Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Sci Rep ; 14(1): 3380, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336828

RESUMEN

Optical coherence tomography (OCT) has become a key method for diagnosing and staging radiation retinopathy, based mainly on the presence of fluid in the central macula. A robust retinal layer segmentation method is required for identification of the specific layers involved in radiation-induced pathology in individual eyes over time, in order to determine damage driven by radiation injury to the microvessels and to the inner retinal neurons. Here, we utilized OCT, OCT-angiography, visual field testing, and patient-specific dosimetry models to analyze abnormal retinal layer thickening and thinning relative to microvessel density, visual function, radiation dose, and time from radiotherapy in a cross-sectional cohort of uveal melanoma patients treated with 125I-plaque brachytherapy. Within the first 24 months of radiotherapy, we show differential thickening and thinning of the two inner retinal layers, suggestive of microvessel leakage and neurodegeneration, mostly favoring thickening. Four out of 13 eyes showed decreased inner retinal capillary density associated with a corresponding normal inner retinal thickness, indicating early microvascular pathology. Two eyes showed the opposite: significant inner retinal layer thinning and normal capillary density, indicating early neuronal damage preceding a decrease in capillary density. At later time points, inner retinal thinning becomes the dominant pathology and correlates significantly with decreased vascularity, vision loss, and dose to the optic nerve. Stable multiple retinal layer segmentation provided by 3D graph-based methods aids in assessing the microvascular and neuronal response to radiation, information needed to target therapeutics for radiation retinopathy and vision loss.


Asunto(s)
Traumatismos por Radiación , Degeneración Retiniana , Neuronas Retinianas , Humanos , Pruebas del Campo Visual , Tomografía de Coherencia Óptica/métodos , Estudios Transversales , Retina/diagnóstico por imagen , Retina/patología , Neuronas Retinianas/patología , Degeneración Retiniana/patología , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología
2.
Ann Clin Lab Sci ; 53(6): 905-913, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38182143

RESUMEN

OBJECTIVE: This study aimed to investigate the role and mechanism of microRNA (miR)-193a in promoting apoptosis of retinal neuronal cells in early diabetic (DM) rats. METHODS: Seventy-two male SD-grade rats were selected to establish a DM model by intraperitoneal injection of streptozotocin (STZ), and randomly divided into a control group (blank control group), a DM group (diabetic model group), a DM+miR-NC inhibitor group (miR-193a inhibition negative control group), a DM+miR-193a inhibitor group (miR-193a inhibitor group), DM+miR-NC mimic group (miR-193a overexpression negative control group), DM+miR-193a mimic group (miR-193a overexpression group), with12 rats in each group. RESULTS: The miR-193a expression, apoptosis rate, and Bax, Caspase3, and Caspase9 protein expression levels were elevated, and Bcl-2 protein expression was decreased in the retinal tissues of DM rats and high glucose-induced rat retinal neuronal cells, while miR-193a inhibitors reversed these processes. These dual luciferase reporter assay showed that WT1CDS, and WT1Mut were lower in the miR-193a group than in the miR-NC group (P<0.05); WT1 protein expression was reduced in the retinal tissues of DM rat and high glucose-induced rat retinal neuronal cells, and miR-193a inhibitors increased WT1 protein expression. Compared with cells co-transfected with miR-193a and WT1vector, miR-193a and WT1 cotransfection inhibited high glucose-induced apoptosis in retinal neuronal cells and regulated apoptotic protein expression. miR-193a was highly expressed and WT1 was lowly expressed in retinal tissues of DM rats and high glucose-induced rat retinal neuronal cells. CONCLUSION: miR-193a could inhibit early retinal neuronal cell apoptosis in DM rats by targeting and negatively regulating WT1 expression.


Asunto(s)
Apoptosis , Diabetes Mellitus , MicroARNs , Neuronas Retinianas , Animales , Masculino , Ratas , Apoptosis/genética , Genes del Tumor de Wilms , Glucosa , MicroARNs/genética , Proteínas WT1 , Neuronas Retinianas/metabolismo
3.
Stem Cell Reports ; 18(11): 2203-2221, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37802075

RESUMEN

Intercellular cytoplasmic material transfer (MT) occurs between transplanted and developing photoreceptors and ambiguates cell origin identification in developmental, transdifferentiation, and transplantation experiments. Whether MT is a photoreceptor-specific phenomenon is unclear. Retinal ganglion cell (RGC) replacement, through transdifferentiation or transplantation, holds potential for restoring vision in optic neuropathies. During careful assessment for MT following human stem cell-derived RGC transplantation into mice, we identified RGC xenografts occasionally giving rise to labeling of donor-derived cytoplasmic, nuclear, and mitochondrial proteins within recipient Müller glia. Critically, nuclear organization is distinct between human and murine retinal neurons, which enables unequivocal discrimination of donor from host cells. MT was greatly facilitated by internal limiting membrane disruption, which also augments retinal engraftment following transplantation. Our findings demonstrate that retinal MT is not unique to photoreceptors and challenge the isolated use of species-specific immunofluorescent markers for xenotransplant identification. Assessment for MT is critical when analyzing neuronal replacement interventions.


Asunto(s)
Retina , Neuronas Retinianas , Animales , Humanos , Ratones , Retina/metabolismo , Células Ganglionares de la Retina , Neuroglía/metabolismo , Células Fotorreceptoras
4.
Invest Ophthalmol Vis Sci ; 64(12): 9, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37669061

RESUMEN

Purpose: This study aimed to explore the neuroprotective effects of sigma-1 receptor (S1R) on optic nerve crush (ONC) mice by upregulating its expression through intravitreal injection of adeno-associated virus (AAV). Methods: The animals were divided into four groups. Mice that underwent ONC were administered an intravitreal injection with blank vector (ONC group), with AAV targeting downregulation of S1R (S1R-sh group), or with AAV targeting overexpression of S1R (S1R-AAV group). Mice in the control group underwent intravitreal injection with blank vector. The thickness of each layer of the retina was measured through optical coherence tomography, and the apoptotic rate of retinal neurons was determined using the TUNEL assay. The expression levels of brain-derived neurotrophic factor (BDNF) and S1R were quantified through western blot. Electroretinogram (ERG) was performed to evaluate the visual function. Results: The thickness of the total retina (P = 0.001), ganglion cell layer (P = 0.017), and inner nuclear layer (P = 0.002) in S1R-AAV group was significantly thicker than that of the ONC group. The number of retinal apoptotic cells in the S1R-AAV group was 23% lower than that in the ONC group (P = 0.002). ERG results showed that, compared to the ONC group, the amplitudes of the a- and b-waves were higher in the S1R-AAV group (a-wave, P < 0.001; b-wave, P = 0.007). Western blot showed that the expression of BDNF in the S1R-AAV group was higher than that in the ONC group (P < 0.001). Conclusions: Activation of S1R in the retina through intravitreal injection of AAV can effectively maintain the retina structure, promote neuronal cell survival, and protect visual function.


Asunto(s)
Fármacos Neuroprotectores , Neuronas Retinianas , Animales , Ratones , Factor Neurotrófico Derivado del Encéfalo , Nervio Óptico , Retina , Dependovirus , Receptor Sigma-1
5.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37308277

RESUMEN

The present study focused on the effect of miR-93-5p on apoptosis of retinal neurons in acute ocular hypertension (AOH) model by regulating PDCD4 and explored its related mechanism. We detected that miR-93-5p expression was decreased and PDCD4 expression was increased in the AOH retina by qRT-PCR. Therefore, we explored the role of miR-93-5p and PDCD4. MiR-93-5p overexpression inhibited the apoptosis of retinal neurons and the expression of PDCD4 in vivo and in vitro. Inhibiting the expression of PDCD4 via transfected interfering RNA decreased the apoptosis of retinal cells and increased the expression of PI3K/Akt pathway-related proteins in vitro. However, the addition of PI3K protein inhibitor LY294002 reversed this effect, leading to a decrease of PI3K/Akt pathway protein expression and an increase of apoptosis-related protein Bax/Bcl-2 expression ratio. Finally, up-regulating miR-93-5p or down-regulating PDCD4 increased the expression of PI3K/Akt pathway protein in vivo. In conclusion, under the condition of AOH injury, miR-93-5p-inhibiting PDCD4 expression reduced the apoptosis of retinal neurons by activating PI3K/Akt pathway.


Asunto(s)
MicroARNs , Hipertensión Ocular , Neuronas Retinianas , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Apoptosis , Proteínas de Unión al ARN , Proteínas Reguladoras de la Apoptosis
6.
Biochem Biophys Res Commun ; 663: 87-95, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37119770

RESUMEN

miR-183/96/182 cluster plays a critical role in the developing retina by regulating many target genes involved in signaling pathways. This study aimed to survey the miR-183/96/182 cluster-target interactions that, potentially contribute to human retinal pigmented epithelial (hRPE) cell differentiation into photoreceptors. Target genes of the miR-183/96/182 cluster were obtained from miRNA-target databases and applied to construct miRNA-target networks. Gene ontology and KEGG pathway analysis was performed. miR-183/96/182 cluster sequence was cloned into an eGFP-intron splicing cassette in an AAV2 vector and overexpressed in hRPE cells. The expression level of target genes including HES1, PAX6, SOX2, CCNJ, and RORΒ was evaluated using qPCR. Our results showed that miR-183, miR-96, and miR-182 share 136 target genes that are involved in cell proliferation pathways such as PI3K/AKT and MAPK pathway. qPCR data indicated a 22-, 7-, and 4-fold overexpression of miR-183, miR-96, and miR-182, respectively, in infected hRPE cells. Consequently, the downregulation of several key targets such as PAX6, CCND2, CDK5R1, and CCNJ and upregulation of a few retina-specific neural markers such as Rhodopsin, red opsin, and CRX was detected. Our findings suggest that the miR-183/96/182 cluster may induce hRPE transdifferentiation by targeting key genes that involve in the cell cycle and proliferation pathways.


Asunto(s)
MicroARNs , Neuronas Retinianas , Humanos , Transdiferenciación Celular/genética , Fosfatidilinositol 3-Quinasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neuronas Retinianas/metabolismo , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo
7.
Br J Ophthalmol ; 107(10): 1432-1437, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750478

RESUMEN

BACKGROUND/AIMS: Neurofilament light chain (NfL) levels in cerebrospinal fluid and serum are reliable indicators for neuroaxonal damage in a broad spectrum of neurodegenerative diseases. Herein, we investigate NfL levels in serum and anterior chamber fluid of patients with glaucoma. METHODS: Patients scheduled for routine glaucoma or cataract surgery were recruited for this study. Retinal nerve fibre layer thickness was measured by optical coherence tomography (OCT, Heidelberg Spectralis). NfL levels in serum and in anterior chamber fluid were analysed with Simoa SR-X Analyzer (Quanterix; NFLIGHT, Lexington, Massachusetts, USA). T-test was used for parametric data and Mann-Whitney-U test for nonparametric data. Spearman's rank-order correlation was used to investigate correlations. P values<0.05 were considered as statistically significant. RESULTS: Sixty patients with glaucoma and 58 controls were enrolled. Serum NfL concentration of patients with glaucoma was similar to serum NfL concentration in controls (median (IQR); 22.7 (18.9) pg/mL vs 22.5 (24.0) pg/mL; p=0.763). A positive correlation of serum NfL with age was observed in both patients with glaucoma (r=0.77; p<0.001) and in the control group (r=0.82, p<0.001). In the anterior chamber fluid, the NfL concentration was substantially increased in patients with glaucoma compared with controls (20.7 (101.3) pg/mL vs 3.1 (2.9) pg/mL; p<0.001). Furthermore, we found a positive correlation of anterior chamber fluid NfL with preoperative intraocular pressure (r=0.39, p=0.003) and with retinal nerve fibre layer thickness (r=0.58, p<0.001). CONCLUSION: NfL levels in anterior chamber fluid are elevated in patients with glaucoma and correlate with intraocular pressure and retinal nerve fibre layer thickness. The presented data strongly support anterior chamber fluid NfL as a new marker for glaucoma.


Asunto(s)
Cámara Anterior , Glaucoma , Filamentos Intermedios , Neuronas Retinianas , Humanos , Cámara Anterior/patología , Glaucoma/patología , Presión Intraocular , Neuronas Retinianas/patología
8.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430332

RESUMEN

Previous studies have indicated that Brca1 (Breast cancer suppressor gene 1) plays an important role in neural development and degenerative diseases. However, the bioactivity and regulatory mechanism of Brca1 expression in retinal neurocytes remain unclear. In the present study, our data indicated that Brca1 maintains the state of neuronal precursor cells. Brca1 silencing induces differentiation in 661W cells. Nestin, a marker of precursor cells, was significantly decreased in parallel with Brca1 silencing in 661W cells, whereas Map2 (Microtubule associated protein 2), a marker of differentiated neurons, was significantly increased. Neurite outgrowth was increased by ~4.0-fold in Brca1-silenced cells. Moreover, DNA affinity purification assays and ChIP assays demonstrated that Gata3 (GATA binding protein 3) regulates Brca1 transcription in 661W cells. Silencing or overexpressing Gata3 could significantly regulate the expression of Brca1 and affect its promoter inducibility. Furthermore, the expression of Gata3 generally occurred in parallel with that of Brca1 in developing mouse retinas. Both Gata3 and Brca1 are expressed in the neonatal mouse retina but are developmentally silenced with age. Exogenous Gata3 significantly inhibited neural activity by decreasing synaptophysin and neurite outgrowth. Thus, this study demonstrated that Brca1 is transcriptionally regulated by Gata3. Brca1/Gata3 silencing is involved in neuronal differentiation and maturation.


Asunto(s)
Factor de Transcripción GATA3 , Neuronas Retinianas , Animales , Ratones , Diferenciación Celular/genética , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Proyección Neuronal , Regiones Promotoras Genéticas , Neuronas Retinianas/metabolismo
9.
Med Mol Morphol ; 55(4): 292-303, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35932315

RESUMEN

When regenerated tissue is generated from induced pluripotent stem cells (iPSCs), it is necessary to track and identify the transplanted cells. Fluorescently-labeled iPSCs synthesize a fluorescent substance that is easily tracked. However, the expressed protein should not affect the original genome sequence or pluripotency. To solve this problem, we created a cell tool for basic research on iPSCs. Iris tissue-derived cells from GFP fluorescence-expressing mice (GFP-DBA/2 mice) were reprogrammed to generate GFP mouse iris-derived iPSCs (M-iris GFP iPSCs). M-iris GFP iPSCs expressed cell markers characteristic of iPSCs and showed pluripotency in differentiating into the three germ layers. In addition, when expressing GFP, the cells differentiated into functional recoverin- and calbindin-positive cells. Thus, this cell line will facilitate future studies on iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Iris , Neuronas Retinianas , Animales , Ratones , Calbindinas/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Iris/citología , Ratones Endogámicos DBA , Recoverina/metabolismo , Neuronas Retinianas/metabolismo
10.
Cell Biol Int ; 46(10): 1625-1636, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35771585

RESUMEN

Maintaining DNA stability in induced pluripotent stem cells (iPSCs) and iPSCs-derived neurons is a challenge in their clinical application. In the present study, we compared DNA stability between primary retinal neurons and differentiated neurons. We found that the basal level of γ-H2AX phosphorylation, a specific marker of DNA breaks, was notably higher (~26-folds) in human iPSCs compared to iPSCs-derived neurons. However, iPSCs-derived neurons are more sensitive to UV treatment compared to primary rat retinal neurons (postnatal Day 1). UV treatment induced a significantly decreasing in the cell viability of iPSCs-derived neurons by ~76.1%, whereas ~20.8% in primary retinal neurons. After analyzing the expression levels of genes involved in DNA stability, such as Brca1, Ligase IV, Ku80, and Mre11, we found that Ku80 and its heterodimeric partner, Ku70 were positive in iPSCs-derived neurons. However, both Ku80 and Ku70 are not expressed in primary retinal neurons and cerebellar neurons. Similarly, both Ku80 and Ku70 are also expressed in 3D retinal organoids from human embryonic stem cells (ESCs), except for a few Map2-negative cells and the hyaloid vessels of mice E12.5 retinas. Hence, Ku80, and Ku70 are specifically expressed in stem cell-derived neurons. Moreover, using the Ku80 inhibitor Compound L, our data showed that Ku80 promotes the DNA stability and cell viability of iPSCs-derived neurons. Thus, our results demonstrated that iPSCs-, ESCs-derived neurons have specific characteristics of DNA stability. This study provides new insights into the neural differentiation of stem cells but might also warrant the future clinical application of stem cells in neurodegenerative diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neuronas Retinianas , Animales , Diferenciación Celular , ADN , Células Madre Embrionarias , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratas
11.
Transl Vis Sci Technol ; 11(4): 4, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35377941

RESUMEN

Purpose: Müller glia (MG) in the retina of Xenopus laevis (African clawed frog) reprogram to a transiently amplifying retinal progenitor state after an injury. These progenitors then give rise to new retinal neurons. In contrast, mammalian MG have a restricted neurogenic capacity and undergo reactive gliosis after injury. This study sought to establish MG cell lines from the regeneration-competent frog and the regeneration-deficient mouse. Methods: MG were isolated from postnatal day 5 GLAST-CreERT; Rbfl/fl mice and from adult (3-5 years post-metamorphic) X laevis. Serial adherent subculture resulted in spontaneously immortalized cells and the establishment of two MG cell lines: murine retinal glia 17 (RG17) and Xenopus glia 69 (XG69). They were characterized for MG gene and protein expression by qPCR, immunostaining, and Western blot. Purinergic signaling was assessed with calcium imaging. Pharmacological perturbations with 2'-3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) and KN-62 were performed on RG17 cells. Results: RG17 and XG69 cells express several MG markers and retain purinergic signaling. Pharmacological perturbations of intracellular calcium responses with BzATP and KN-62 suggest that the ionotropic purinergic receptor P2X7 is present and functional in RG17 cells. Stimulation of XG69 cells with adenosine triphosphate-induced calcium responses in a dose-dependent manner. Conclusions: We report the characterization of RG17 and XG69, two novel MG cell lines from species with significantly disparate retinal regenerative capabilities. Translational Relevance: RG17 and XG69 cell line models will aid comparative studies between species endowed with varied regenerative capacity and will facilitate the development of new cell-based strategies for treating retinal degenerative diseases.


Asunto(s)
Células Ependimogliales , Neuronas Retinianas , Animales , Células Ependimogliales/metabolismo , Mamíferos , Ratones , Neuroglía/metabolismo , Retina , Xenopus laevis
12.
Retina ; 42(2): 313-320, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723901

RESUMEN

PURPOSE: To investigate the interrelationship among the outer retinal layers after macular hole surgery and elucidate the restoration process. METHODS: This retrospective observational study included 50 eyes of 47 consecutive patients with closed macular holes in the first vitrectomy. Optical coherence tomography was obtained before surgery; at 1, 3, and 6 months postsurgery; and at the last visit. The complete continuous layer rate and mean defect length were evaluated for the outer nuclear layer (ONL), external limiting membrane (ELM), and ellipsoid zone (EZ). RESULTS: At all postoperative visits, the complete continuous layer rate was in the descending order of ELM, ONL, and EZ and the mean defect length was in the ascending order of ELM, ONL, and EZ. External limiting membrane was necessary for ONL restoration. External limiting membrane and ONL were necessary for EZ restoration. Hyperreflective protrusions were observed from the area lacking ELM into the subretinal space after surgery. Ellipsoid zone was not formed in coexistence with the hyperreflective protrusions. Intermediate reflective protrusions appeared under the ONL plus ELM after surgery and were eventually replaced by EZ. CONCLUSION: Restoration of the outer retinal layers after surgical macular hole closure occurs in the order of ELM, ONL, and EZ.


Asunto(s)
Membrana Basal/fisiología , Endotaponamiento , Neuronas Retinianas/fisiología , Perforaciones de la Retina/cirugía , Epitelio Pigmentado de la Retina/fisiología , Vitrectomía , Anciano , Membrana Basal/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Perforaciones de la Retina/diagnóstico por imagen , Perforaciones de la Retina/fisiopatología , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Estudios Retrospectivos , Hexafluoruro de Azufre/administración & dosificación , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología
13.
Neurobiol Dis ; 160: 105524, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34610465

RESUMEN

Chronic inflammation drives synaptic loss in multiple sclerosis (MS) and is also commonly observed in other neurodegenerative diseases. Clinically approved treatments for MS provide symptomatic relief but fail to halt neurodegeneration and neurological decline. Studies in animal disease models have demonstrated that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP, ADCYAP1) exhibits anti-inflammatory, neuroprotective and regenerative properties. Anti-inflammatory actions appear to be mediated primarily by two receptors, VPAC1 and VPAC2, which also bind vasoactive intestinal peptide (VIP). Pharmacological experiments indicate that another receptor, PAC1 (ADCYAP1R1), which is highly selective for PACAP, provides protection to neurons, although genetic evidence and other mechanistic information is lacking. To determine if PAC1 receptors protect neurons in a cell-autonomous manner, we used adeno-associated virus (AAV2) to deliver Cre recombinase to the retina of mice harboring floxed PAC1 alleles. Mice were then subjected to chronic experimental autoimmune encephalomyelitis (EAE), a disease model that recapitulates major clinical and pathological features of MS and associated optic neuritis. Unexpectedly, deletion of PAC1 in naïve mice resulted in a deficit of retinal ganglionic neurons (RGNs) and their dendrites, suggesting a homeostatic role of PAC1. Moreover, deletion of PAC1 resulted in increased EAE-induced loss of a subpopulation of RGNs purported to be vulnerable in animal models of glaucoma. Increased axonal pathology and increased secondary presence of microglia/macrophages was also prominently seen in the optic nerve. These findings demonstrate that neuronal PAC1 receptors play a homeostatic role in protecting RGNs and directly protects neurons and their axons against neuroinflammatory challenge. SIGNIFICANCE STATEMENT: Chronic inflammation is a major component of neurodegenerative diseases and plays a central role in multiple sclerosis (MS). Current treatments for MS do not prevent neurodegeneration and/or neurological decline. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to have anti-inflammatory, neuroprotective and regenerative properties but the cell type- and receptor-specific mechanisms are not clear. To test whether the protective effects of PACAP are direct on the PAC1 receptor subtype on neurons, we delete PAC1 receptors from neurons and investigate neuropathologigical changes in an animal model of MS. The findings demonstrate that PAC1 receptors on neurons play a homeostatic role in maintaining neuron health and can directly protect neurons and their axons during neuroinflammatory disease.


Asunto(s)
Axones/metabolismo , Muerte Celular/fisiología , Esclerosis Múltiple/metabolismo , Neuritis Óptica/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Neuronas Retinianas/metabolismo , Animales , Axones/patología , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Ratones Noqueados , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Neuritis Óptica/genética , Neuritis Óptica/patología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética
14.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34360899

RESUMEN

(1) Background: caspase-12 is activated during cytomegalovirus retinitis, although its role is presently unclear. (2) Methods: caspase-12-/- (KO) or caspase-12+/+ (WT) mice were immunosup eyes were analyzed by plaque assay, TUNEL assay, immunohistochemical staining, western blotting, and real-time PCR. (3) Results: increased retinitis and a more extensive virus spread were detected in the retina of infected eyes of KO mice compared to WT mice at day 14 p.i. Compared to MCMV injected WT eyes, mRNA levels of interferons α, ß and γ were significantly reduced in the neural retina of MCMV-infected KO eyes at day 14 p.i. Although similar numbers of MCMV infected cells, similar virus titers and similar numbers of TUNEL-staining cells were detected in injected eyes of both KO and WT mice at days 7 and 10 p.i., significantly lower amounts of cleaved caspase-3 and p53 protein were detected in infected eyes of KO mice at both time points. (4) Conclusions: caspase-12 contributes to caspase-3-dependent and independent retinal bystander cell death during MCMV retinitis and may also play an important role in innate immunity against virus infection of the retina.


Asunto(s)
Apoptosis/genética , Caspasa 12/deficiencia , Retinitis por Citomegalovirus/enzimología , Inmunidad Innata/genética , Muromegalovirus/fisiología , Retina/enzimología , Neuronas Retinianas/enzimología , Animales , Caspasa 12/genética , Retinitis por Citomegalovirus/genética , Retinitis por Citomegalovirus/virología , Femenino , Etiquetado Corte-Fin in Situ/métodos , Interferones/biosíntesis , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Retina/virología , Neuronas Retinianas/virología , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/metabolismo , Replicación Viral/genética
15.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207050

RESUMEN

The vertebrate retina develops from a specified group of precursor cells that adopt distinct identities and generate lineages of either the neural retina, retinal pigmented epithelium, or ciliary body. In some species, including teleost fish and amphibians, proliferative cells with stem-cell-like properties capable of continuously supplying new retinal cells post-embryonically have been characterized and extensively studied. This region, termed the ciliary or circumferential marginal zone (CMZ), possibly represents a conserved retinal stem cell niche. In this review, we highlight the research characterizing similar CMZ-like regions, or stem-like cells located at the peripheral margin, across multiple different species. We discuss the proliferative parameters, multipotency and growth mechanisms of these cells to understand how they behave in vivo and how different molecular factors and signalling networks converge at the CMZ niche to regulate their activity. The evidence suggests that the mature retina may have a conserved propensity for homeostatic growth and plasticity and that dysfunction in the regulation of CMZ activity may partially account for dystrophic eye growth diseases such as myopia and hyperopia. A better understanding of the properties of CMZ cells will enable important insight into how an endogenous generative tissue compartment can adapt to altered retinal physiology and potentially even restore vision loss caused by retinal degenerative conditions.


Asunto(s)
Retina/citología , Retina/fisiología , Nicho de Células Madre , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Susceptibilidad a Enfermedades , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Neurogénesis , Organogénesis , Neuronas Retinianas/citología , Neuronas Retinianas/metabolismo , Epitelio Pigmentado de la Retina , Vertebrados
16.
J Neurosurg Pediatr ; 28(4): 490-496, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34271543

RESUMEN

OBJECTIVE: Pediatric idiopathic intracranial hypertension (IIH) is characterized by increased intracranial pressure despite normal cerebrospinal fluid and neuroimaging findings. Initial management is typically medical; however, nearly 10% of children will eventually require surgery for persistent headache and/or vision loss. External lumbar drainage, which is a considerably safer treatment option, has not been adequately analyzed in children with medically refractory IIH. METHODS: The authors conducted a single-institution retrospective analysis of children with medically refractory IIH who had undergone external lumbar drain (ELD) placement because of worsening papilledema, reflected as increased retinal nerve fiber layer (RNFL) thickness on optical coherence tomography (OCT) testing. The main outcome measures were effects of external lumbar drainage on papilledema resolution, symptoms, and vision. RESULTS: The authors analyzed the medical records of 13 children with IIH (11 girls, mean age 15.0 ± 2.3 years) whose mean CSF opening pressure was 45.5 ± 6.8 cm H2O. In all children, the average global RNFL thickness in both eyes significantly increased at ELD placement (right eye 371.8 ± 150.2 µm, left eye 400.3 ± 96.9 µm) compared with presentation thickness (right eye 301.6 ± 110.40 µm, left eye 350.2 ± 107.7 µm) despite acetazolamide medical therapy (20-30 mg/kg/day), leading to ELD placement after 9.5 ± 6.9 days (range 3-29 days). After ELD insertion, there was headache resolution, gradual and continuous improvement in optic disc thickness, and preservation of good vision. CONCLUSIONS: ELD placement in children with medically refractory IIH who demonstrated worsening papilledema with increased RNFL thickening on OCT testing typically results in symptom relief and disc edema resolution with good visual outcome, often preventing the need for additional definitive surgeries that carry greater failure and morbidity risks.


Asunto(s)
Drenaje/métodos , Región Lumbosacra/cirugía , Seudotumor Cerebral/terapia , Adolescente , Niño , Progresión de la Enfermedad , Resistencia a Medicamentos , Femenino , Cefalea/etiología , Humanos , Masculino , Disco Óptico/patología , Papiledema/complicaciones , Seudotumor Cerebral/complicaciones , Seudotumor Cerebral/diagnóstico por imagen , Neuronas Retinianas/patología , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Resultado del Tratamiento , Trastornos de la Visión/etiología , Trastornos de la Visión/terapia , Adulto Joven
18.
Cells ; 10(4)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806128

RESUMEN

Cell replacement therapy using mesenchymal (MSC) and other stem cells has been evaluated for diabetic retinopathy and glaucoma. This approach has significant limitations, including few cells integrated, aberrant growth, and surgical complications. Mesenchymal Stem Cell Exosomes/Extracellular Vesicles (MSC EVs), which include exosomes and microvesicles, are an emerging alternative, promoting immunomodulation, repair, and regeneration by mediating MSC's paracrine effects. For the clinical translation of EV therapy, it is important to determine the cellular destination and time course of EV uptake in the retina following administration. Here, we tested the cellular fate of EVs using in vivo rat retinas, ex vivo retinal explant, and primary retinal cells. Intravitreally administered fluorescent EVs were rapidly cleared from the vitreous. Retinal ganglion cells (RGCs) had maximal EV fluorescence at 14 days post administration, and microglia at 7 days. Both in vivo and in the explant model, most EVs were no deeper than the inner nuclear layer. Retinal astrocytes, microglia, and mixed neurons in vitro endocytosed EVs in a dose-dependent manner. Thus, our results indicate that intravitreal EVs are suited for the treatment of retinal diseases affecting the inner retina. Modification of the EV surface should be considered for maintaining EVs in the vitreous for prolonged delivery.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Retina/citología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Fluorescencia , Humanos , Inyecciones Intravítreas , Cinética , Células Madre Mesenquimatosas/citología , Microglía/citología , Microglía/metabolismo , Ratas , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Neuronas Retinianas/citología , Neuronas Retinianas/metabolismo , Coloración y Etiquetado
19.
Cells ; 10(4)2021 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800535

RESUMEN

Regenerative medicine in ophthalmology that uses induced pluripotent stem cells (iPS) cells has been described, but those studies used iPS cells derived from fibroblasts. Here, we generated iPS cells derived from iris cells that develop from the same inner layer of the optic cup as the retina, to regenerate retinal nerves. We first identified cells positive for p75NTR, a marker of retinal tissue stem and progenitor cells, in human iris tissue. We then reprogrammed the cultured p75NTR-positive iris tissue stem/progenitor (H-iris stem/progenitor) cells to create iris-derived iPS (H-iris iPS) cells for the first time. These cells were positive for iPS cell markers and showed pluripotency to differentiate into three germ layers. When H-iris iPS cells were pre-differentiated into neural stem/progenitor cells, not all cells became positive for neural stem/progenitor and nerve cell markers. When these cells were pre-differentiated into neural stem/progenitor cells, sorted with p75NTR, and used as a medium for differentiating into retinal nerve cells, the cells differentiated into Recoverin-positive cells with electrophysiological functions. In a different medium, H-iris iPS cells differentiated into retinal ganglion cell marker-positive cells with electrophysiological functions. This is the first demonstration of H-iris iPS cells differentiating into retinal neurons that function physiologically as neurons.


Asunto(s)
Fenómenos Electrofisiológicos , Células Madre Pluripotentes Inducidas/fisiología , Iris/citología , Regeneración Nerviosa/fisiología , Neuronas Retinianas/fisiología , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Recoverina/metabolismo , Reproducibilidad de los Resultados , Células Ganglionares de la Retina/metabolismo , Neuronas Retinianas/citología , Teratoma/patología
20.
Ann Anat ; 235: 151672, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33434657

RESUMEN

Cellular FLICE-inhibitory protein (c-FLIP), an anti-apoptotic regulator, shows remarkable similarities to caspase-8, which plays a key role in the cleavage of gasdermin D (GSDMD). It has been reported that the oxygen-glucose deprivation/recovery (OGD/R) model and lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment could induce inflammation and pyroptosis. However, the regulatory role of c-FLIP in the pyroptotic death of retinal neurons is unclear. In this study, we hypothesized that c-FLIP might regulate retinal neuronal pyroptosis by GSDMD cleavage. To investigate this hypothesis, we induced retinal neuronal damage in vitro (OGD/R and LPS/ATP) and in vivo (acute high intraocular pressure [aHIOP]). Our results demonstrated that the three injuries triggered the up-regulation of pyroptosis-related proteins, and c-FLIP could cleave GSDMD to generate a functional N-terminal (NT) domain of GSDMD, causing retinal neuronal pyroptosis. In addition, c-FLIP knockdown in vivo ameliorated the already established visual impairment mediated by acute IOP elevation. Taken together, these findings revealed that decreased c-FLIP expression protected against pyroptotic death of retinal neurons possibly by inhibiting GSDMD-NT generation. Therefore, c-FLIP might provide new insights into the pathogenesis of pyroptosis-related diseases and help to elucidate new therapeutic targets and potential treatment strategies.


Asunto(s)
Piroptosis , Neuronas Retinianas , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Glucosa , Oxígeno , Proteínas de Unión a Fosfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA