Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.157
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201396

RESUMEN

Melatonin, noted for its anti-cancer properties in various malignancies, including cutaneous melanoma, shows promise in Uveal melanoma (UM) treatment. This study aimed to evaluate melatonin receptor expression in primary UM and its association with UM-related mortality and prognostic factors. Immunohistochemical analysis of 47 primary UM tissues showed low expression of melatonin receptor 1A (MTNR1A) and melatonin receptor 1B (MTNR1B), with MTNR1A significantly higher in patients who succumbed to UM. Analysis of TCGA data from 80 UM patients revealed RNA expression for MTNR1A, retinoic acid-related orphan receptor alpha (RORα), and N-ribosyldihydronicotinamide:quinone oxidoreductase (NQO2), but not MTNR1B or G protein-coupled receptor 50 (GPR50). Higher MTNR1A RNA levels were observed in patients with a BRCA1 Associated Protein 1 (BAP1) mutation, and higher NQO2 RNA levels were noted in patients with the epithelioid tumor cell type. However, Kaplan-Meier analysis did not show distinct survival probabilities based on receptor expression. This study concludes that UM clinical samples express melatonin receptors, suggesting a potential mechanism for melatonin's anti-cancer effects. Despite finding higher MTNR1A expression in patients who died of UM, no survival differences were observed.


Asunto(s)
Melanoma , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Receptor de Melatonina MT1 , Ubiquitina Tiolesterasa , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/mortalidad , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Masculino , Femenino , Persona de Mediana Edad , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT1/genética , Anciano , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Receptor de Melatonina MT2/metabolismo , Receptor de Melatonina MT2/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Pronóstico , Adulto , Anciano de 80 o más Años , Mutación , Melatonina/metabolismo , Estimación de Kaplan-Meier
2.
Anticancer Res ; 44(9): 3843-3848, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197916

RESUMEN

BACKGROUND/AIM: Uveal melanoma (UM) represents a prevailing primary intraocular malignancy, with a limited median overall survival among metastatic patients, and most tumors lack RAF/RAS mutations. The pan-RAF inhibitor LY3009120 has demonstrated valuable anti-tumor effects in a wide range of RAF/RASmut and wild-type (WT) tumor models. This study aimed to evaluate the antitumor effect of LY3009120 on 92-1 UM cell line. MATERIALS AND METHODS: The effect of the pan-RAF inhibitor LY3009120 on cell proliferation, metabolic activity, biomass, early and late apoptosis/necrosis, and morphology was characterized in vitro (0.1-5 µM for 48 h/72 h). Furthermore, targeted panel sequencing was used to characterize the mutational landscape of the human 92-1 UM cell line. RESULTS: LY3009120 showed a significant concentration-dependent anti-proliferative effect on 92-1 cells. Cell proliferation and viability were significantly reduced at the lowest effective concentration of 0.5 µM (at 48 and 72 h, p<0.001). Furthermore, LY3009120 caused significant early apoptosis and late apoptosis/necrosis in 92-1 cells at 5 µM. Except for TP53, NGS showed that all 49 additional analysed genes (Oncomine myeloid panel) of 92-1 were wild-type, including BRAF, NRAS, and KRAS. CONCLUSION: The pan-RAF inhibitor LY3009120 demonstrated a significant anti-tumor effect on human UM cell line 92-1 independent of the molecular BRAF and RAS mutational status.


Asunto(s)
Apoptosis , Proliferación Celular , Melanoma , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/genética , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/genética , Melanoma/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Compuestos de Fenilurea/farmacología , Pirimidinas
3.
Invest Ophthalmol Vis Sci ; 65(10): 26, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39163035

RESUMEN

Purpose: Uveal melanoma (UM) is the most common primary intraocular malignancy with a high probability of metastatic disease. Although excellent treatment options for primary UM are available, therapy for metastatic disease remain limited. Drug discovery studies using mouse models have thus far failed to provide therapeutic solutions, highlighting the need for novel models. Here, we optimize zebrafish xenografts as a potential model for drug discovery by showcasing the behavior of multiple cell lines and novel findings on mutation-dependent compound synergism/antagonism using Z-Tada; an algorithm to objectively characterize output measurements. Methods: Prognostic relevant primary (N = 4) and metastatic UM (N = 1) cell lines or healthy melanocytes (N = 2) were inoculated at three distinct inoculation sites. Standardized quantifications independent of inoculation site were obtained using Z-Tada; an algorithm to measure tumor burden and the number, size, and distance of disseminated tumor cells. Sequentially, we utilized this model to validate combinatorial synergism or antagonism seen in vitro. Results: Detailed analysis of 691 zebrafish xenografts demonstrated perivitelline space inoculation provided robust data with high probability of cell dissemination. Cell lines with more invasive behavior (SF3B1mut and BAP1mut) behaved most aggressive in this model. Combinatorial drug treatment illustrated synergism or antagonism is mutation-dependent, which were confirmed in vivo. Combinatorial treatment differed per xenograft-model, as it either inhibited overall tumor burden or cell dissemination. Conclusions: Perivitelline space inoculation provides robust zebrafish xenografts with the ability for high-throughput drug screening and robust data acquisition using Z-Tada. This model demonstrates that drug discovery for uveal melanoma must take mutational subclasses into account, especially in combinatorial treatment discoveries.


Asunto(s)
Melanoma , Mutación , Neoplasias de la Úvea , Pez Cebra , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/patología , Animales , Melanoma/genética , Melanoma/tratamiento farmacológico , Melanoma/patología , Humanos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ensayos Antitumor por Modelo de Xenoinjerto , Sinergismo Farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Ubiquitina Tiolesterasa/genética , Proteínas Supresoras de Tumor
4.
Retina ; 44(9): 1580-1589, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39167579

RESUMEN

PURPOSE: To determine the association between gene-expression profiling (GEP), next-generation sequencing (NGS), preferentially expressed antigen in melanoma (PRAME) features, and metastatic risk in patients with uveal melanoma (UM). METHODS: A retrospective analysis of patients with UM treated by brachytherapy or enucleation by a single ocular oncologist was conducted from November 2020 and July 2022. Clinicopathologic features, patient outcomes, GEP classification, NGS, and PRAME results were recorded. RESULTS: Comprehensive GEP, PRAME, and NGS testing was performed on 135 UMs. The presence of eukaryotic translation initiation factor 1A, X-chromosomal and splicing factor 3B subunit 1 mutations was significantly associated with GEP class 1A and GEP class 1B, respectively. The presence of BRCA- associated protein-1 mutation was significantly associated with GEP class 2. The average largest basal diameter for tumors with eukaryotic translation initiation factor 1A, X-chromosomal mutations was significantly smaller than those with splicing factor 3B subunit 1 mutations and BRCA1-associated protein-1 mutations. Class 2 tumors metastasized sooner than GEP class 1 tumors. Tumors with splicing factor 3B subunit 1 and/or BRCA1-associated protein-1 mutations metastasized sooner compared with tumors that had either no driver mutation or no mutations at all. Tumors with splicing factor 3B subunit 1 did not have a significantly different time to metastasis compared with tumors with BRCA1-associated protein-1 (P value = 0.97). Forty tumors (30%) were PRAME positive, and the remaining 95 tumors (70%) were PRAME negative. Tumors with PRAME-positive status did not have a significantly different time to metastasis compared with tumors without PRAME-positive status (P value = 0.11). CONCLUSION: GEP, NGS, and PRAME expression analysis help determine different levels of metastatic risk in UM. Although other prognostic tests exist, the following study reports on the use of NGS for metastatic prognostication in UM. However, limitations of NGS exist, especially with small lesions that are technically difficult to biopsy.


Asunto(s)
Antígenos de Neoplasias , Biomarcadores de Tumor , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Melanoma , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/diagnóstico , Melanoma/genética , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Antígenos de Neoplasias/genética , Perfilación de la Expresión Génica/métodos , Anciano , Biomarcadores de Tumor/genética , Mutación , Adulto , Regulación Neoplásica de la Expresión Génica , Anciano de 80 o más Años , Factor 1 Eucariótico de Iniciación/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Braquiterapia , Fosfoproteínas , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa
5.
Hereditas ; 161(1): 22, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987843

RESUMEN

BACKGROUND: Uveal melanoma (UVM) stands as the predominant type of primary intraocular malignancy among adults. The clinical significance of N7-methylguanosine (m7G), a prevalent RNA modifications, in UVM remains unclear. METHODS: Primary information from 80 UVM patients were analyzed as the training set, incorporating clinical information, mutation annotations and mRNA expression obtained from The Cancer Genome Atlas (TCGA) website. The validation set was carried out using Gene Expression Omnibus (GEO) database GSE22138 and GSE84976. Kaplan-Meier and Cox regression of univariate analyses were subjected to identify m7G-related regulators as prognostic genes. RESULT: A prognostic risk model comprising EIF4E2, NUDT16, SNUPN and WDR4 was established through Cox regression of LASSO. Evaluation of the model's predictability for UVM patients' prognosis by Receiver Operating Characteristic (ROC) curves in the training set, demonstrated excellent performance Area Under the Curve (AUC) > 0.75. The high-risk prognosis within the TCGA cohort exhibit a notable worse outcome. Additionally, an independent correlation between the risk score and overall survival (OS) among UVM patients were identified. External validation of this model was carried out using the validation sets (GSE22138 and GSE84976). Immune-related analysis revealed that patients with high score of m7G-related risk model exhibited elevated level of immune infiltration and immune checkpoint gene expression. CONCLUSION: We have developed a risk prediction model based on four m7G-related regulators, facilitating effective estimate UVM patients' survival by clinicians. Our findings shed novel light on essential role of m7G-related regulators in UVM and suggest potential novel targets for the diagnosis, prognosis and therapy of UVM.


Asunto(s)
Guanosina , Melanoma , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/mortalidad , Melanoma/genética , Pronóstico , Guanosina/análogos & derivados , Femenino , Masculino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Curva ROC , Estimación de Kaplan-Meier
6.
NPJ Syst Biol Appl ; 10(1): 75, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013872

RESUMEN

Mathematical models of biochemical reaction networks are an important and emerging tool for the study of cell signaling networks involved in disease processes. One promising potential application of such mathematical models is the study of how disease-causing mutations promote the signaling phenotype that contributes to the disease. It is commonly assumed that one must have a thorough characterization of the network readily available for mathematical modeling to be useful, but we hypothesized that mathematical modeling could be useful when there is incomplete knowledge and that it could be a tool for discovery that opens new areas for further exploration. In the present study, we first develop a mechanistic mathematical model of a G-protein coupled receptor signaling network that is mutated in almost all cases of uveal melanoma and use model-driven explorations to uncover and explore multiple new areas for investigating this disease. Modeling the two major, mutually-exclusive, oncogenic mutations (Gαq/11 and CysLT2R) revealed the potential for previously unknown qualitative differences between seemingly interchangeable disease-promoting mutations, and our experiments confirmed oncogenic CysLT2R was impaired at activating the FAK/YAP/TAZ pathway relative to Gαq/11. This led us to hypothesize that CYSLTR2 mutations in UM must co-occur with other mutations to activate FAK/YAP/TAZ signaling, and our bioinformatic analysis uncovers a role for co-occurring mutations involving the plexin/semaphorin pathway, which has been shown capable of activating this pathway. Overall, this work highlights the power of mechanism-based computational systems biology as a discovery tool that can leverage available information to open new research areas.


Asunto(s)
Mutación , Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Transducción de Señal/genética , Transducción de Señal/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Mutación/genética , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo , Biología de Sistemas/métodos , Modelos Biológicos , Melanoma/genética , Melanoma/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo
7.
Vestn Oftalmol ; 140(3): 5-10, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38962973

RESUMEN

MicroRNAs (miRNAs) are short non-coding RNAs (18-25 nucleotides in length) that are important participants in the regulation of gene expression. In 2003, their active role in oncogenesis was demonstrated. In 2008, the first report on the isolation of miRNAs from uveal melanoma (UM) tissue was published. Four years later (2012), the presence of miRNAs in the plasma of patients with this category was shown. To date, changes in the expression level of 100 miRNAs in the plasma of cancer patients (with cancer of various localizations) out of the 2654 miRNAs described in mirbase.org have been proven. In the plasma of patients with UM, changes in the expression of only 13 miRNAs have been confirmed. As a rule, studies were conducted in patients at the stage of hematogenous metastasis of UM. PURPOSE: This study analyzed the expression pattern of miRNA-223 and miRNA-126 in patients with localized choroidal melanoma (CM) taking into account biometric parameters in the absence of metastases. MATERIAL AND METHODS: Blood plasma of 84 patients with M0N0 CM aged 35-86 years (mean age 63.4±1.2 years) was investigated. The basis for the diagnosis of CM was the results of ophthalmological examination, optical coherence tomography, and ultrasound scanning. In all cases, the absence of metastases was proven (using computed tomography or magnetic resonance imaging). Control - plasma of 28 volunteers (mean age 62.9±1.42 years, age range 45-78 years), who did not have tumoral, autoimmune, or chronic inflammatory processes. The expression levels of miRNAs circulating in blood plasma were determined by real-time polymerase chain reaction. RESULTS: An increase in the expression levels of miRNA-223 and miRNA-126 in the plasma of all 84 patients with CM was confirmed compared to the control group. Features of the miRNA expression pattern that emerged with changes in the tumor's quantitative parameters were identified. CONCLUSION: Evaluation of the levels of miRNA-223 and miRNA-126 in the blood plasma of patients with CM can be used in clinical practice to clarify the diagnosis of CM, as well as to predict the development of hematogenous metastases.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Coroides , Regulación Neoplásica de la Expresión Génica , Melanoma , MicroARNs , Humanos , Melanoma/genética , Melanoma/diagnóstico , Neoplasias de la Coroides/genética , Neoplasias de la Coroides/diagnóstico , Persona de Mediana Edad , Masculino , Femenino , MicroARNs/genética , MicroARNs/sangre , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Epigénesis Genética , Anciano , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/diagnóstico
8.
Front Immunol ; 15: 1427348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966635

RESUMEN

Uveal melanoma (UM) is a highly aggressive and fatal tumor in the eye, and due the special biology of UM, immunotherapy showed little effect in UM patients. To improve the efficacy of immunotherapy for UM patients is of great clinical importance. Single-cell RNA sequencing(scRNA-seq) provides a critical perspective for deciphering the complexity of intratumor heterogeneity and tumor microenvironment(TME). Combing the bioinformatics analysis, scRNA-seq could help to find prognosis-related molecular indicators, develop new therapeutic targets especially for immunotherapy, and finally to guide the clinical treatment options.


Asunto(s)
Inmunoterapia , Melanoma , Análisis de la Célula Individual , Microambiente Tumoral , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/terapia , Neoplasias de la Úvea/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Melanoma/terapia , Melanoma/genética , Melanoma/inmunología , Análisis de la Célula Individual/métodos , Inmunoterapia/métodos , Análisis de Secuencia de ARN , Biomarcadores de Tumor/genética , Heterogeneidad Genética , Animales , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica
9.
Invest Ophthalmol Vis Sci ; 65(8): 3, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953846

RESUMEN

Purpose: To investigate the correlation between apparent diffusion coefficient (ADC) histograms and high-risk clinicopathologic features related to uveal melanoma (UM) prognosis. Methods: This retrospective study included 53 patients with UM who underwent diffusion-weighted imaging (DWI) between August 2015 and March 2024. Axial DWI was performed with a single-shot spin-echo echo-planar imaging sequence. ADC histogram parameters of ADCmean, ADC50%, interquartile range (IQR), skewness, kurtosis, and entropy were obtained from DWI. The relationships between histogram parameters and high-risk clinicopathological characteristics including tumor size, preoperative retinal detachment, histological subtypes, Ki-67 index, and chromosome status, were analyzed by Spearman correlation analysis, Mann-Whitney U test, or Kruskal-Wallis test. Results: A total of 53 patients (mean ± SD age, 55 ± 15 years; 22 men) were evaluated. The largest basal diameter (LBD) was correlated with kurtosis (r = 0.311, P = 0.024). Tumor prominence (TP) was correlated with entropy (r = 0.581, P < 0.001) and kurtosis (r = 0.273, P = 0.048). Additionally, significant correlations were identified between the Ki-67 index and ADCmean (r = -0.444, P = 0.005), ADC50% (r = -0.487, P = 0.002), and skewness (r = 0.394, P = 0.014). Finally, entropy was correlated with monosomy 3 (r = 0.541, P = 0.017). Conclusions: The ADC histograms provided valuable insights into high-risk clinicopathologic features of UM and hold promise in the early prediction of UM prognosis.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Melanoma , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/genética , Masculino , Femenino , Persona de Mediana Edad , Melanoma/patología , Estudios Retrospectivos , Pronóstico , Imagen de Difusión por Resonancia Magnética/métodos , Adulto , Anciano , Imagen Eco-Planar/métodos
10.
Oncol Res ; 32(8): 1265-1285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055896

RESUMEN

Uveal and conjunctival melanomas are relatively rare tumors; nonetheless, they pose a significant risk of mortality for a large number of affected individuals. The pathogenesis of melanoma at different sites is very similar, however, the prognosis for patients with ocular melanoma remains unfavourable, primarily due to its distinctive genetic profile and tumor microenvironment. Regardless of considerable advances in understanding the genetic characteristics and biological behaviour, the treatment of uveal and conjunctival melanoma remains a formidable challenge. To enhance the prospect of success, collaborative efforts involving medical professionals and researchers in the fields of ocular biology and oncology are essential. Current data show a lack of well-designed randomized clinical trials and limited benefits in current forms of treatment for these tumors. Despite advancements in the development of effective melanoma therapeutic strategies, all current treatments for uveal melanoma (UM) and conjunctival melanoma (CoM) remain unsatisfactory, resulting in a poor long-term prognosis. Ongoing trials offer hope for positive outcomes in advanced and metastatic tumors. A more comprehensive understanding of the genetic and molecular abnormalities involved in the development and progression of ocular melanomas opens the way for the development of personalized therapy, with various potential therapeutic targets currently under consideration. Increased comprehension of the molecular pathogenesis of UM and CoM and their specificities may aid in the development of new and more effective systemic therapeutic agents, with the hope of improving the prognosis for patients with metastatic disease.


Asunto(s)
Neoplasias de la Conjuntiva , Melanoma , Neoplasias de la Úvea , Humanos , Melanoma/patología , Melanoma/terapia , Melanoma/genética , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/terapia , Neoplasias de la Úvea/patología , Neoplasias de la Conjuntiva/terapia , Neoplasias de la Conjuntiva/patología , Neoplasias de la Conjuntiva/genética , Pronóstico
11.
Invest Ophthalmol Vis Sci ; 65(8): 37, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39042403

RESUMEN

Purpose: Cell lines are being used in preclinical uveal melanoma (UM) research. Because not all cell lines harbor typical GNAQ or GNA11 hotspot mutations, we aimed at better classifying them and determining whether we could find genetic causes to explain the protein and mRNA expression profiles of the cell lines. Methods: We studied protein and mRNA expression of 14 UM cell lines and determined the presence of single nucleotide variants and small insertions and deletions with next-generation sequencing and copy number alterations with a single nucleotide polymorphism array. The lists of differentially expressed proteins and genes were merged, and shared lists were created, keeping only terms with concordant mRNA and protein expression. Enrichment analyses were performed on the shared lists. Results: Cell lines Mel285 and Mel290 are separate from GNA-mutated cell lines and show downregulation of melanosome-related markers. Both lack typical UM mutations but each harbors four putatively deleterious variants in CTNNB1, PPP1R10, LIMCH1, and APC in Mel285 and ARID1A, PPP1R10, SPG11, and RNF43 in Mel290. The upregulated terms in Mel285 and Mel290 did not point to a convincing alternative origin. Mel285 shows loss of chromosomes 1p, 3p, partial 3q, 6, and partial 8p, whereas Mel290 shows loss of 1p and 6. Expression in the other 12 cell lines was related to BAP1 expression. Conclusions: Although Mel285 and Mel290 have copy number alterations that fit UM, multi-omics analyses show that they belong to a separate group compared to the other analyzed UM cell lines. Therefore, they may not be representative models to test potential therapeutic targets for UM.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Subunidades alfa de la Proteína de Unión al GTP , Regulación Neoplásica de la Expresión Génica , Melanoma , Mutación , ARN Mensajero , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , Neoplasias de la Úvea , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Humanos , Ubiquitina Tiolesterasa/genética , ARN Mensajero/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Proteínas Supresoras de Tumor/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Polimorfismo de Nucleótido Simple , Análisis Mutacional de ADN
12.
Invest Ophthalmol Vis Sci ; 65(8): 11, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38967943

RESUMEN

Purpose: Ocular melanoma is a common primary malignant ocular tumor in adults with limited effective treatments. Epigenetic regulation plays an important role in tumor development. The switching/sucrose nonfermentation (SWI/SNF) chromatin remodeling complex and bromodomain and extraterminal domain family proteins are epigenetic regulators involved in several cancers. We aimed to screen a candidate small molecule inhibitor targeting these regulators and investigate its effect and mechanism in ocular melanoma. Methods: We observed phenotypes caused by knockdown of the corresponding gene and synergistic effects with BRD inhibitor treatment and SWI/SNF complex knockdown. The effect of JQ-1 on ocular melanoma cell cycle and apoptosis was analyzed with flow cytometry. Via RNA sequencing, we also explored the mechanism of BRD4. Results: The best tumor inhibitory effect was observed for the BRD4 inhibitor (JQ-1), although there were no statistically obvious changes in the shBRD4 and shBRD9 groups. Interestingly, the inhibitory effect of JQ-1 was decrease in the shBRD4 group. JQ-1 inhibits the growth of melanoma in various cell lines and in tumor-bearing mice. We found 17 of these 28 common differentially expressed genes were downregulated after MEL270 and MEL290 cells treated with JQ-1. Four of these 17 genes, TP53I11, SH2D5, SEMA5A, and MDGA1, were positively correlated with BRD4. In TCGA database, low expression of TP53I11, SH2D5, SEMA5A, and MDGA1 improved the overall survival rate of patients. Furthermore, the disease-free survival rate was increased in the groups with low expression of TP53I11, SH2D5, and SEMA5A. Conclusions: JQ-1 may act downstream of BRD4 and suppress ocular melanoma growth by inducing G1 cell cycle arrest.


Asunto(s)
Apoptosis , Azepinas , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular , Melanoma , Factores de Transcripción , Triazoles , Animales , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Melanoma/metabolismo , Ratones , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Azepinas/farmacología , Triazoles/farmacología , Triazoles/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/metabolismo , Citometría de Flujo , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Proteínas que Contienen Bromodominio
13.
J Transl Med ; 22(1): 695, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075441

RESUMEN

BACKGROUND: Although there has been some progress in the treatment of primary uveal melanoma (UVM), distant metastasis remains the leading cause of death in patients. Monitoring, staging, and treatment of metastatic disease have not yet reached consensus. Although more than half of metastatic tumors (62%) are diagnosed within five years after primary tumor treatment, the remainder are only detected in the following 25 years. The mechanisms of UVM metastasis and its impact on prognosis are not yet fully understood. METHODS: scRNA-seq data of UVM samples were obtained and processed, followed by cell type identification and characterization of macrophage subpopulations. High-dimensional weighted gene co-expression network analysis (HdWGCNA) was performed to identify key gene modules associated with metastatic protective macrophages (MPMφ) in primary samples, and functional analyses were conducted. Non-negative matrix factorization (NMF) clustering and immune cell infiltration analyses were performed using the MPMφ gene signatures. Machine learning models were developed using the identified metastatic protective macrophages related genes (MPMRGs) to distinguish primary from metastatic patients. A deep learning convolutional neural network (CNN) model was constructed based on MPMRGs and cell type associations. Lastly, a prognostic model was established using the MPMRGs and validated in independent cohorts. RESULTS: Single-cell RNA-seq analysis revealed a unique immune microenvironment landscape in primary samples compared to metastatic samples, with an enrichment of macrophage cells. Using HdWGCNA, MPMφ and marker genes were identified. Functional analysis showed an enrichment of genes related to antigen processing progress and immune response. Machine learning and deep learning models based on key genes showed significant effectiveness in distinguishing between primary and metastatic patients. The prognostic model based on key genes demonstrated substantial predictive value for the survival of UVM patients. CONCLUSION: Our study identified key macrophage subpopulations related to metastatic samples, which have a profound impact on shaping the tumor immune microenvironment. A prognostic model based on macrophage cell genes can be used to predict the prognosis of UVM patients.


Asunto(s)
Aprendizaje Profundo , Macrófagos , Melanoma , Metástasis de la Neoplasia , Análisis de la Célula Individual , Neoplasias de la Úvea , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/genética , Humanos , Melanoma/patología , Melanoma/genética , Melanoma/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Pronóstico , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Masculino
14.
Free Radic Biol Med ; 222: 552-568, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971541

RESUMEN

Uveal melanoma (UM) is a rare yet lethal primary intraocular malignancy affecting adults. Analysis of data from The Cancer Genome Atlas (TCGA) database revealed that FGFR1 expression was increased in UM tumor tissues and was linked to aggressive behavior and a poor prognosis. This study assessed the anti-tumor effects of Erdafitinib, a selective pan-FGFR inhibitor, in both in vitro and in vivo UM models. Erdafitinib exhibited a robust anti-cancer activity in UM through inducing ferroptosis in the FGFR1-dependent manner. Transcriptomic data revealed that Erdafitinib mediated its anti-cancer effects via modulating the ferritinophagy/lysosome biogenesis. Subsequent research revealed that Erdafitinib exerted its effects by reducing the expression of FGFR1 and inhibiting the activity of mTORC1 in UM cells. Concurrently, it enhanced the dephosphorylation, nuclear translocation, and transcriptional activity of TFEB. The aggregation of TFEB in nucleus triggered FTH1-dependent ferritinophagy, leading to lysosomal activation and iron overload. Conversely, the overexpression of FGFR1 served to mitigate the effects of Erdafitinib on ferritinophagy, lysosome biogenesis, and the activation of the mTORC1/TFEB signaling pathway. In vivo experiments have convincingly shown that Erdafitinib markedly curtails tumor growth in an UM xenograft mouse model, an effect that is closely correlated with a decrease in FGFR1 expression levels. The present study is the first to demonstrate that Erdafitinib powerfully induces ferroptosis in UM by orchestrating the ferritinophagy and lysosome biogenesis via modulating the FGFR1/mTORC1/TFEB signaling. Consequently, Erdafitinib emerges as a strong candidate for clinical trial investigation, and FGFR1 emerges as a novel and promising therapeutic target in the treatment of UM.


Asunto(s)
Ferroptosis , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Melanoma , Quinoxalinas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Transducción de Señal , Neoplasias de la Úvea , Humanos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Animales , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Ratones , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Transducción de Señal/efectos de los fármacos , Quinoxalinas/farmacología , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/genética , Pirazoles/farmacología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proliferación Celular/efectos de los fármacos , Ratones Desnudos
15.
Cells ; 13(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39056751

RESUMEN

Uveal melanoma (UM) is the most common intraocular tumor in adults, and nearly 50% of patients develop metastatic disease with a high mortality rate. Therefore, the development of relevant preclinical in vivo models that accurately recapitulate the metastatic cascade is crucial. We exploited the chick embryo chorioallantoic membrane (CAM) xenograft model to quantify both experimental and spontaneous metastasis by qPCR analysis. Our study found that the transplanted UM cells spread predominantly and early in the liver, reflecting the primary site of metastasis in patients. Visible signs of pigmented metastasis were observed in the eyes, liver, and distal CAM. Lung metastases occurred rarely and brain metastases progressed more slowly. However, UM cell types of different origins and genetic profiles caused an individual spectrum of organ metastases. Metastasis to multiple organs, including the liver, was often associated with risk factors such as high proliferation rate, hyperpigmentation, and epithelioid cell type. The severity of liver metastasis was related to the hepatic metastatic origin and chromosome 8 abnormalities rather than monosomy 3 and BAP1 deficiency. The presented CAM xenograft model may prove useful to study the metastatic potential of patients or to test individualized therapeutic options for metastasis in different organs.


Asunto(s)
Membrana Corioalantoides , Melanoma , Neoplasias de la Úvea , Animales , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/genética , Membrana Corioalantoides/patología , Membrana Corioalantoides/metabolismo , Melanoma/patología , Melanoma/genética , Embrión de Pollo , Humanos , Metástasis de la Neoplasia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Xenoinjertos
16.
J Transl Med ; 22(1): 605, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951874

RESUMEN

BACKGROUND: Uveal melanoma (UM), the most common adult intraocular tumor, is characterized by high malignancy and poor prognosis in advanced stages. Angiogenesis is critical for UM development, however, not only the role of vascular endothelial dysfunction in UM remains unknown, but also their analysis at the single-cell level has been lacking. A comprehensive analysis is essential to clarify the role of the endothelium in the development of UM. METHODS: By using single-cell RNA transcriptomics data of 11 cases of primary and liver metastasis UM, we analyzed the endothelial cell status. In addition, we analyzed and validated ECs in the in vitro model and collected clinical specimens. Subsequently, we explored the impact of endothelial dysfunction on UM cell migration and explored the mechanisms responsible for the endothelial cell abnormalities and the reasons for their peripheral effects. RESULTS: UM metastasis has a significantly higher percentage of vascular endothelial cells compared to in situ tumors, and endothelial cells in metastasis show significant senescence. Senescent endothelial cells in metastatic tumors showed significant Krüppel-like factor 4 (KLF4) upregulation, overexpression of KLF4 in normal endothelial cells induced senescence, and knockdown of KLF4 in senescent endothelium inhibited senescence, suggesting that KLF4 is a driver gene for endothelial senescence. KLF4-induced endothelial senescence drove tumor cell migration through a senescence-associated secretory phenotype (SASP), of which the most important component of the effector was CXCL12 (C-X-C motif chemokine ligand 12), and participated in the composition of the immunosuppressive microenvironment. CONCLUSION: This study provides an undesirable insight of senescent endothelial cells in promoting UM metastasis.


Asunto(s)
Movimiento Celular , Senescencia Celular , Células Endoteliales , Factor 4 Similar a Kruppel , Neoplasias Hepáticas , Melanoma , Análisis de la Célula Individual , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/genética , Melanoma/patología , Melanoma/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Línea Celular Tumoral , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Regulación Neoplásica de la Expresión Génica , Femenino , Masculino
17.
Exp Eye Res ; 246: 109990, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969283

RESUMEN

Ocular melanoma, including uveal melanoma (UM) and conjunctival melanoma (CM), is the most common ocular cancer among adults with a high rate of recurrence and poor prognosis. Loss of epigenetic homeostasis disturbed gene expression patterns, resulting in oncogenesis. Herein, we comprehensively analyzed the DNA methylation, transcriptome profiles, and corresponding clinical information of UM patients through multiple machine-learning algorithms, finding that a methylation-driven gene RBMS1 was correlated with poor clinical outcomes of UM patients. RNA-seq and single-cell RNA-seq analyses revealed that RBMS1 reflected diverse tumor microenvironments, where high RBMS1 expression marked an immune active TME. Furthermore, we found that tumor cells were identified to have the higher communication probability in RBMS1+ state. The functional enrichment analysis revealed that RBMS1 was associated with pigment granule and melanosome, participating in cell proliferation as well as apoptotic signaling pathway. Biological experiments were performed and demonstrated that the silencing of RBMS1 inhibited ocular melanoma proliferation and promoted apoptosis. Our study highlighted that RBMS1 reflects a distinct microenvironment and promotes tumor progression in ocular melanoma, contributing to the therapeutic customization and clinical decision-making.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Melanoma , Microambiente Tumoral , Neoplasias de la Úvea , Humanos , Melanoma/patología , Melanoma/genética , Melanoma/metabolismo , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/metabolismo , Apoptosis/genética , Metilación de ADN , Neoplasias de la Conjuntiva/genética , Neoplasias de la Conjuntiva/patología , Neoplasias de la Conjuntiva/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Masculino , Femenino , Línea Celular Tumoral
18.
Front Immunol ; 15: 1383125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903495

RESUMEN

Background: Screening for gene mutations has become routine clinical practice across numerous tumor entities, including melanoma. BAP1 gene mutations have been identified in various tumor types and acknowledged as a critical event in metastatic uveal melanoma, but their role in non-uveal melanoma remains inadequately characterized. Methods: A retrospective analysis of all melanomas sequenced in our department from 2014-2022 (n=2650) was conducted to identify BAP1 mutated samples. Assessment of clinical and genetic characteristics was performed as well as correlations with treatment outcome. Results: BAP1 mutations were identified in 129 cases and distributed across the entire gene without any apparent hot spots. Inactivating BAP1 mutations were more prevalent in uveal (55%) compared to non-uveal (17%) melanomas. Non-uveal BAP1 mutated melanomas frequently exhibited UV-signature mutations and had a significantly higher mutation load than uveal melanomas. GNAQ and GNA11 mutations were common in uveal melanomas, while MAP-Kinase mutations were frequent in non-uveal melanomas with NF1, BRAF V600 and NRAS Q61 mutations occurring in decreasing frequency, consistent with a strong UV association. Survival outcomes did not differ among non-uveal melanoma patients based on whether they received targeted or immune checkpoint therapy, or if their tumors harbored inactivating BAP1 mutations. Conclusion: In contrast to uveal melanomas, where BAP1 mutations serve as a significant prognostic indicator of an unfavorable outcome, BAP1 mutations in non-uveal melanomas are primarily considered passenger mutations and do not appear to be relevant from a prognostic or therapeutic perspective.


Asunto(s)
Melanoma , Mutación , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , Neoplasias de la Úvea , Humanos , Ubiquitina Tiolesterasa/genética , Melanoma/genética , Melanoma/mortalidad , Melanoma/terapia , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/mortalidad , Neoplasias de la Úvea/terapia , Masculino , Proteínas Supresoras de Tumor/genética , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Adulto , Anciano de 80 o más Años , Pronóstico
20.
Cancer Genomics Proteomics ; 21(4): 350-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38944422

RESUMEN

BACKGROUND/AIM: Uveal melanoma is an ocular malignancy whose prognosis severely worsens following metastasis. In order to improve the understanding of molecular physiology of metastatic uveal melanoma, we identified genes and pathways implicated in metastatic vs non-metastatic uveal melanoma. PATIENTS AND METHODS: A previously published dataset from Gene Expression Omnibus (GEO) was used to identify differentially expressed genes between metastatic and non-metastatic samples as well as to conduct pathway and perturbagen analyses using Gene Set Enrichment Analysis (GSEA), EnrichR, and iLINCS. RESULTS: In male metastatic uveal melanoma samples, the gene LOC401052 is significantly down-regulated and FHDC1 is significantly up-regulated compared to non-metastatic male samples. In female samples, no significant differently expressed genes were found. Additionally, we identified many significant up-regulated immune response pathways in male metastatic uveal melanoma, including "T cell activation in immune response". In contrast, many top up-regulated female pathways involve iron metabolism, including "heme biosynthetic process". iLINCS perturbagen analysis identified that both male and female samples have similar discordant activity with growth factor receptors, but only female samples have discordant activity with progesterone receptor agonists. CONCLUSION: Our results from analyzing genes, pathways, and perturbagens demonstrate differences in metastatic processes between sexes.


Asunto(s)
Perfilación de la Expresión Génica , Melanoma , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/metabolismo , Melanoma/genética , Melanoma/patología , Melanoma/metabolismo , Femenino , Masculino , Metástasis de la Neoplasia , Regulación Neoplásica de la Expresión Génica , Transcriptoma , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA