognosis. Programmed cell death (PCD) plays a key role in tumorigenesis and immune response. However, the crosstalk and potential role of various PCDs in prognosis and tumor microenvironment remains unknown. Therefore, we comprehensively discussed the relationship between different models of PCD and the prognosis of glioma and provided new ideas for the optimal targeted therapy of glioma. MATERIALS AND METHODS: We compared and analyzed the role of 14 PCD patterns on the prognosis from different levels. We constructed the cell death risk score (CDRS) index and conducted a comprehensive analysis of CDRS and TME characteristics, clinical characteristics, and drug response. RESULTS: Effects of different PCDs at the genomic, functional, and immune microenvironment levels were discussed. CDRS index containing 6 gene signatures and a nomogram were established. High CDRS is associated with a worse prognosis. Through transcriptome and single-cell data, we found that patients with high CDRS showed stronger immunosuppressive characteristics. Moreover, the high-CDRS group was resistant to the traditional glioma chemotherapy drug Vincristine, but more sensitive to the Temozolomide and the clinical experimental drug Bortezomib. In addition, we identified 19 key potential therapeutic targets during malignant differentiation of tumor cells. CONCLUSION: Overall, we provide the first systematic description of the role of 14 PCDs in glioma. A new CDRS model was built to predict the prognosis and to provide a new idea for the targeted therapy of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Humanos , Glioma/genética , Glioma/tratamiento farmacológico , Glioma/inmunología , Glioma/patología , Glioma/mortalidad , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Pronóstico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Transcriptoma , Apoptosis/efectos de los fármacos
17.
Nat Commun ; 15(1): 3732, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702309

RESUMEN

Immunotherapy with chimeric antigen receptor T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify cancer specific exon targets, here we analyze 1532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We find 2933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n = 148) or the alternatively spliced isoform (n = 9) level. Expression of selected alternatively spliced targets, including the EDB domain of fibronectin 1, and gene targets, such as COL11A1, are validated in pediatric patient derived xenograft tumors. We generate T cells expressing chimeric antigen receptors specific for the EDB domain or COL11A1 and demonstrate that these have antitumor activity. The full target list, explorable via an interactive web portal ( https://cseminer.stjude.org/ ), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.


Asunto(s)
Neoplasias Encefálicas , Exones , Receptores Quiméricos de Antígenos , Humanos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Animales , Exones/genética , Niño , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Ratones , Inmunoterapia/métodos , Empalme Alternativo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , RNA-Seq , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos
18.
Cancer Med ; 13(9): e7218, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733169

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) are a promising immunotherapy approach, but glioblastoma clinical trials have not yielded satisfactory results. OBJECTIVE: To screen glioblastoma patients who may benefit from immunotherapy. METHODS: Eighty-one patients receiving anti-PD1/PD-L1 treatment from a large-scale clinical trial and 364 patients without immunotherapy from The Cancer Genome Atlas (TCGA) were included. Patients in the ICI-treated cohort were divided into responders and nonresponders according to overall survival (OS), and the most critical responder-relevant features were screened using random forest (RF). We constructed an artificial neural network (ANN) model and verified its predictive value with immunotherapy response and OS. RESULTS: We defined two groups of ICI-treated glioblastoma patients with large differences in survival benefits as nonresponders (OS ≤6 months, n = 18) and responders (OS ≥17 months, n = 8). No differentially mutated genes were observed between responders and nonresponders. We performed RF analysis to select the most critical responder-relevant features and developed an ANN with 20 input variables, five hidden neurons and one output neuron. Receiver operating characteristic analysis and the DeLong test demonstrated that the ANN had the best performance in predicting responders, with an AUC of 0.97. Survival analysis indicated that ANN-predicted responders had significantly better OS rates than nonresponders. CONCLUSION: The 20-gene panel developed by the ANN could be a promising biomarker for predicting immunotherapy response and prognostic benefits in ICI-treated GBM patients and may guide oncologists to accurately select potential responders for the preferential use of ICIs.


Asunto(s)
Antígeno B7-H1 , Glioblastoma , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Redes Neurales de la Computación , Receptor de Muerte Celular Programada 1 , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/inmunología , Glioblastoma/terapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Masculino , Femenino , Inmunoterapia/métodos , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/inmunología , Anciano , Adulto , Pronóstico , Resultado del Tratamiento
19.
Front Immunol ; 15: 1388574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726015

RESUMEN

Background: Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body: This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion: Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/inmunología , Microambiente Tumoral/inmunología , Animales , Biomarcadores de Tumor/metabolismo , Barrera Hematoencefálica/metabolismo
20.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727262

RESUMEN

Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.


Asunto(s)
Glioblastoma , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Glioblastoma/terapia , Glioblastoma/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Microambiente Tumoral/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Linfocitos T/inmunología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA