Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.760
Filtrar
Más filtros











Intervalo de año de publicación
1.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 605-609, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38825907

RESUMEN

Objective: To investigate the clinicopathological features of children with metachronous or synchronous primary tumors and to identify related genetic tumor syndromes. Methods: The clinicopathological data of 4 children with multiple primary tumors diagnosed in the Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China from 2011 to 2023 were collected. The histological, immunophenotypic and molecular characteristics were examined using H&E staining, immunohistochemical staining, PCR, Sanger sequencing and next-generation sequencing (NGS). The patients were followed up. Results: Case 1 was an 8-year-old boy with the adrenal cortical carcinoma, and 5 years later a poorly differentiated gastric adenocarcinoma was detected. Case 2 was a 2-year-old boy, presented with a left ventricular choroid plexus carcinoma, and a hepatoblastoma was detected 8 months later. Case 3 was a 9-month-old girl, diagnosed with renal rhabdoid tumor first and intracranial atypical teratoid/rhabdoid tumor (AT/RT) 3 months later. Case 4 was a 7-year-old boy and had a sigmoid colon adenocarcinoma 3 years after the diagnosis of a glioblastoma. The morphology and immunohistochemical features of the metachronous or synchronous primary tumors in the 4 cases were similar to the corresponding symptom-presenting/first-diagnosed tumors. No characteristic germ line mutations were detected in cases 1 and 2 by relevant molecular detection, and the rhabdoid tumor predisposition syndrome was confirmed in case 3 using NGS. Case 4 was clearly related to constitutional mismatch repair deficiency as shown by the molecular testing and clinical features. Conclusions: Childhood multiple primary tumors are a rare disease with histological morphology and immunophenotype similar to the symptom-presenting tumors. They are either sporadic or associated with a genetic (tumor) syndrome. The development of both tumors can occur simultaneously (synchronously) or at different times (metachronously). Early identification of the children associated with genetic tumor syndromes can facilitate routine tumor screening and early treatment.


Asunto(s)
Hepatoblastoma , Neoplasias Renales , Neoplasias Hepáticas , Neoplasias Primarias Múltiples , Tumor Rabdoide , Neoplasias Gástricas , Humanos , Masculino , Niño , Femenino , Preescolar , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Múltiples/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Renales/patología , Neoplasias Renales/genética , Lactante , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Hepatoblastoma/genética , Hepatoblastoma/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/diagnóstico , Neoplasias del Plexo Coroideo/genética , Neoplasias del Plexo Coroideo/patología , Neoplasias del Plexo Coroideo/diagnóstico , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/patología , Neoplasias de la Corteza Suprarrenal/patología , Neoplasias de la Corteza Suprarrenal/genética , Teratoma/patología , Teratoma/genética , Teratoma/cirugía , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteína SMARCB1/genética , Homólogo 1 de la Proteína MutL/genética , Neoplasias Primarias Secundarias/patología , Neoplasias Primarias Secundarias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/patología
2.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 585-591, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38825904

RESUMEN

Objective: To investigate the clinical, radiological, and pathological features of anaplastic gangliogliomas (AGGs) and to determine whether these tumors represent a distinct entity. Methods: Consecutive 667 cases of ganglioglioma (GG) diagnosed at the Xuanwu Hospital, Capital Medical University, Beijing, China between January 2015 and July 2023 were screened. Among these cases, 9 pathologically confirmed AGG cases were identified. Their clinical, radiological, treatment, and outcome data were analyzed retrospectively. Most of the tumor samples were subject to next-generation sequencing, while a subset of them were subject to DNA methylation profiling. Results: Among the 9 patients, there were five males and four females, with a median age of 8 years. Epileptic seizures (5/9) were the most frequently presented symptom. Radiological examinations showed three types of radiological manifestations: four cases showed abnormal MRI signals with no significant mass effects and mild enhancement; two cases demonstrated a mixed solid-cystic density lesion with peritumoral edema, which showed significant heterogeneous enhancement and obvious mass effects, and one case displayed cystic cavity formation with nodules on MRI, which showed evident enhancements. All cases exhibited mutations that were predicted to activate the MAP kinase signaling pathway, including seven with BRAF p.V600E mutation and two with NF1 mutation. Five AGGs with mutations involving the MAP kinase signaling pathway also had concurrent mutations, including three with CDKN2A homozygous deletion, one with a TERT promoter mutation, one with a H3F3A mutation, and one with a PTEN mutation. Conclusions: AGG exhibits a distinct spectrum of pathology, genetic mutations and clinical behaviors, differing from GG. Given these characteristics suggest that AGG may be a distinct tumor type, further expansion of the case series is needed. Therefore, a comprehensive integration of clinical, histological, and molecular analyses is required to correctly diagnose AGG. It will also help guide treatments and prognostication.


Asunto(s)
Neoplasias Encefálicas , Metilación de ADN , Ganglioglioma , Imagen por Resonancia Magnética , Mutación , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas B-raf , Humanos , Ganglioglioma/patología , Ganglioglioma/genética , Masculino , Femenino , Niño , Estudios Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Proteínas Proto-Oncogénicas B-raf/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Telomerasa/genética , Histonas/genética , Histonas/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Epilepsia/patología , Epilepsia/genética
3.
Cell Mol Life Sci ; 81(1): 247, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829550

RESUMEN

BACKGROUND: The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive. METHOD: Expression and prognosis of the POLD family were analyzed in TCGA, the Chinese Glioma Genome Atlas (CGGA) and GEO datasets. Tumorsphere formation and in vitro limiting dilution assay were performed to investigate the effect of UCHL3-POLD4 on GSC self-renewal. Apoptosis, TUNEL, cell cycle phase distribution, modification of the Single Cell Gel Electrophoresis (Comet), γ-H2AX immunofluorescence, and colony formation assays were conducted to evaluate the influence of UCHL3-POLD4 on GSC in ionizing radiation. Coimmunoprecipitation and GST pull-down assays were performed to identify POLD4 protein interactors. In vivo, intracranial xenograft mouse models were used to investigate the molecular effect of UCHL3, POLD4 or TCID on GCS. RESULT: We determined that POLD4 was considerably upregulated in MES-GSCs and was associated with a meagre prognosis. Ubiquitin carboxyl terminal hydrolase L3 (UCHL3), a DUB enzyme in the UCH protease family, is a bona fide deubiquitinase of POLD4 in GSCs. UCHL3 interacted with, depolyubiquitinated, and stabilized POLD4. Both in vitro and in vivo assays indicated that targeted depletion of the UCHL3-POLD4 axis reduced GSC self-renewal and tumorigenic capacity and resistance to IR treatment by impairing homologous recombination (HR) and nonhomologous end joining (NHEJ). Additionally, we proved that the UCHL3 inhibitor TCID induced POLD4 degradation and can significantly enhance the therapeutic effect of IR in a gsc-derived in situ xenograft model. CONCLUSION: These findings reveal a new signaling axis for GSC PMT regulation and highlight UCHL3-POLD4 as a potential therapeutic target in GBM. TCID, targeted for reducing the deubiquitinase activity of UCHL3, exhibited significant synergy against MES GSCs in combination with radiation.


Asunto(s)
Células Madre Neoplásicas , Tolerancia a Radiación , Ubiquitina Tiolesterasa , Humanos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Tolerancia a Radiación/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Animales , Ratones , Línea Celular Tumoral , Glioma/patología , Glioma/genética , Glioma/radioterapia , Glioma/metabolismo , Apoptosis/genética , Apoptosis/efectos de la radiación , Ubiquitinación , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Ratones Desnudos , Fenotipo , Regulación Neoplásica de la Expresión Génica , Pronóstico
4.
Sci Rep ; 14(1): 12782, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834633

RESUMEN

Structural brain network topology can be altered in case of a brain tumor, due to both the tumor itself and its treatment. In this study, we explored the role of structural whole-brain and nodal network metrics and their association with cognitive functioning. Fifty WHO grade 2-3 adult glioma survivors (> 1-year post-therapy) and 50 matched healthy controls underwent a cognitive assessment, covering six cognitive domains. Raw cognitive assessment scores were transformed into w-scores, corrected for age and education. Furthermore, based on multi-shell diffusion-weighted MRI, whole-brain tractography was performed to create weighted graphs and to estimate whole-brain and nodal graph metrics. Hubs were defined based on nodal strength, betweenness centrality, clustering coefficient and shortest path length in healthy controls. Significant differences in these metrics between patients and controls were tested for the hub nodes (i.e. n = 12) and non-hub nodes (i.e. n = 30) in two mixed-design ANOVAs. Group differences in whole-brain graph measures were explored using Mann-Whitney U tests. Graph metrics that significantly differed were ultimately correlated with the cognitive domain-specific w-scores. Bonferroni correction was applied to correct for multiple testing. In survivors, the bilateral putamen were significantly less frequently observed as a hub (pbonf < 0.001). These nodes' assortativity values were positively correlated with attention (r(90) > 0.573, pbonf < 0.001), and proxy IQ (r(90) > 0.794, pbonf < 0.001). Attention and proxy IQ were significantly more often correlated with assortativity of hubs compared to non-hubs (pbonf < 0.001). Finally, the whole-brain graph measures of clustering coefficient (r = 0.685), global (r = 0.570) and local efficiency (r = 0.500) only correlated with proxy IQ (pbonf < 0.001). This study demonstrated potential reorganization of hubs in glioma survivors. Assortativity of these hubs was specifically associated with cognitive functioning, which could be important to consider in future modeling of cognitive outcomes and risk classification in glioma survivors.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Supervivientes de Cáncer , Cognición , Glioma , Humanos , Glioma/psicología , Glioma/diagnóstico por imagen , Glioma/patología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/psicología , Neoplasias Encefálicas/patología , Supervivientes de Cáncer/psicología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Red Nerviosa/diagnóstico por imagen , Estudios de Casos y Controles , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética
5.
Cancer Imaging ; 24(1): 69, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831467

RESUMEN

BACKGROUND: Accurate clinical staging is crucial for selection of optimal oncological treatment strategies in non-small cell lung cancer (NSCLC). Although brain MRI, bone scintigraphy and whole-body PET/CT play important roles in detecting distant metastases, there is a lack of evidence regarding the indication for metastatic staging in early NSCLCs, especially ground-grass nodules (GGNs). Our aim was to determine whether checking for distant metastasis is required in cases of clinical T1N0 GGN. METHODS: This was a retrospective study of initial staging using imaging tests in patients who had undergone complete surgical R0 resection for clinical T1N0 Stage IA NSCLC. RESULTS: A total of 273 patients with cT1N0 GGNs (n = 183) or cT1N0 solid tumors (STs, n = 90) were deemed eligible. No cases of distant metastasis were detected on initial routine imaging evaluations. Among all cT1N0M0 cases, there were 191 incidental findings on various modalities (128 in the GGN). Most frequently detected on brain MRI was cerebral leukoaraiosis, which was found in 98/273 (35.9%) patients, while cerebral infarction was detected in 12/273 (4.4%) patients. Treatable neoplasms, including brain meningioma and thyroid, gastric, renal and colon cancers were also detected on PET/CT (and/or MRI). Among those, 19 patients were diagnosed with a treatable disease, including other-site cancers curable with surgery. CONCLUSIONS: Extensive staging (MRI, scintigraphy, PET/CT etc.) for distant metastasis is not required for patients diagnosed with clinical T1N0 GGNs, though various imaging modalities revealed the presence of adventitious diseases with the potential to increase surgical risks, lead to separate management, and worsen patient outcomes, especially in elderly patients. If clinically feasible, it could be considered to complement staging with whole-body procedures including PET/CT.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Imagen por Resonancia Magnética , Estadificación de Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Masculino , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico por imagen , Femenino , Estudios Retrospectivos , Anciano , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Adulto , Anciano de 80 o más Años , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Metástasis de la Neoplasia
6.
Mol Biol Rep ; 51(1): 723, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833199

RESUMEN

BACKGROUND: Glioblastoma multiforme, a deadly form of brain tumor, is characterized by aggressive growth and poor prognosis. Oxidative stress, a disruption in the balance between antioxidants and oxidants, is a crucial factor in its pathogenesis. Silymarin, a flavonoid extracted from milk thistle, has shown therapeutic potential in inhibiting cancer cell growth, promoting apoptosis, and reducing inflammation. It also regulates oxidative stress. This study aims to investigate the regulatory effects of silymarin on oxidative stress parameters, especially the transcription factor Nrf2 and its related enzymes in GBM cancer cells, to develop a new anti-cancer compound with low toxicity. METHODS AND RESULTS: First, the cytotoxicity of silymarin on U-87 MG cells was investigated by MTT and the results showed an IC50 of 264.6 µM. Then, some parameters of the redox system were measured with commercial kits, and the obtained results showed that silymarin increased the activity of catalase and superoxide dismutase enzymes, as well as the total antioxidant capacity levels; while the malondialdehyde level that is an indicator of lipid peroxidation was decreased by this compound. The expression level of Nrf2 and HO-1 and glutaredoxin and thioredoxin enzymes were checked by real-time PCR method, and the expression level increased significantly after treatment. CONCLUSIONS: Our findings suggest that silymarin may exert its cytotoxic and anticancer effects by enhancing the Nrf2/HO-1 pathway through antioxidant mechanisms in U-87 MG cells.


Asunto(s)
Antioxidantes , Glioblastoma , Factor 2 Relacionado con NF-E2 , Oxidación-Reducción , Estrés Oxidativo , Silimarina , Silimarina/farmacología , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Línea Celular Tumoral , Oxidación-Reducción/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Superóxido Dismutasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Catalasa/metabolismo , Catalasa/genética
7.
Oncol Res ; 32(6): 1037-1045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827324

RESUMEN

Background: The dysregulation of Isocitrate dehydrogenase (IDH) and the subsequent production of 2-Hydroxyglutrate (2HG) may alter the expression of epigenetic proteins in Grade 4 astrocytoma. The interplay mechanism between IDH, O-6-methylguanine-DNA methyltransferase (MGMT)-promoter methylation, and protein methyltransferase proteins-5 (PRMT5) activity, with tumor progression has never been described. Methods: A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors. Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis. Inter-cohort statistical significance was evaluated. Results: Both IDH-mutant WHO grade 4 astrocytomas (n = 22, 64.7%) and IDH-wildtype glioblastomas (n = 12, 35.3%) had upregulated PRMT5 gene expression except in one case. Out of the 22 IDH-mutant tumors, 10 (45.5%) tumors showed MGMT-promoter methylation and 12 (54.5%) tumors had unmethylated MGMT. All IDH-wildtype tumors had unmethylated MGMT. There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma (p-value = 0.006). Statistically significant differences in progression-free survival (PFS) were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide (TMZ) or TMZ plus other chemotherapies, regardless of their IDH or MGMT-methylation status (p-value=0.0014). Specifically, IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation, who received only TMZ, have exhibited longer PFS. Conclusions: The relationship between PRMT5, MGMT-promoter, and IDH is not tri-directional. However, accumulation of D2-hydroxyglutarate (2-HG), which partially activates 2-OG-dependent deoxygenase, may not affect their activities. In IDH-wildtype glioblastomas, the 2HG-2OG pathway is typically inactive, leading to PRMT5 upregulation. TMZ alone, compared to TMZ-plus, can increase PFS in upregulated PRMT5 tumors. Thus, using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.


Asunto(s)
Astrocitoma , Metilación de ADN , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Progresión de la Enfermedad , Isocitrato Deshidrogenasa , Mutación , Regiones Promotoras Genéticas , Proteína-Arginina N-Metiltransferasas , Proteínas Supresoras de Tumor , Humanos , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Isocitrato Deshidrogenasa/genética , Masculino , Femenino , Astrocitoma/genética , Astrocitoma/patología , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Clasificación del Tumor , Anciano , Temozolomida/uso terapéutico , Temozolomida/farmacología , Regulación Neoplásica de la Expresión Génica
8.
Cell Death Dis ; 15(6): 390, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830885

RESUMEN

Glioma is the most common and aggressive type of primary malignant brain tumor. The N6-methyladenosine (m6A) modification widely exists in eukaryotic cells and plays an important role in the occurrence and development of human tumors. However, the function and mechanism of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an RNA-binding protein and m6A reader in gliomas remains to be comprehensively and extensively explored. Herein, we found that HNRNPC mRNA and protein overexpression were associated with a poor prognosis for patients with gliomas, based on the data from TCGA, the CGGA, and the TMAs. Biologically, HNRNPC knockdown markedly repressed malignant phenotypes of glioma in vitro and in vivo, whereas ectopic HNRNPC expression had the opposite effect. Integrative RNA sequencing and MeRIP sequencing analyses identified interleukin-1 receptor-associated kinase 1 (IRAK1) as a downstream target of HNRNPC. The glioma public datasets and tissue microarrays (TMAs) data indicated that IRAK1 overexpression was associated with poor prognosis, and IRAK1 knockdown significantly repressed malignant biological behavior in vitro. Mechanistically, HNRNPC maintains the mRNA stability of IRAK1 in an m6A-dependent manner, resulting in activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which was necessary for the malignant behavior of glioma. Our findings demonstrate the HNRNPC-IRAK1-MAPK axis as a crucial carcinogenic factor for glioma and the novel underlying mechanism of IRAK1 upregulation, which provides a rationale for therapeutically targeting epitranscriptomic modulators in glioma.


Asunto(s)
Progresión de la Enfermedad , Glioma , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Quinasas Asociadas a Receptores de Interleucina-1 , Sistema de Señalización de MAP Quinasas , ARN Mensajero , Humanos , Glioma/genética , Glioma/patología , Glioma/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas/genética , Ratones , Estabilidad del ARN/genética , Ratones Desnudos , Animales , Regulación Neoplásica de la Expresión Génica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Femenino , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Pronóstico
9.
Sci Rep ; 14(1): 12602, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824202

RESUMEN

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patología , Pronóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/genética , Procesamiento Postranscripcional del ARN , Clasificación del Tumor , Mitocondrias/genética , Mitocondrias/metabolismo , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Multiómica
10.
Folia Neuropathol ; 62(1): 13-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741433

RESUMEN

The accurate diagnosis of brain tumour is very important in modern neuro-oncology medicine. Magnetic resonance spectroscopy (MRS) is supposed to be a promising tool for detecting cancerous lesions. However, the interpretation of MRS data is complicated by the fact that not all cancerous lesions exhibit elevated choline (Cho) levels. The main goal of our study was to investigate the lack of Cho lesion /Cho ref elevation in the population of grade II-III gliomas. 89 cases of gliomas grade II and III were used for the retrospective analysis - glioma (astrocytoma or oligodendroglioma) grade II (74 out of 89 cases [83%]) and III (15 out of 89 cases [17%]) underwent conventional MRI extended by MRS before treatment. Histopathological diagnosis was obtained either by biopsy or surgical resection. Gliomas were classified to the group of no-choline elevation when the ratio of choline measured within the tumour (Cho lesion ) to choline from NABT (Cho ref ) were equal to or lower than 1. Significant differences were observed between ratios of Cho lesion /Cr lesion calculated for no-choline elevation and glial tumour groups as well as in the NAA lesion /Cr lesion ratio between the no-choline elevation group and glial tumour group. With consistent data concerning choline level elevation and slightly lower NAA value, the Cho lesion /NAA lesion ratio is significantly higher in the WHO II glial tumour group compared to the no-choline elevation cases ( p < 0.000). In the current study the results demonstrated possibility of lack of choline elevation in patients with grade II-III gliomas, so it is important to remember that the lack of elevated choline levels does not exclude neoplastic lesion.


Asunto(s)
Neoplasias Encefálicas , Colina , Glioma , Humanos , Colina/metabolismo , Colina/análisis , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Glioma/patología , Glioma/diagnóstico , Glioma/metabolismo , Persona de Mediana Edad , Adulto , Femenino , Masculino , Estudios Retrospectivos , Espectroscopía de Protones por Resonancia Magnética/métodos , Anciano , Espectroscopía de Resonancia Magnética/métodos , Clasificación del Tumor , Adulto Joven
11.
Folia Neuropathol ; 62(1): 96-101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741436

RESUMEN

Gliosarcoma (GS) is a rare variant of IDH-wildtype glioblastoma. It is classified as grade 4 in the latest WHO CNS classification of both glial and mesenchymal components. Gliosarcoma may arise de novo or secondary from glioblastoma. It occurs in up to 2% of patients diagnosed with glioblastoma. We present a case report of a 51-year-old patient who was initially diagnosed with glioblastoma multiforme, which transformed into secondary gliosarcoma with an osteosarcoma component 16 months after the initial diagnosis. We believe that increasing reporting of secondary gliosarcoma (sGS) will be helpful in understanding, diagnosing and providing more effective treatment for this cancer.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Gliosarcoma , Isocitrato Deshidrogenasa , Osteosarcoma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Gliosarcoma/genética , Gliosarcoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Osteosarcoma/genética , Osteosarcoma/patología , Persona de Mediana Edad , Isocitrato Deshidrogenasa/genética , Masculino
12.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38701414

RESUMEN

Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes.


Asunto(s)
Glioma , Humanos , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Cannabidiol/uso terapéutico , Cannabidiol/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Animales , Modelos Biológicos , Línea Celular Tumoral , Compuestos Organofosforados/uso terapéutico , Compuestos Organofosforados/farmacología
13.
J Pak Med Assoc ; 74(5): 1005-1006, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38783459

RESUMEN

Assessing treatment efficacy for brain tumours has evolved since its inception with the introduction of MacDonald's criteria, which pioneered the utility of imaging to determine an objective and quantifiable response to treatment. This criterion failed to distinguish pseudo response or progression from progression and did not account for non-enhancing disease therefore; the response assessment in neuro-oncology (RANO) working group was established to account for these limitations. Since, its commencement it has worked to determine response assessment for multiple tumours. As paediatric tumours exhibit heterogeneous and variable-enhancing characteristics, the response assessment in paediatric neuro-oncology (RAPNO) working group was formed to create separate criteria. Six response criteria have been published to date, and the article summarizes them.


Asunto(s)
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Criterios de Evaluación de Respuesta en Tumores Sólidos , Niño , Resultado del Tratamiento , Evaluación de Resultado en la Atención de Salud
14.
Tomography ; 10(5): 693-704, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38787014

RESUMEN

Despite their relatively low incidence globally, central nervous system (CNS) tumors remain amongst the most lethal cancers, with only a few other malignancies surpassing them in 5-year mortality rates. Treatment decisions for brain tumors heavily rely on histopathological analysis, particularly intraoperatively, to guide surgical interventions and optimize patient outcomes. Frozen sectioning has emerged as a vital intraoperative technique, allowing for highly accurate, rapid analysis of tissue samples, although it poses challenges regarding interpretive errors and tissue distortion. Raman histology, based on Raman spectroscopy, has shown great promise in providing label-free, molecular information for accurate intraoperative diagnosis, aiding in tumor resection and the identification of neurodegenerative disease. Techniques including Stimulated Raman Scattering (SRS), Coherent Anti-Stokes Raman Scattering (CARS), Surface-Enhanced Raman Scattering (SERS), and Tip-Enhanced Raman Scattering (TERS) have profoundly enhanced the speed and resolution of Raman imaging. Similarly, Confocal Laser Endomicroscopy (CLE) allows for real-time imaging and the rapid intraoperative histologic evaluation of specimens. While CLE is primarily utilized in gastrointestinal procedures, its application in neurosurgery is promising, particularly in the context of gliomas and meningiomas. This review focuses on discussing the immense progress in intraoperative histology within neurosurgery and provides insight into the impact of these advancements on enhancing patient outcomes.


Asunto(s)
Neoplasias Encefálicas , Procedimientos Neuroquirúrgicos , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Procedimientos Neuroquirúrgicos/métodos , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/patología , Glioma/cirugía , Glioma/diagnóstico por imagen , Microscopía Confocal/métodos
15.
Cancer Lett ; 592: 216927, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38697460

RESUMEN

Glioblastoma (GBM), one of the most malignant brain tumors in the world, has limited treatment options and a dismal survival rate. Effective and safe disease-modifying drugs for glioblastoma are urgently needed. Here, we identified a small molecule, Molephantin (EM-5), effectively penetrated the blood-brain barrier (BBB) and demonstrated notable antitumor effects against GBM with good safety profiles both in vitro and in vivo. Mechanistically, EM-5 not only inhibits the proliferation and invasion of GBM cells but also induces cell apoptosis through the reactive oxygen species (ROS)-mediated PI3K/Akt/mTOR pathway. Furthermore, EM-5 causes mitochondrial dysfunction and blocks mitophagy flux by impeding the fusion of mitophagosomes with lysosomes. It is noteworthy that EM-5 does not interfere with the initiation of autophagosome formation or lysosomal function. Additionally, the mitophagy flux blockage caused by EM-5 was driven by the accumulation of intracellular ROS. In vivo, EM-5 exhibited significant efficacy in suppressing tumor growth in a xenograft model. Collectively, our findings not only identified EM-5 as a promising, effective, and safe lead compound for treating GBM but also uncovered its underlying mechanisms from the perspective of apoptosis and mitophagy.


Asunto(s)
Apoptosis , Neoplasias Encefálicas , Proliferación Celular , Glioblastoma , Mitofagia , Especies Reactivas de Oxígeno , Ensayos Antitumor por Modelo de Xenoinjerto , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Mitofagia/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones Desnudos , Serina-Treonina Quinasas TOR/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
16.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38703775

RESUMEN

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Asunto(s)
Glioblastoma , Glucosa , Histonas , Macrófagos , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/patología , Animales , Histonas/metabolismo , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Glucosa/metabolismo , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Interleucina-10/metabolismo , Glucólisis , Microglía/metabolismo , Microglía/inmunología , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Tolerancia Inmunológica
17.
JCO Glob Oncol ; 10: e2300269, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38754050

RESUMEN

PURPOSE: Molecular characterization is key to optimally diagnose and manage cancer. The complexity and cost of routine genomic analysis have unfortunately limited its use and denied many patients access to precision medicine. A possible solution is to rationalize use-creating a tiered approach to testing which uses inexpensive techniques for most patients and limits expensive testing to patients with the highest needs. Here, we tested the utility of this approach to molecularly characterize pediatric glioma in a cost- and time-sensitive manner. METHODS: We used a tiered testing pipeline of immunohistochemistry (IHC), customized fusion panels or fluorescence in situ hybridization (FISH), and targeted RNA sequencing in pediatric gliomas. Two distinct diagnostic algorithms were used for low- and high-grade gliomas (LGGs and HGGs). The percentage of driver alterations identified, associated testing costs, and turnaround time (TAT) are reported. RESULTS: The tiered approach successfully characterized 96% (95 of 99) of gliomas. For 82 LGGs, IHC, targeted fusion panel or FISH, and targeted RNA sequencing solved 35% (29 of 82), 29% (24 of 82), and 30% (25 of 82) of cases, respectively. A total of 64% (53 of 82) of samples were characterized without targeted RNA sequencing. Of 17 HGG samples, 13 were characterized by IHC and four were characterized by targeted RNA sequencing. The average cost per sample was more affordable when using the tiered approach as compared with up-front targeted RNA sequencing in LGG ($405 US dollars [USD] v $745 USD) and HGGs ($282 USD v $745 USD). The average TAT per sample was also shorter using the tiered approach (10 days for LGG, 5 days for HGG v 14 days for targeted RNA sequencing). CONCLUSION: Our tiered approach molecularly characterized 96% of samples in a cost- and time-sensitive manner. Such an approach may be feasible in neuro-oncology centers worldwide, particularly in resource-limited settings.


Asunto(s)
Glioma , Humanos , Glioma/genética , Glioma/diagnóstico , Glioma/patología , Niño , Masculino , Preescolar , Femenino , Adolescente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/economía , Neoplasias Encefálicas/diagnóstico , Hibridación Fluorescente in Situ/economía , Lactante , Inmunohistoquímica/economía , Recursos en Salud/economía , Análisis de Secuencia de ARN/economía , Configuración de Recursos Limitados
18.
Cell Commun Signal ; 22(1): 266, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741139

RESUMEN

Glioblastoma (GBM) is a type of brain cancer categorized as a high-grade glioma. GBM is characterized by limited treatment options, low patient survival rates, and abnormal serotonin metabolism. Previous studies have investigated the tumor suppressor function of aldolase C (ALDOC), a glycolytic enzyme in GBM. However, it is unclear how ALDOC regulates production of serotonin and its associated receptors, HTRs. In this study, we analyzed ALDOC mRNA levels and methylation status using sequencing data and in silico datasets. Furthermore, we investigated pathways, phenotypes, and drug effects using cell and mouse models. Our results suggest that loss of ALDOC function in GBM promotes tumor cell invasion and migration. We observed that hypermethylation, which results in loss of ALDOC expression, is associated with serotonin hypersecretion and the inhibition of PPAR-γ signaling. Using several omics datasets, we present evidence that ALDOC regulates serotonin levels and safeguards PPAR-γ against serotonin metabolism mediated by 5-HT, which leads to a reduction in PPAR-γ expression. PPAR-γ activation inhibits serotonin release by HTR and diminishes GBM tumor growth in our cellular and animal models. Importantly, research has demonstrated that PPAR-γ agonists prolong animal survival rates and increase the efficacy of temozolomide in an orthotopic brain model of GBM. The relationship and function of the ALDOC-PPAR-γ axis could serve as a potential prognostic indicator. Furthermore, PPAR-γ agonists offer a new treatment alternative for glioblastoma multiforme (GBM).


Asunto(s)
Glioblastoma , PPAR gamma , Temozolomida , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Animales , PPAR gamma/metabolismo , Ratones , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Progresión de la Enfermedad , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Agonistas de PPAR-gamma
19.
Neurol India ; 72(2): 297-303, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691473

RESUMEN

BACKGROUND: Immune microenvironment is involved in tumor initiation and progression, and its effect on glioblastoma (GBM) is still unknown. OBJECT: We sought to investigate the association between immune status and GBM. METHODS: Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, and we identified two immune subtypes based on 29 immune-associated gene sets. RESULTS: Through single-sample gene set enrichment analysis (ssGSEA), we found that the high-immunity subtype had the most tumor-infiltrating immune cells and immune checkpoint molecules in GBM patients. Furthermore, we could more effectively identify immune signature pathways in GBM. CONCLUSION: After validation with the GEO dataset, we conclude that the identified GBM high-immune subtypes may be amenable to the application of novel immune therapy for GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Microambiente Tumoral , Humanos , Glioblastoma/genética , Glioblastoma/inmunología , Glioblastoma/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Perfilación de la Expresión Génica , Transcriptoma , Proteínas de Punto de Control Inmunitario/genética , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA