Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Neurophysiol ; 126(3): 709-722, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34288779

RESUMEN

Intrapleural injection of cholera toxin B conjugated to saporin (CTB-SAP) mimics respiratory motor neuron death and respiratory deficits observed in rat models of neuromuscular diseases. Seven-day CTB-SAP rats elicit enhanced phrenic long-term facilitation (pLTF) primarily through TrkB and PI3K/Akt-dependent mechanisms [i.e., Gs-pathway, which can be initiated by adenosine 2A (A2A) receptors in naïve rats], whereas 28-day CTB-SAP rats elicit moderate pLTF though BDNF- and MEK-/ERK-dependent mechanisms [i.e., Gq-pathway, which is typically initiated by serotonin (5-HT) receptors in naïve rats]. Here, we tested the hypothesis that pLTF following CTB-SAP is 1) A2A receptor-dependent at 7 days and 2) 5-HT receptor-dependent at 28 days. Adult Sprague-Dawley male rats were anesthetized, paralyzed, ventilated, and exposed to acute intermittent hypoxia (AIH; 3-, 5-min bouts of 10.5% O2) following bilateral, intrapleural injections at 7 days and 28 days of 1) CTB-SAP (25 µg) or 2) unconjugated CTB and SAP (control). Intrathecal C4 delivery included either the 1) A2A receptor antagonist (MSX-3; 10 µM; 12 µL) or 2) 5-HT receptor antagonist (methysergide; 20 mM; 15 µL). pLTF was abolished with A2A receptor inhibition in 7-day, not 28-day, CTB-SAP rats versus controls (P < 0.05), whereas pLTF was abolished following 5-HT receptor inhibition in 28-day, not 7-day, CTB-SAP rats versus controls (P < 0.05). In addition, 5-HT2A receptor expression was unchanged in CTB-SAP rats versus controls, whereas 5-HT2B receptor expression was decreased in CTB-SAP rats versus controls (P < 0.05). This study furthers our understanding of the contribution of differential receptor activation to pLTF and its implications for breathing following respiratory motor neuron death.NEW & NOTEWORTHY The current study investigates underlying receptor-dependent mechanisms contributing to phrenic long-term facilitation (pLTF) following CTB-SAP-induced respiratory motor neuron death at 7 days and 28 days. We found that A2A receptors are required for enhanced pLTF in 7-day CTB-SAP rats, whereas 5-HT receptors are required for moderate pLTF in 28-day CTB-SAP rats. Targeting these time-dependent mechanisms have implications for breathing maintenance over the course of many neuromuscular diseases.


Asunto(s)
Nervio Frénico/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor trkB/metabolismo , Receptores de Serotonina/metabolismo , Sinapsis/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Toxina del Cólera/toxicidad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Potenciación a Largo Plazo , Masculino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Nervio Frénico/citología , Nervio Frénico/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Respiración , Saporinas/toxicidad , Sinapsis/fisiología
2.
Exp Neurol ; 323: 113067, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31629857

RESUMEN

Respiratory motor neuron survival is critical for maintenance of adequate ventilation and airway clearance, preventing dependence to mechanical ventilation and respiratory tract infections. Phrenic motor neurons are highly vulnerable in rodent models of motor neuron disease versus accessory inspiratory motor pools (e.g. intercostals, scalenus). Thus, strategies that promote phrenic motor neuron survival when faced with disease and/or toxic insults are needed to help preserve breathing ability, airway defense and ventilator independence. Adenosine 2A receptors (A2A) are emerging as a potential target to promote neuroprotection, although their activation can have both beneficial and pathogenic effects. Since the role of A2A receptors in the phrenic motor neuron survival/death is not known, we tested the hypothesis that A2A receptor antagonism promotes phrenic motor neuron survival and preserves diaphragm function when faced with toxic, neurodegenerative insults that lead to phrenic motor neuron death. We utilized a novel neurotoxic model of respiratory motor neuron death recently developed in our laboratory: intrapleural injections of cholera toxin B subunit (CtB) conjugated to the ribosomal toxin, saporin (CtB-Saporin). We demonstrate that intrapleural CtB-Saporin causes: 1) profound phrenic motor neuron death (~5% survival); 2) ~7-fold increase in phrenic motor neuron A2A receptor expression prior to cell death; and 3) diaphragm muscle paralysis (inactive in most rats; ~7% residual diaphragm EMG amplitude during room air breathing). The A2A receptor antagonist istradefylline given after CtB-Saporin: 1) reduced phrenic motor neuron death (~20% survival) and 2) preserved diaphragm EMG activity (~46%). Thus, A2A receptors contribute to neurotoxic phrenic motor neuron death, an effect mitigated by A2A receptor antagonism.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Toxina del Cólera/toxicidad , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Nervio Frénico/efectos de los fármacos , Nervio Frénico/metabolismo , Saporinas/toxicidad , Animales , Apoptosis/efectos de los fármacos , Diafragma/inervación , Masculino , Purinas/farmacología , Ratas , Ratas Sprague-Dawley
3.
Neuroscience ; 399: 135-145, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30593920

RESUMEN

Hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS), endogenously produced during metabolism, which acts as a second messenger. In skeletal muscles, hypoxia- or hyperthermia-induced increase in H2O2 might affect synaptic transmission by targeting the most redox-sensitive presynaptic compartment (Giniatullin et al., 2006). However, the effects of H2O2 as a signal molecule have not previously been studied in different patterns of the synaptic activity. Here, using optical and microelectrode recording of synaptic vesicle exocytosis, we studied the use-dependent action of low concentrations of H2O2 and other oxidants in the mouse neuromuscular junction. We found that: (i) H2O2 at low micromole concentrations inhibited both spontaneous and evoked transmitter releases from the motor nerve terminals in a use-dependent manner, (ii) the antioxidant N-acetylcysteine (NAC) eliminated these depressant effects, (iii) the influence of H2O2 was not associated with lipid oxidation suggesting a pure signaling action, (iv) the intracellular oxidant Chloramine-T or (v) the glutathione depletion produced similar to H2O2 depressant effects. Taken together, our data revealed the effective inhibition of neurotransmitter release by ROS, which was proportional to the intensity of synaptic activity at the neuromuscular junction. The combination of various oxidants suggested an intracellular location for redox-sensitive sites responsible for modulation of the synaptic transmission in the skeletal muscle.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Unión Neuromuscular/efectos de los fármacos , Oxidantes/farmacología , Transmisión Sináptica/efectos de los fármacos , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Cloraminas/metabolismo , Diafragma/efectos de los fármacos , Diafragma/inervación , Diafragma/metabolismo , Relación Dosis-Respuesta a Droga , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Femenino , Glutatión/metabolismo , Masculino , Lípidos de la Membrana/metabolismo , Ratones , Unión Neuromuscular/fisiología , Nervio Frénico/efectos de los fármacos , Nervio Frénico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/fisiología , Técnicas de Cultivo de Tejidos , Compuestos de Tosilo/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 314(5): R709-R715, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29384698

RESUMEN

Intermittent spinal serotonin receptor activation elicits phrenic motor facilitation (pMF), a form of spinal respiratory motor plasticity. Episodic activation of either serotonin type 2 (5-HT2) or type 7 (5-HT7) receptors elicits pMF, although they do so via distinct cellular mechanisms known as the Q (5-HT2) and S (5-HT7) pathways to pMF. When coactivated, these pathways interact via mutual cross-talk inhibition. Although we have a rudimentary understanding of mechanisms mediating cross-talk interactions between spinal 5-HT2 subtype A (5-HT2A) and 5-HT7 receptor activation, we do not know if similar interactions exist between 5-HT2 subtype B (5-HT2B) and 5-HT7 receptors. We confirmed that either spinal 5-HT2B or 5-HT7 receptor activation alone elicits pMF and tested the hypotheses that 1) concurrent activation of both receptors suppresses pMF due to cross-talk inhibition; 2) 5-HT7 receptor inhibition of 5-HT2B receptor-induced pMF requires protein kinase A (PKA) activity; and 3) 5-HT2B receptor inhibition of 5-HT7 receptor-induced pMF requires NADPH oxidase (NOX) activity. Selective 5-HT2B and 5-HT7 receptor agonists were administered intrathecally at C4 (3 injections, 5-min intervals) to anesthetized, paralyzed, and ventilated rats. Whereas integrated phrenic nerve burst amplitude increased after selective spinal 5-HT2B or 5-HT7 receptor activation alone (i.e., pMF), pMF was no longer observed with concurrent 5-HT2B and 5-HT7 receptor agonist administration. With concurrent receptor activation, pMF was rescued by inhibiting either NOX or PKA activity, demonstrating their roles in cross-talk inhibition between these pathways to pMF. This report demonstrates cross-talk inhibition between 5-HT2B- and 5-HT7 receptor-induced pMF and that NOX and PKA activity are necessary for that cross-talk inhibition.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diafragma/inervación , Potenciación a Largo Plazo , NADPH Oxidasas/metabolismo , Nervio Frénico/metabolismo , Receptor Cross-Talk , Receptor de Serotonina 5-HT2B/metabolismo , Receptores de Serotonina/metabolismo , Nervios Espinales/enzimología , Potenciales de Acción , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , NADPH Oxidasas/antagonistas & inhibidores , Nervio Frénico/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Ratas Sprague-Dawley , Receptor Cross-Talk/efectos de los fármacos , Receptor de Serotonina 5-HT2B/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Respiración , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Transducción de Señal , Nervios Espinales/efectos de los fármacos , Factores de Tiempo
5.
J Physiol ; 596(8): 1501-1512, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29388230

RESUMEN

KEY POINTS: Although adenosine 2A (A2A ) receptor activation triggers specific cell signalling cascades, the ensuing physiological outcomes depend on the specific cell type expressing these receptors. Cervical spinal adenosine 2A (A2A ) receptor activation elicits a prolonged facilitation in phrenic nerve activity, which was nearly abolished following intrapleural A2A receptor siRNA injections. A2A receptor siRNA injections selectively knocked down A2A receptors in cholera toxin B-subunit-identified phrenic motor neurons, sparing cervical non-phrenic motor neurons. Collectively, our results support the hypothesis that phrenic motor neurons express the A2A receptors relevant to A2A receptor-induced phrenic motor facilitation. Upregulation of A2A receptor expression in the phrenic motor neurons per se may potentially be a useful approach to increase phrenic motor neuron excitability in conditions such as spinal cord injury. ABSTRACT: Cervical spinal adenosine 2A (A2A ) receptor activation elicits a prolonged increase in phrenic nerve activity, an effect known as phrenic motor facilitation (pMF). The specific cervical spinal cells expressing the relevant A2A receptors for pMF are unknown. This is an important question since the physiological outcome of A2A receptor activation is highly cell type specific. Thus, we tested the hypothesis that the relevant A2A receptors for pMF are expressed in phrenic motor neurons per se versus non-phrenic neurons of the cervical spinal cord. A2A receptor immunostaining significantly colocalized with NeuN-positive neurons (89 ± 2%). Intrapleural siRNA injections were used to selectively knock down A2A receptors in cholera toxin B-subunit-labelled phrenic motor neurons. A2A receptor knock-down was verified by a ∼45% decrease in A2A receptor immunoreactivity within phrenic motor neurons versus non-targeting siRNAs (siNT; P < 0.05). There was no evidence for knock-down in cervical non-phrenic motor neurons. In rats that were anaesthetized, subjected to neuromuscular blockade and ventilated, pMF induced by cervical (C3-4) intrathecal injections of the A2A receptor agonist CGS21680 was greatly attenuated in siA2A (21%) versus siNT treated rats (147%; P < 0.01). There were no significant effects of siA2A on phrenic burst frequency. Collectively, our results support the hypothesis that phrenic motor neurons express the A2A receptors relevant to A2A receptor-induced pMF.


Asunto(s)
Neuronas Motoras/metabolismo , Nervio Frénico/metabolismo , Receptor de Adenosina A2A/metabolismo , Potenciales de Acción , Agonistas del Receptor de Adenosina A2/farmacología , Animales , Toxina del Cólera/farmacología , Masculino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Nervio Frénico/citología , Nervio Frénico/fisiología , Ratas , Ratas Sprague-Dawley
6.
J Neurophysiol ; 118(5): 2755-2762, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28855298

RESUMEN

Spinal brain-derived neurotrophic factor (BDNF) is necessary and sufficient for certain forms of long-lasting phrenic motor facilitation (pMF). BDNF elicits pMF by binding to its high-affinity receptor, tropomyosin receptor kinase B (TrkB), on phrenic motor neurons, potentially activating multiple downstream signaling cascades. Canonical BDNF/TrkB signaling includes the 1) Ras/RAF/MEK/ERK MAP kinase, 2) phosphatidylinositol 3-kinase (PI3K)/Akt, and 3) PLCγ/PKC pathways. Here we demonstrate that spinal BDNF-induced pMF requires PLCγ/PKCθ in normal rats but not MEK/ERK or PI3K/Akt signaling. Cervical intrathecal injections of MEK/ERK (U0126) or PI3K/Akt (PI-828; 100 µM, 12 µl) inhibitor had no effect on BDNF-induced pMF (90 min after BDNF; U0126 + BDNF: 59 ± 14%, PI-828 + BDNF: 59 ± 8%, inhibitor vehicle + BDNF: 56 ± 7%; all P ≥ 0.05). In contrast, PKCθ inhibition with theta inhibitory peptide (TIP; 0.86 mM, 12 µl) prevented BDNF-induced pMF (90 min after BDNF; TIP + BDNF: -2 ± 2%; P ≤ 0.05 vs. other groups). Thus BDNF-induced pMF requires downstream PLCγ/PKCθ signaling, contrary to initial expectations.NEW AND NOTEWORTHY We demonstrate that BDNF-induced pMF requires downstream signaling via PKCθ but not MEK/ERK or PI3K/Akt signaling. These data are essential to understand the sequence of the cellular cascade leading to BDNF-dependent phrenic motor plasticity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas Motoras/metabolismo , Nervio Frénico/metabolismo , Proteína Quinasa C-delta/metabolismo , Médula Espinal/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Catéteres de Permanencia , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Neuronas Motoras/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Nervio Frénico/efectos de los fármacos , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Médula Espinal/efectos de los fármacos
7.
J Neurophysiol ; 118(5): 2702-2710, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28814632

RESUMEN

Respiratory motoneuron pools must provide rhythmic inspiratory drive that is robust and reliable, yet dynamic enough to respond to respiratory challenges. One form of plasticity that is hypothesized to contribute to motor output stability by sensing and responding to inadequate respiratory neural activity is inactivity-induced phrenic motor facilitation (iPMF), an increase in inspiratory output triggered by a reduction in phrenic synaptic inputs. Evidence suggests that mechanisms giving rise to iPMF differ depending on the pattern of reduced respiratory neural activity (i.e., neural apnea). A prolonged neural apnea elicits iPMF via a spinal TNF-α-induced increase in atypical PKC activity, but little is known regarding mechanisms that elicit iPMF following intermittent neural apnea. We tested the hypothesis that iPMF triggered by intermittent neural apnea requires retinoic acid and protein synthesis. Phrenic nerve activity was recorded in urethane-anesthetized and -ventilated rats treated intrathecally with an inhibitor of retinoic acid synthesis (4-diethlyaminobenzaldehyde, DEAB), a protein synthesis inhibitor (emetine), or vehicle (artificial cerebrospinal fluid) before intermittent (5 episodes, ~1.25 min each) or prolonged (30 min) neural apnea. Both DEAB and emetine abolished iPMF elicited by intermittent neural apnea but had no effect on iPMF elicited by a prolonged neural apnea. Thus different patterns of reduced respiratory neural activity elicit phenotypically similar iPMF via distinct spinal mechanisms. Understanding mechanisms that allow respiratory motoneurons to dynamically tune their output may have important implications in the context of respiratory control disorders that involve varied patterns of reduced respiratory neural activity, such as central sleep apnea and spinal cord injury.NEW & NOTEWORTHY We identify spinal retinoic acid and protein synthesis as critical components in the cellular cascade whereby repetitive reductions in respiratory neural activity elicit rebound increases in phrenic inspiratory activity.


Asunto(s)
Apnea/fisiopatología , Emetina/farmacología , Neuronas Motoras/fisiología , Nervio Frénico/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Tretinoina/metabolismo , Animales , Apnea/metabolismo , Masculino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Nervio Frénico/efectos de los fármacos , Nervio Frénico/metabolismo , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo , p-Aminoazobenceno/análogos & derivados , p-Aminoazobenceno/farmacología
8.
Life Sci ; 180: 143-150, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28527784

RESUMEN

AIMS: Parkinson's disease (PD) patients apart from motor dysfunctions exhibit respiratory disturbances. Their mechanism is still unknown and requires investigation. Our research was designed to examine the activity of phrenic (PHR) and hypoglossal (HG) nerves activity during a hypoxic respiratory response in the 6-hydroxydopamine (6-OHDA) model of PD. MAIN METHODS: Male adult Wistar rats were injected unilaterally with 6-OHDA (20µg) or the vehicle into the right medial forebrain bundle (MFB). Two weeks after the surgery the activity of the phrenic and hypoglossal nerve was registered in anesthetized, vagotomized, paralyzed, and mechanically ventilated rats under normoxic and hypoxic conditions. Lesion effectiveness was confirmed by the cylinder test, performed before the MFB injection and 14days after, before the respiratory experiment. KEY FINDINGS: 6-OHDA lesioned animals showed a significant increase in normoxic inspiratory time. Expiratory time and total time of the respiratory cycle were prolonged in PD rats after hypoxia. The amplitude of the PHR activity and its minute activity were increased in comparison to the sham group at recovery time and during 30s of hypoxia. The amplitude of the HG activity was increased in response to hypoxia in 6-OHDA lesioned animals. The degeneration of dopaminergic neurons decreased the pre-inspiratory/inspiratory ratio of the hypoglossal burst amplitude during and after hypoxia. SIGNIFICANCE: Unilateral MFB lesion changed the activity of the phrenic and hypoglossal nerves. The altered pre-inspiratory hypoglossal nerve activity indicates modifications to the central mechanisms controlling the activity of the HG nerve and may explain respiratory disorders seen in PD, i.e. apnea.


Asunto(s)
Nervio Hipogloso/metabolismo , Hipoxia/metabolismo , Trastornos Parkinsonianos/fisiopatología , Nervio Frénico/metabolismo , Respiración , Animales , Modelos Animales de Enfermedad , Masculino , Oxidopamina/toxicidad , Ratas , Ratas Wistar , Trastornos Respiratorios/etiología , Trastornos Respiratorios/fisiopatología , Respiración Artificial , Factores de Tiempo
9.
J Comp Neurol ; 525(5): 1192-1205, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27650492

RESUMEN

Cervical spinal hemisection at C2 (SH) removes premotor drive to phrenic motoneurons located in segments C3-C5 in rats. Spontaneous recovery of ipsilateral diaphragm muscle activity is associated with increased phrenic motoneuron expression of glutamatergic N-methyl-D-aspartate (NMDA) receptors and decreased expression of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptors. Glutamatergic receptor expression is regulated by tropomyosin-related kinase receptor subtype B (TrkB) signaling in various neuronal systems, and increased TrkB receptor expression in phrenic motoneurons enhances recovery post-SH. Accordingly, we hypothesize that recovery of ipsilateral diaphragm muscle activity post-SH, whether spontaneous or enhanced by adenoassociated virus (AAV)-mediated upregulation of TrkB receptor expression, is associated with increased expression of glutamatergic NMDA receptors in phrenic motoneurons. Adult male Sprague-Dawley rats underwent diaphragm electromyography electrode implantation and SH surgery. Rats were injected intrapleurally with AAV expressing TrkB or GFP 3 weeks before SH. At 14 days post-SH, the proportion of animals displaying recovery of ipsilateral diaphragm activity increased in AAV-TrkB-treated (9/9) compared with untreated (3/5) or AAV-GFP-treated (4/10; P < 0.027) animals. Phrenic motoneuron NMDA NR1 subunit mRNA expression was approximately fourfold greater in AAV-TrkB- vs. AAV-GFP-treated SH animals (P < 0.004) and in animals displaying recovery vs. those not recovering (P < 0.005). Phrenic motoneuron AMPA glutamate receptor 2 (GluR2) subunit mRNA expression decreased after SH, and, albeit increased in animals displaying recovery vs. those not recovering, levels remained lower than control. We conclude that increased phrenic motoneuron expression of glutamatergic NMDA receptors is associated with spontaneous recovery after SH and enhanced recovery after AAV-TrkB treatment. J. Comp. Neurol. 525:1192-1205, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diafragma/inervación , Neuronas Motoras/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Captura por Microdisección con Láser , Masculino , Nervio Frénico/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor trkB/metabolismo
10.
Neuropharmacology ; 113(Pt A): 82-88, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27663700

RESUMEN

Spinal metabotropic serotonin receptors encode transient experiences into long-lasting changes in motor behavior (i.e. motor plasticity). While interactions between serotonin receptor subtypes are known to regulate plasticity, the significance of molecular divergence in downstream G protein coupled receptor signaling is not well understood. Here we tested the hypothesis that distinct cAMP dependent signaling pathways differentially regulate serotonin-induced phrenic motor facilitation (pMF); a well-studied model of spinal motor plasticity. Specifically, we studied the capacity of cAMP-dependent protein kinase A (PKA) and exchange protein activated by cAMP (EPAC) to regulate 5-HT2A receptor-induced pMF within adult male rats. Although spinal PKA, EPAC and 5-HT2A each elicit pMF when activated alone, concurrent PKA and 5-HT2A activation interact via mutual inhibition thereby blocking pMF expression. Conversely, concurrent EPAC and 5-HT2A activation enhance pMF expression reflecting additive contributions from both mechanisms. Thus, we demonstrate that distinct downstream cAMP signaling pathways enable differential regulation of 5-HT2A-induced pMF. Conditional activation of independent signaling mechanisms may explain experience amendable changes in plasticity expression (i.e. metaplasticity), an emerging concept thought to enable flexible motor control within the adult central nervous system.


Asunto(s)
AMP Cíclico/metabolismo , Neuronas Motoras/metabolismo , Plasticidad Neuronal , Nervio Frénico/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/metabolismo , Masculino , Neuronas Motoras/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Nervio Frénico/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Agonistas del Receptor de Serotonina 5-HT2/administración & dosificación , Transducción de Señal
11.
Respir Physiol Neurobiol ; 230: 44-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27181326

RESUMEN

Thermal stress and prior upper respiratory tract infection are risk factors for the Sudden Infant Death Syndrome. The adverse effects of prior infection are likely mediated by interleukin-1ß (IL-1ß). Therefore, we examined the single and combined effects of IL-1ß and elevated body temperature on the duration of the Laryngeal Chemoreflex (LCR) in decerebrate neonatal piglets ranging in age from post-natal day (P) 3 to P7. We examined the effects of intraperitoneal (I.P.) injections of 0.3mg/Kg IL-1ß with or without I.P. 10mg/Kg indomethacin pretreatment on the duration of the LCR, and in the same animals we also examined the duration of the LCR when body temperature was elevated approximately 2°C. We found that IL-1ß significantly increased the duration of the LCR even when body temperature was held constant. There was a significant multiplicative effect when elevated body temperature was combined with IL-1ß treatment: prolongation of the LCR was significantly greater than the sum of independent thermal and IL-1ß-induced prolongations of the LCR. The effects of IL-1ß, but not elevated body temperature, were blocked by pretreatment with indomethacin alone. We also tested the interaction between IL-6 given directly into the nucleus of the solitary tract (NTS) bilaterally in 100ngm microinjections of 50µL and pretreatment with indomethacin. Here again, there was a multiplicative effect of IL-6 treatment and elevated body temperature, which significantly prolonged the LCR. The effect of IL-6 on the LCR, but not elevated body temperature, was blocked by pretreatment with indomethacin. We conclude that cytokines interact with elevated body temperature, probably through direct thermal effects on TRPV1 receptors expressed pre-synaptically in the NTS and through cytokine-dependent sensitization of the TRPV1 receptor. This sensitization is likely initiated by cyclo-oxygenase-2 dependent synthesis of prostaglandin E2, which is stimulated by elevated levels of IL-1ß or IL-6. Inflammatory sensitization of the LCR coupled with thermal prolongation of the LCR may increase the propensity for apnea and Sudden Infant Death Syndrome.


Asunto(s)
Fiebre/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Laringe/fisiología , Reflejo/fisiología , Núcleo Solitario/metabolismo , Animales , Animales Recién Nacidos , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Inhibidores de la Ciclooxigenasa/farmacología , Estado de Descerebración , Modelos Animales de Enfermedad , Femenino , Indometacina/farmacología , Inyecciones Intraperitoneales , Interleucina-1beta/administración & dosificación , Interleucina-6/administración & dosificación , Laringe/efectos de los fármacos , Masculino , Nervio Frénico/efectos de los fármacos , Nervio Frénico/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Reflejo/efectos de los fármacos , Respiración/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , Porcinos , Canales Catiónicos TRPV/metabolismo
12.
Acta Neuropathol ; 132(1): 93-110, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27021905

RESUMEN

In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3-stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features.


Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas de Neurofilamentos/deficiencia , Factor de Transcripción STAT3/metabolismo , Estatmina/metabolismo , Animales , Axones/metabolismo , Axones/patología , Células Cultivadas , Estimación de Kaplan-Meier , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares/genética , Actividad Motora/fisiología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas de Neurofilamentos/genética , Fenotipo , Nervio Frénico/metabolismo , Nervio Frénico/patología , Nervio Ciático/metabolismo , Nervio Ciático/patología , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/patología
13.
Dev Neurobiol ; 76(10): 1138-49, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26818254

RESUMEN

Prenatal nicotine exposure with continued exposure through breast milk over the first week of life (developmental nicotine exposure, DNE) alters the development of brainstem circuits that control breathing. Here, we test the hypothesis that DNE alters the respiratory motor response to endogenous and exogenous acetylcholine (ACh) in neonatal rats. We used the brainstem-spinal cord preparation in the split-bath configuration, and applied drugs to the brainstem compartment while measuring the burst frequency and amplitude of the fourth cervical ventral nerve roots (C4VR), which contain the axons of phrenic motoneurons. We applied ACh alone; the nicotinic acetylcholine receptor (nAChR) antagonist curare, either alone or in the presence of ACh; and the muscarinic acetylcholine receptor (mAChR) antagonist atropine, either alone or in the presence of ACh. The main findings include: (1) atropine reduced frequency similarly in controls and DNE animals, while curare caused modest slowing in controls but no consistent change in DNE animals; (2) DNE greatly attenuated the increase in C4VR frequency mediated by exogenous ACh; (3) stimulation of nAChRs with ACh in the presence of atropine increased frequency markedly in controls, but not DNE animals; (4) stimulation of mAChRs with ACh in the presence of curare caused a modest increase in frequency, with no treatment group differences. DNE blunts the response of the respiratory central pattern generator to exogenous ACh, consistent with reduced availability of functionally competent nAChRs; DNE did not alter the muscarinic control of respiratory motor output. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1138-1149, 2016.


Asunto(s)
Acetilcolina/metabolismo , Nicotina/toxicidad , Agonistas Nicotínicos/toxicidad , Efectos Tardíos de la Exposición Prenatal , Respiración , Acetilcolina/farmacología , Animales , Animales Recién Nacidos , Atropina/farmacología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Agonistas Colinérgicos/farmacología , Curare/farmacología , Modelos Animales de Enfermedad , Femenino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Antagonistas Muscarínicos/farmacología , Antagonistas Nicotínicos/farmacología , Nervio Frénico/efectos de los fármacos , Nervio Frénico/crecimiento & desarrollo , Nervio Frénico/metabolismo , Embarazo , Ratas Sprague-Dawley , Respiración/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Técnicas de Cultivo de Tejidos
14.
J Neurophysiol ; 114(3): 2015-22, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26269554

RESUMEN

Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via "cross-talk inhibition." We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2'-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Complejos Multiproteicos/metabolismo , Nervio Frénico/metabolismo , Receptores de Serotonina/metabolismo , Médula Espinal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Plasticidad Neuronal , Nervio Frénico/fisiología , Ratas , Ratas Endogámicas Lew , Transducción de Señal , Médula Espinal/fisiología
15.
Eur J Pharmacol ; 765: 51-7, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26277323

RESUMEN

The objective of this study is to probe the effects of dopamine and potential interactions with nicotine at the motor end plate. To accomplish this, we measured the amplitude of nerve-evoked muscle twitches of the isolated rat phrenic hemi-diaphragm preparation. Dopamine potentiated indirect muscle twitches in normal and gallamine-presensitized preparations amounting to a maximum of 31.14±0.71% and 69.23±1.96%, respectively. The dopamine-induced facilitation was well maintained in presence of 10 µM propranolol but greatly reduced in presence of 6 µM SCH 23390 or 3 µM dantrolene. In addition, SKF 81297 attained a plateau at 16 µM as opposed to 64 µM dopamine, with a percentage potentiation of 69.47±1.76. The facilitatory effect of dopamine was potentiated in nicotine treated rats. This study revealed for the first time that the facilitatory effect exerted by dopamine on neuromuscular transmission is mediated via the dopamine D1-like receptors. In addition, it highlighted the possible dependency of dopamine effects on intracellular calcium and signified potential interaction among dopamine and nicotine. Clinically, the findings generated by this study reveal potential targets for approaching motor deficit syndromes.


Asunto(s)
Dopamina/metabolismo , Dopamina/farmacología , Nicotina/metabolismo , Nicotina/farmacología , Receptores de Dopamina D1/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Diafragma/efectos de los fármacos , Diafragma/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Técnicas de Cultivo de Órganos , Nervio Frénico/efectos de los fármacos , Nervio Frénico/metabolismo , Ratas , Ratas Wistar , Receptores de Dopamina D1/agonistas , Transmisión Sináptica/fisiología
16.
J Neurophysiol ; 114(3): 1784-91, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26224775

RESUMEN

Phrenic long-term facilitation (pLTF) is a persistent increase in phrenic nerve activity after acute intermittent hypoxia (AIH). Distinct cell-signaling cascades give rise to pLTF depending on the severity of hypoxemia within hypoxic episodes. Moderate AIH (mAIH; three 5-min episodes, PaO2 ∼35-55 mmHG) elicits pLTF by a serotonin (5-HT)-dependent mechanism that requires new synthesis of brain-derived neurotrophic factor (BDNF), activation of its high-affinity receptor (TrkB), and ERK MAPK signaling. In contrast, severe AIH (sAIH; three 5-min episodes, PaO2 ∼25-30 mmHG) elicits pLTF by an adenosine-dependent mechanism that requires new TrkB synthesis and Akt signaling. Although both mechanisms require spinal protein synthesis, the newly synthesized proteins are distinct, as are the neurochemicals inducing plasticity (serotonin vs. adenosine). In many forms of neuroplasticity, new protein synthesis requires translational regulation via mammalian target of rapamycin (mTOR) signaling. Since Akt regulates mTOR activity, we hypothesized that mTOR activity is necessary for sAIH- but not mAIH-induced pLTF. Phrenic nerve activity in anesthetized, paralyzed, and ventilated rats was recorded before, during, and 60 min after mAIH or sAIH. Rats were pretreated with intrathecal injections of 20% DMSO (vehicle controls) or rapamycin (0.1 mM, 12 µl), a selective mTOR complex 1 inhibitor. Consistent with our hypothesis, rapamycin blocked sAIH- but not mAIH-induced pLTF. Thus spinal mTOR activity is required for adenosine-dependent (sAIH) but not serotonin-dependent (mAIH) pLTF, suggesting that distinct mechanisms regulate new protein synthesis in these forms of spinal neuroplasticity.


Asunto(s)
Hipoxia/metabolismo , Potenciación a Largo Plazo , Complejos Multiproteicos/metabolismo , Nervio Frénico/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenosina/metabolismo , Animales , Hipoxia/fisiopatología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Nervio Frénico/fisiología , Ratas , Ratas Sprague-Dawley
17.
Mol Ther ; 23(3): 533-48, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25492561

RESUMEN

Approximately half of traumatic spinal cord injury (SCI) cases affect cervical regions, resulting in chronic respiratory compromise. The majority of these injuries affect midcervical levels, the location of phrenic motor neurons (PMNs) that innervate the diaphragm. A valuable opportunity exists following SCI for preventing PMN loss that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxicity due to dysregulation of extracellular glutamate homeostasis. Astrocytes express glutamate transporter 1 (GLT1), which is responsible for the majority of CNS glutamate clearance. Given our observations of GLT1 dysfunction post-SCI, we evaluated intraspinal transplantation of Glial-Restricted Precursors (GRPs)--a class of lineage-restricted astrocyte progenitors--into ventral horn following cervical hemicontusion as a novel strategy for reconstituting GLT1 function, preventing excitotoxicity and protecting PMNs in the acutely injured spinal cord. We find that unmodified transplants express low levels of GLT1 in the injured spinal cord. To enhance their therapeutic properties, we engineered GRPs with AAV8 to overexpress GLT1 only in astrocytes using the GFA2 promoter, resulting in significantly increased GLT1 protein expression and functional glutamate uptake following astrocyte differentiation in vitro and after transplantation into C4 hemicontusion. Compared to medium-only control and unmodified GRPs, GLT1-overexpressing transplants reduced lesion size, diaphragm denervation and diaphragm dysfunction. Our findings demonstrate transplantation-based replacement of astrocyte GLT1 is a promising approach for SCI.


Asunto(s)
Astrocitos/trasplante , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Diafragma/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Traumatismos de la Médula Espinal/terapia , Médula Espinal/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Dependovirus/genética , Diafragma/patología , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/metabolismo , Femenino , Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Nervio Frénico/lesiones , Nervio Frénico/metabolismo , Nervio Frénico/patología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Transgenes
18.
J Neurosci ; 34(22): 7622-38, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24872566

RESUMEN

A major portion of spinal cord injury (SCI) cases affect midcervical levels, the location of the phrenic motor neuron (PhMN) pool that innervates the diaphragm. While initial trauma is uncontrollable, a valuable opportunity exists in the hours to days following SCI for preventing PhMN loss and consequent respiratory dysfunction that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxic cell death due to dysregulation of extracellular glutamate homeostasis. GLT1, mainly expressed by astrocytes, is responsible for the vast majority of functional uptake of extracellular glutamate in the CNS, particularly in spinal cord. We found that, in bacterial artificial chromosome-GLT1-enhanced green fluorescent protein reporter mice following unilateral midcervical (C4) contusion SCI, numbers of GLT1-expressing astrocytes in ventral horn and total intraspinal GLT1 protein expression were reduced soon after injury and the decrease persisted for ≥6 weeks. We used intraspinal delivery of adeno-associated virus type 8 (AAV8)-Gfa2 vector to rat cervical spinal cord ventral horn for targeting focal astrocyte GLT1 overexpression in areas of PhMN loss. Intraspinal delivery of AAV8-Gfa2-GLT1 resulted in transduction primarily of GFAP(+) astrocytes that persisted for ≥6 weeks postinjury, as well as increased intraspinal GLT1 protein expression. Surprisingly, we found that astrocyte-targeted GLT1 overexpression increased lesion size, PhMN loss, phrenic nerve axonal degeneration, and diaphragm neuromuscular junction denervation, and resulted in reduced functional diaphragm innervation as assessed by phrenic nerve-diaphragm compound muscle action potential recordings. These results demonstrate that GLT1 overexpression via intraspinal AAV-Gfa2-GLT1 delivery exacerbates neuronal damage and increases respiratory impairment following cervical SCI.


Asunto(s)
Astrocitos/patología , Vértebras Cervicales , Diafragma/metabolismo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Miembro Anterior/fisiopatología , Neuronas Motoras/metabolismo , Degeneración Nerviosa/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Astrocitos/metabolismo , Diafragma/fisiopatología , Transportador 2 de Aminoácidos Excitadores/genética , Femenino , Miembro Anterior/metabolismo , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Nervio Frénico/metabolismo , Nervio Frénico/patología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología
19.
J Physiol ; 591(22): 5585-98, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23878370

RESUMEN

A prolonged reduction in central neural respiratory activity elicits a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF), a 'rebound' increase in phrenic burst amplitude apparent once respiratory neural activity is restored. iPMF requires atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize an early transient increase in phrenic burst amplitude and to form long-lasting iPMF following reduced respiratory neural activity. Upstream signal(s) leading to spinal aPKC activation are unknown. We tested the hypothesis that spinal tumour necrosis factor-α (TNFα) is necessary for iPMF via an aPKC-dependent mechanism. Anaesthetized, ventilated rats were exposed to a 30 min neural apnoea; upon resumption of respiratory neural activity, a prolonged increase in phrenic burst amplitude (42 ± 9% baseline; P < 0.05) was apparent, indicating long-lasting iPMF. Pretreatment with recombinant human soluble TNF receptor 1 (sTNFR1) in the intrathecal space at the level of the phrenic motor nucleus prior to neural apnoea blocked long-lasting iPMF (2 ± 8% baseline; P > 0.05). Intrathecal TNFα without neural apnoea was sufficient to elicit long-lasting phrenic motor facilitation (pMF; 62 ± 7% baseline; P < 0.05). Similar to iPMF, TNFα-induced pMF required spinal aPKC activity, as intrathecal delivery of a ζ-pseudosubstrate inhibitory peptide (PKCζ-PS) 35 min following intrathecal TNFα arrested TNFα-induced pMF (28 ± 8% baseline; P < 0.05). These data demonstrate that: (1) spinal TNFα is necessary for iPMF; and (2) spinal TNFα is sufficient to elicit pMF via a similar aPKC-dependent mechanism. These data are consistent with the hypothesis that reduced respiratory neural activity elicits iPMF via a TNFα-dependent increase in spinal aPKC activity.


Asunto(s)
Neuronas Motoras/fisiología , Nervio Frénico/metabolismo , Nervio Frénico/fisiología , Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apnea/metabolismo , Apnea/fisiopatología , Humanos , Masculino , Neuronas Motoras/metabolismo , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores del Factor de Necrosis Tumoral/metabolismo , Médula Espinal/fisiología
20.
Exp Neurol ; 248: 45-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23726960

RESUMEN

In this study, we examined modulations in phosphatase and tensin homolog (PTEN) and mammalian target of rapamycin (mTOR) protein expression after a lateral C2 hemisection and subsequent intermittent hypoxia (IH) exposure and training, which initiates respiratory motor plasticity and recovery. PTEN and mTOR are significant molecules within a signaling pathway that directly influences dendritic sprouting, axonal plasticity, and regeneration. Expression levels of PTEN, mTOR and downstream effectors within this pathway were investigated, and it was found that following injury and IH exposure the expression of these molecules was significantly altered. This study directly demonstrates the implementation and feasibility of a non-invasive strategy to modulate the expression levels of intrinsic signaling molecules known to influence plasticity and regeneration in the CNS.


Asunto(s)
Hipoxia/metabolismo , Fosfohidrolasa PTEN/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Vértebras Cervicales , Femenino , Neuronas Motoras/metabolismo , Nervio Frénico/metabolismo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA