Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 935
Filtrar
1.
Mol Pain ; 20: 17448069241226553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38172079

RESUMEN

Ultraviolet B (UVB) radiation induces cutaneous inflammation, leading to thermal and mechanical hypersensitivity. Here, we examine the mechanical properties and profile of tactile and nociceptive peripheral afferents functionally disrupted by this injury and the role of oxytocin (OXT) as a modulator of this disruption. We recorded intracellularly from L4 afferents innervating the irradiated area (5.1 J/cm2) in 4-6 old week male mice (C57BL/6J) after administering OXT intraperitoneally, 6 mg/Kg. The distribution of recorded neurons was shifted by UVB radiation to a pattern observed after acute and chronic injuries and reduced mechanical thresholds of A and C- high threshold mechanoreceptors while reducing tactile sensitivity. UVB radiation did not change somatic membrane electrical properties or fiber conduction velocity. OXT systemic administration rapidly reversed these peripheral changes toward normal in both low and high-threshold mechanoreceptors and shifted recorded neuron distribution toward normal. OXT and V1aR receptors were present on the terminals of myelinated and unmyelinated afferents innervating the skin. We conclude that UVB radiation, similar to local tissue surgical injury, cancer metastasis, and peripheral nerve injury, alters the distribution of low and high threshold mechanoreceptors afferents and sensitizes nociceptors while desensitizing tactile units. Acute systemic OXT administration partially returns all of those effects to normal.


Asunto(s)
Nocicepción , Oxitocina , Ratones , Masculino , Animales , Oxitocina/farmacología , Oxitocina/uso terapéutico , Ratones Endogámicos C57BL , Tacto/fisiología , Piel/inervación , Mecanorreceptores , Nociceptores/fisiología
2.
Neuropharmacology ; 237: 109641, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392821

RESUMEN

Bone cancer pain is a complex condition characterized by persistent, sudden, spontaneous pain accompanied by hyperalgesia that typically arises from bone metastases or primary bone tumors, causing severe discomfort and significantly diminishing cancer patients' quality of life and confidence in their ability to overcome the disease. It is widely known that peripheral nerves are responsible for detecting harmful stimuli, which are then transmitted to the brain via the spinal cord, resulting in the perception of pain. In the case of bone cancer, tumors and stromal cells within the bone marrow release various chemical signals, including inflammatory factors, colony-stimulating factors, chemokines, and hydrogen ions. Consequently, the nociceptors located at the nerve endings within the bone marrow sense these chemical signals, generating electrical signals that are then transmitted to the brain through the spinal cord. Subsequently, the brain processes these electrical signals in a complex manner to create the sensation of bone cancer pain. Numerous studies have investigated the transmission of bone cancer pain from the periphery to the spinal cord. However, the processing of pain information induced by bone cancer within the brain remains unclear. With the continuous advancements in brain science and technology, the brain mechanism of bone cancer pain would become more clearly understood. Herein, we focus on summarizing the peripheral nerve perception of the spinal cord transmission of bone cancer pain and provide a brief overview of the ongoing research regarding the brain mechanisms involved in bone cancer pain.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Humanos , Dolor en Cáncer/etiología , Calidad de Vida , Dolor/etiología , Sistema Nervioso Central , Hiperalgesia/etiología , Médula Espinal , Nociceptores/fisiología , Neoplasias Óseas/complicaciones
3.
Brain Res ; 1804: 148248, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36681372

RESUMEN

The insular cortex (IC) receives orofacial nociceptive information. Pyramidal neurons in IC layer V send their axons to various brain regions, such as the trigeminal spinal subnucleus caudalis (Sp5C), parabrachial nucleus, and periaqueductal gray. However, little information has been available about the functions of these descending projections from the IC. This study aimed to elucidate the effect of IC â†’ Sp5C on neuronal spike firings responding to noxious and innoxious stimuli to the face of the rat receiving an injection of adeno-associated virus encoding modified channelrhodopsin-2 (ChR2) fused to mCherry under the control of the human synapsin promotor. We classified Sp5C neurons responding to mechanical stimuli into three groups: low-threshold (LT), nociceptive specific (NS), and wide dynamic range (WDR) neurons, which respond to innoxious stimuli (brushing) only, noxious mechanical stimuli (pinching) only, and both noxious and innoxious stimuli, respectively. Neuronal activities of IC neurons were activated by photostimulation (repetitive pulses at 20 Hz for 5 Hz) to the IC that consistently induced action potentials in IC layer V pyramidal neurons. LT neurons showed comparable spike firing rates to brushing the facial skin before and during ChR2 activation induced by photostimulation. In contrast, NS neurons showed an increase in their firing frequency to pinching during ChR2 activation. On the other hand, WDR neurons increased their Sp5C neuronal firing to pinching during ChR2 activation without changing their firing rates to innoxious mechanical stimuli. These results suggest that the IC descending projections facilitate nociception by increasing Sp5C neuronal activities responding to noxious mechanical stimuli.


Asunto(s)
Corteza Insular , Neuronas , Humanos , Ratas , Animales , Nociceptores/fisiología , Sustancia Gris Periacueductal , Piel , Núcleo Espinal del Trigémino
4.
J Bone Miner Metab ; 41(3): 415-427, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36715764

RESUMEN

INTRODUCTION: Cancer-induced bone pain (CIBP) is one of the most common and debilitating complications associated with bone metastasis. Although our understanding of the precise mechanism is limited, it has been known that bone is densely innervated, and that CIBP is elicited as a consequence of increased neurogenesis, reprogramming, and axonogenesis in conjunction with sensitization and excitation of sensory nerves (SNs) in response to the noxious stimuli that are derived from the tumor microenvironment developed in bone. Recent studies have shown that the sensitized and excited nerves innervating the tumor establish intimate communications with cancer cells by releasing various tumor-stimulating factors for tumor progression. APPROACHES: In this review, the role of the interactions of cancer cells and SNs in bone in the pathophysiology of CIBP will be discussed with a special focus on the role of the noxious acidic tumor microenvironment, considering that bone is in nature hypoxic, which facilitates the generation of acidic conditions by cancer. Subsequently, the role of SNs in the regulation of cancer progression in the bone will be discussed together with our recent experimental findings. CONCLUSION: It is suggested that SNs may be a newly-recognized important component of the bone microenvironment that contribute to not only in the pathophysiology of CIBP but also cancer progression in bone and dissemination from bone. Suppression of the activity of bone-innervating SNs, thus, may provide unique opportunities in the treatment of cancer progression and dissemination, as well as CIBP.


Asunto(s)
Neoplasias Óseas , Huesos , Dolor en Cáncer , Nervios Periféricos , Dolor en Cáncer/etiología , Dolor en Cáncer/fisiopatología , Neoplasias Óseas/complicaciones , Neoplasias Óseas/secundario , Huesos/inervación , Humanos , Nervios Periféricos/patología , Nervios Periféricos/fisiopatología , Progresión de la Enfermedad , Nociceptores/fisiología , Microambiente Tumoral , Familia-src Quinasas/metabolismo , Proteína HMGB1/metabolismo
5.
Mol Pain ; 19: 17448069221148958, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36526445

RESUMEN

The role of Aß-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aß-afferent involvement in nociception. Recently, we have characterized Aß-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aß-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aß-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (IMA) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aß-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aß-afferent neurons.


Asunto(s)
Neuronas Aferentes , Serotonina , Ratas , Masculino , Femenino , Animales , Neuronas Aferentes/fisiología , Nociceptores/fisiología , Mecanorreceptores , Neuronas , Potenciales de Acción/fisiología , Ganglio del Trigémino
6.
Nature ; 611(7935): 405-412, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323780

RESUMEN

Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems1-5. Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release. Calcitonin gene-related peptide (CGRP)-one such nociceptor-produced neuropeptide-directly increases the exhaustion of cytotoxic CD8+ T cells, which limits their capacity to eliminate melanoma. Genetic ablation of the TRPV1 lineage, local pharmacological silencing of nociceptors and antagonism of the CGRP receptor RAMP1 all reduced the exhaustion of tumour-infiltrating leukocytes and decreased the growth of tumours, nearly tripling the survival rate of mice that were inoculated with B16F10 melanoma cells. Conversely, CD8+ T cell exhaustion was rescued in sensory-neuron-depleted mice that were treated with local recombinant CGRP. As compared with wild-type CD8+ T cells, Ramp1-/- CD8+ T cells were protected against exhaustion when co-transplanted into tumour-bearing Rag1-deficient mice. Single-cell RNA sequencing of biopsies from patients with melanoma revealed that intratumoral RAMP1-expressing CD8+ T cells were more exhausted than their RAMP1-negative counterparts, whereas overexpression of RAMP1 correlated with a poorer clinical prognosis. Overall, our results suggest that reducing the release of CGRP from tumour-innervating nociceptors could be a strategy to improve anti-tumour immunity by eliminating the immunomodulatory effects of CGRP on cytotoxic CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Nociceptores , Animales , Ratones , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Melanoma/inmunología , Melanoma/patología , Nociceptores/fisiología , Células Receptoras Sensoriales/metabolismo , Neuritas/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Tasa de Supervivencia , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Genes RAG-1/genética , Humanos , Biopsia , Pronóstico
7.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36240781

RESUMEN

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Nociceptores/fisiología , Sustancia P , Disbiosis , Inflamación
8.
Pain ; 163(6): 1091-1101, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995041

RESUMEN

ABSTRACT: Heat shock protein 90 (Hsp90) is a ubiquitously expressed integral cellular protein essential for regulating proteomic stress. Previous research has shown that Hsp90 regulates critical signaling pathways underlying chronic pain and inflammation. Recent discovery of membrane bound ectopic Hsp90 (eHsp90) on tumor cells has shown that Hsp90 induction to the plasma membrane can stabilize disease-relevant proteins. Here, we characterize eHsp90 expression in a mouse model of inflammation and demonstrate its role in nociception and pain. We found that intraplantar complete Freund adjuvant (CFA) induced robust expression of eHsp90 on the cell membranes of primary afferent nociceptors located in the L3-L5 dorsal root ganglia (DRG), bilaterally, with minimal to no expression in other tissues. Complete Freund adjuvant-induced increases in eHsp90 expression on lumbar DRG were significantly greater in females compared with males. Furthermore, exogenous Hsp90 applied to primary Pirt-GCaMP3 nociceptors induced increases in calcium responses. Responses were estrogen-dependent such that greater activity was observed in female or estrogen-primed male nociceptors compared with unprimed male nociceptors. Treatment of mice with the selective eHsp90 inhibitor HS-131 (10 nmol) significantly reversed CFA-induced mechanical pain, thermal heat pain, and hind paw edema. Notably, a higher dose (20 nmol) of HS-131 was required to achieve analgesic and anti-inflammatory effects in females. Here, we provide the first demonstration that inflammation leads to an upregulation of eHsp90 on DRG nociceptors in a sex-dependent manner and that inhibition of eHsp90 reduces nociceptor activity, pain, and inflammation. Thus, eHsp90 represents a novel therapeutic axis for the development of gender-tailored treatments for inflammatory pain.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Nociceptores , Proteómica , Animales , Estrógenos/uso terapéutico , Femenino , Adyuvante de Freund/efectos adversos , Ganglios Espinales/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Nociceptores/fisiología , Dolor/tratamiento farmacológico
9.
Nat Commun ; 12(1): 5812, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34608164

RESUMEN

The advantage of locally applied anesthetics is that they are not associated with the many adverse effects, including addiction liability, of systemically administered analgesics. This therapeutic approach has two inherent pitfalls: specificity and a short duration of action. Here, we identified nociceptor endocytosis as a promising target for local, specific, and long-lasting treatment of inflammatory pain. We observed preferential expression of AP2α2, an α-subunit isoform of the AP2 complex, within CGRP+/IB4- nociceptors in rodents and in CGRP+ dorsal root ganglion neurons from a human donor. We utilized genetic and pharmacological approaches to inhibit nociceptor endocytosis demonstrating its role in the development and maintenance of acute and chronic inflammatory pain. One-time injection of an AP2 inhibitor peptide significantly reduced acute and chronic pain-like behaviors and provided prolonged analgesia. We evidenced sexually dimorphic recovery responses to this pharmacological approach highlighting the importance of sex differences in pain development and response to analgesics.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Dolor Crónico/tratamiento farmacológico , Endocitosis/efectos de los fármacos , Nociceptores/efectos de los fármacos , Complejo 2 de Proteína Adaptadora/antagonistas & inhibidores , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Subunidades alfa de Complejo de Proteína Adaptadora/antagonistas & inhibidores , Subunidades alfa de Complejo de Proteína Adaptadora/genética , Subunidades alfa de Complejo de Proteína Adaptadora/metabolismo , Animales , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Epidermis/inervación , Femenino , Ganglios Espinales/metabolismo , Humanos , Inflamación , Masculino , Ratones , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Nociceptores/metabolismo , Nociceptores/fisiología , Péptidos/administración & dosificación , Péptidos/metabolismo , Péptidos/farmacología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología
10.
Neuron ; 109(17): 2691-2706.e5, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473953

RESUMEN

Although sex dimorphism is increasingly recognized as an important factor in pain, female-specific pain signaling is not well studied. Here we report that administration of IL-23 produces mechanical pain (mechanical allodynia) in female but not male mice, and chemotherapy-induced mechanical pain is selectively impaired in female mice lacking Il23 or Il23r. IL-23-induced pain is promoted by estrogen but suppressed by androgen, suggesting an involvement of sex hormones. IL-23 requires C-fiber nociceptors and TRPV1 to produce pain but does not directly activate nociceptor neurons. Notably, IL-23 requires IL-17A release from macrophages to evoke mechanical pain in females. Low-dose IL-17A directly activates nociceptors and induces mechanical pain only in females. Finally, deletion of estrogen receptor subunit α (ERα) in TRPV1+ nociceptors abolishes IL-23- and IL-17-induced pain in females. These findings demonstrate that the IL-23/IL-17A/TRPV1 axis regulates female-specific mechanical pain via neuro-immune interactions. Our study also reveals sex dimorphism at both immune and neuronal levels.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Macrófagos/metabolismo , Dolor Nociceptivo/metabolismo , Nociceptores/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Interleucina-17/farmacología , Interleucina-23/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas Amielínicas/metabolismo , Fibras Nerviosas Amielínicas/fisiología , Dolor Nociceptivo/fisiopatología , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Factores Sexuales , Transducción de Señal
11.
J Neurosci ; 41(39): 8249-8261, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34400519

RESUMEN

Pain is the major debilitating symptom of osteoarthritis (OA), which is difficult to treat. In OA patients joint tissue damage only poorly associates with pain, indicating other mechanisms contribute to OA pain. Immune cells regulate the sensory system, but little is known about the involvement of immune cells in OA pain. Here, we report that macrophages accumulate in the dorsal root ganglia (DRG) distant from the site of injury in two rodent models of OA. DRG macrophages acquired an M1-like phenotype, and depletion of DRG macrophages resolved OA pain in male and female mice. Sensory neurons innervating the damaged knee joint shape DRG macrophages into an M1-like phenotype. Persisting OA pain, accumulation of DRG macrophages, and programming of DRG macrophages into an M1-like phenotype were independent of Nav1.8 nociceptors. Inhibition of M1-like macrophages in the DRG by intrathecal injection of an IL4-IL10 fusion protein or M2-like macrophages resolved persistent OA pain. In conclusion, these findings reveal a crucial role for macrophages in maintaining OA pain independent of the joint damage and suggest a new direction to treat OA pain.SIGNIFICANCE STATEMENT In OA patients pain poorly correlates with joint tissue changes indicating mechanisms other than only tissue damage that cause pain in OA. We identified that DRG containing the somata of sensory neurons innervating the damaged knee are infiltrated with macrophages that are shaped into an M1-like phenotype by sensory neurons. We show that these DRG macrophages actively maintain OA pain remotely and independent of joint damage. The phenotype of these macrophages is crucial for a pain-promoting role. Targeting the phenotype of DRG macrophages with either M2-like macrophages or a cytokine fusion protein that skews macrophages into an M2-like phenotype resolves OA pain. Our work reveals a mechanism that contributes to the maintenance of OA pain distant from the affected knee joint and suggests that dorsal root ganglia macrophages are a target to treat osteoarthritis chronic pain.


Asunto(s)
Artritis Experimental/metabolismo , Ganglios Espinales/metabolismo , Macrófagos/metabolismo , Osteoartritis/metabolismo , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Femenino , Masculino , Ratones , Nociceptores/fisiología
12.
J Clin Invest ; 131(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196305

RESUMEN

Fibromyalgia syndrome (FMS) is characterized by widespread pain and tenderness, and patients typically experience fatigue and emotional distress. The etiology and pathophysiology of fibromyalgia are not fully explained and there are no effective drug treatments. Here we show that IgG from FMS patients produced sensory hypersensitivity by sensitizing nociceptive neurons. Mice treated with IgG from FMS patients displayed increased sensitivity to noxious mechanical and cold stimulation, and nociceptive fibers in skin-nerve preparations from mice treated with FMS IgG displayed an increased responsiveness to cold and mechanical stimulation. These mice also displayed reduced locomotor activity, reduced paw grip strength, and a loss of intraepidermal innervation. In contrast, transfer of IgG-depleted serum from FMS patients or IgG from healthy control subjects had no effect. Patient IgG did not activate naive sensory neurons directly. IgG from FMS patients labeled satellite glial cells and neurons in vivo and in vitro, as well as myelinated fiber tracts and a small number of macrophages and endothelial cells in mouse dorsal root ganglia (DRG), but no cells in the spinal cord. Furthermore, FMS IgG bound to human DRG. Our results demonstrate that IgG from FMS patients produces painful sensory hypersensitivities by sensitizing peripheral nociceptive afferents and suggest that therapies reducing patient IgG titers may be effective for fibromyalgia.


Asunto(s)
Fibromialgia/inmunología , Fibromialgia/fisiopatología , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Fibromialgia/etiología , Ganglios Espinales/fisiopatología , Humanos , Inmunización Pasiva , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Nociceptores/inmunología , Nociceptores/fisiología , Dolor/fisiopatología , Umbral del Dolor/fisiología
13.
Brain ; 144(5): 1312-1335, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34128530

RESUMEN

Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap.


Asunto(s)
Nociceptores/fisiología , Animales , Dolor Crónico/fisiopatología , Humanos , Investigación Biomédica Traslacional
14.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876743

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin ß-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.


Asunto(s)
Integrinas/metabolismo , Nociceptores/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Animales , Antineoplásicos/toxicidad , Células Cultivadas , Drosophila melanogaster , Endosomas/metabolismo , Femenino , Ganglios Espinales/citología , Integrinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Nociceptores/fisiología , Paclitaxel/toxicidad , Enfermedades del Sistema Nervioso Periférico/etiología
15.
J Neuroinflammation ; 18(1): 92, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853615

RESUMEN

BACKGROUND: Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine involved in pain processing and hypersensitivity. It regulates not only the expression of a variety of inflammatory mediators but also the functional activity of some ion channels. Acid-sensing ion channels (ASICs), as key sensors for extracellular protons, are expressed in nociceptive sensory neurons and contribute to pain signaling caused by tissue acidosis. It is still unclear whether TNF-α has an effect on functional activity of ASICs. Herein, we reported that a brief exposure of TNF-α acutely sensitized ASICs in rat dorsal root ganglion (DRG) neurons. METHODS: Electrophysiological experiments on rat DRG neurons were performed in vitro and acetic acid induced nociceptive behavior quantified in vitro. RESULTS: A brief (5min) application of TNF-α rapidly enhanced ASIC-mediated currents in rat DRG neurons. TNF-α (0.1-10 ng/ml) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 0.12 ± 0.01 nM. TNF-α shifted the concentration-response curve of proton upwards with a maximal current response increase of 42.34 ± 7.89%. In current-clamp recording, an acute application of TNF-α also significantly increased acid-evoked firing in rat DRG neurons. The rapid enhancement of ASIC-mediated electrophysiological activity by TNF-α was prevented by p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190, but not by non-selective cyclooxygenase inhibitor indomethacin, suggesting that p38 MAPK is necessary for this enhancement. Behaviorally, TNF-α exacerbated acid-induced nociceptive behaviors in rats via activation of local p38 MAPK pathway. CONCLUSIONS: These results suggest that TNF-α rapidly enhanced ASIC-mediated functional activity via a p38 MAPK pathway, which revealed a novel peripheral mechanism underlying TNF-α involvement in rapid hyperalgesia by sensitizing ASICs in primary sensory neurons.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Ganglios Espinales/citología , Neuronas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ácido Acético/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Masculino , Neuronas/metabolismo , Nociceptores/metabolismo , Nociceptores/fisiología , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
16.
Nature ; 589(7843): 591-596, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33361809

RESUMEN

Haematopoietic stem cells (HSCs) reside in specialized microenvironments in the bone marrow-often referred to as 'niches'-that represent complex regulatory milieux influenced by multiple cellular constituents, including nerves1,2. Although sympathetic nerves are known to regulate the HSC niche3-6, the contribution of nociceptive neurons in the bone marrow remains unclear. Here we show that nociceptive nerves are required for enforced HSC mobilization and that they collaborate with sympathetic nerves to maintain HSCs in the bone marrow. Nociceptor neurons drive granulocyte colony-stimulating factor (G-CSF)-induced HSC mobilization via the secretion of calcitonin gene-related peptide (CGRP). Unlike sympathetic nerves, which regulate HSCs indirectly via the niche3,4,6, CGRP acts directly on HSCs via receptor activity modifying protein 1 (RAMP1) and the calcitonin receptor-like receptor (CALCRL) to promote egress by activating the Gαs/adenylyl cyclase/cAMP pathway. The ingestion of food containing capsaicin-a natural component of chili peppers that can trigger the activation of nociceptive neurons-significantly enhanced HSC mobilization in mice. Targeting the nociceptive nervous system could therefore represent a strategy to improve the yield of HSCs for stem cell-based therapeutic agents.


Asunto(s)
Vías Autónomas , Movimiento Celular , Células Madre Hematopoyéticas/citología , Nocicepción/fisiología , Nociceptores/fisiología , Sistema Nervioso Simpático/citología , Adenilil Ciclasas/metabolismo , Animales , Vías Autónomas/efectos de los fármacos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteína Similar al Receptor de Calcitonina/metabolismo , Capsaicina/farmacología , Movimiento Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nocicepción/efectos de los fármacos , Nociceptores/efectos de los fármacos , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Transducción de Señal/efectos de los fármacos , Nicho de Células Madre , Sistema Nervioso Simpático/efectos de los fármacos
17.
Prog Neurol Surg ; 35: 18-34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33022684

RESUMEN

The trigeminal nerve complex is a very important and somewhat unique component of the nervous system. It is responsible for the sensory signals that arise from the most part of the face, mouth, nose, meninges, and facial muscles, and also for the motor commands carried to the masticatory muscles. These signals travel through a very complex set of structures: dermal receptors, trigeminal branches, Gasserian ganglion, central nuclei, and thalamus, finally reaching the cerebral cortex. Other neural structures participate, directly or indirectly, in the transmission and modulation of the signals, especially the nociceptive ones; these include vagus nerve, sphenopalatine ganglion, occipital nerves, cervical spinal cord, periaqueductal gray matter, hypothalamus, and motor cortex. But not all stimuli transmitted through the trigeminal system are perceivable. There is a constant selection and modulation of the signals, with either suppression or potentiation of the impulses. As a result, either normal sensory perceptions are elicited or erratic painful sensations are created. Electrical neuromodulation refers to adjustable manipulation of the central or peripheral pain pathways using electrical current for the purpose of reversible modification of the function of the nociceptive system through the use of implantable devices. Here, we discuss not only the distal components, the nerve itself, but also the sensory receptors and the main central connections of the brain, paying attention to the possible neuromodulation targets.


Asunto(s)
Sistema Nervioso Central/fisiología , Terapia por Estimulación Eléctrica , Neuralgia Facial/fisiopatología , Neuralgia Facial/terapia , Nociceptores/fisiología , Percepción del Dolor/fisiología , Sistema Nervioso Periférico/fisiología , Nervio Trigémino/anatomía & histología , Nervio Trigémino/fisiología , Humanos
18.
J Neurosci ; 40(34): 6522-6535, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32690613

RESUMEN

Chronic pain caused by spinal cord injury (SCI) is notoriously resistant to treatment, particularly by opioids. After SCI, DRG neurons show hyperactivity and chronic depolarization of resting membrane potential (RMP) that is maintained by cAMP signaling through PKA and EPAC. Importantly, SCI also reduces the negative regulation by Gαi of adenylyl cyclase and its production of cAMP, independent of alterations in G protein-coupled receptors and/or G proteins. Opioid reduction of pain depends on coupling of opioid receptors to Gαi/o family members. Combining high-content imaging and cluster analysis, we show that in male rats SCI decreases opioid responsiveness in vitro within a specific subset of small-diameter nociceptors that bind isolectin B4. This SCI effect is mimicked in nociceptors from naive animals by a modest 5 min depolarization of RMP (15 mm K+; -45 mV), reducing inhibition of cAMP signaling by µ-opioid receptor agonists DAMGO and morphine. Disinhibition and activation of C-Raf by depolarization-dependent phosphorylation are central to these effects. Expression of an activated C-Raf reduces sensitivity of adenylyl cyclase to opioids in nonexcitable HEK293 cells, whereas inhibition of C-Raf or treatment with the hyperpolarizing drug retigabine restores opioid responsiveness and blocks spontaneous activity of nociceptors after SCI. Inhibition of ERK downstream of C-Raf also blocks SCI-induced hyperexcitability and depolarization, without direct effects on opioid responsiveness. Thus, depolarization-dependent C-Raf and downstream ERK activity maintain a depolarized RMP and nociceptor hyperactivity after SCI, providing a self-reinforcing mechanism to persistently promote nociceptor hyperexcitability and limit the therapeutic effectiveness of opioids.SIGNIFICANCE STATEMENT Chronic pain induced by spinal cord injury (SCI) is often permanent and debilitating, and usually refractory to treatment with analgesics, including opioids. SCI-induced pain in a rat model has been shown to depend on persistent hyperactivity in primary nociceptors (injury-detecting sensory neurons), associated with a decrease in the sensitivity of adenylyl cyclase production of cAMP to inhibitory Gαi proteins in DRGs. This study shows that SCI and one consequence of SCI (chronic depolarization of resting membrane potential) decrease sensitivity to opioid-mediated inhibition of cAMP and promote hyperactivity of nociceptors by enhancing C-Raf activity. ERK activation downstream of C-Raf is necessary for maintaining ongoing depolarization and hyperactivity, demonstrating an unexpected positive feedback loop to persistently promote pain.


Asunto(s)
Dolor Crónico/fisiopatología , Nociceptores/fisiología , Proteínas Proto-Oncogénicas c-raf/fisiología , Receptores Opioides mu/fisiología , Transducción de Señal , Traumatismos de la Médula Espinal/fisiopatología , Animales , Células Cultivadas , Dolor Crónico/complicaciones , Encefalina Ala(2)-MeFe(4)-Gli(5)/administración & dosificación , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiopatología , Células HEK293 , Humanos , Masculino , Potenciales de la Membrana , Ratas Sprague-Dawley , Receptores Opioides mu/agonistas , Traumatismos de la Médula Espinal/complicaciones
19.
Cell ; 181(2): 293-305.e11, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32142653

RESUMEN

Pulmonary tuberculosis, a disease caused by Mycobacterium tuberculosis (Mtb), manifests with a persistent cough as both a primary symptom and mechanism of transmission. The cough reflex can be triggered by nociceptive neurons innervating the lungs, and some bacteria produce neuron-targeting molecules. However, how pulmonary Mtb infection causes cough remains undefined, and whether Mtb produces a neuron-activating, cough-inducing molecule is unknown. Here, we show that an Mtb organic extract activates nociceptive neurons in vitro and identify the Mtb glycolipid sulfolipid-1 (SL-1) as the nociceptive molecule. Mtb organic extracts from mutants lacking SL-1 synthesis cannot activate neurons in vitro or induce cough in a guinea pig model. Finally, Mtb-infected guinea pigs cough in a manner dependent on SL-1 synthesis. Thus, we demonstrate a heretofore unknown molecular mechanism for cough induction by a virulent human pathogen via its production of a complex lipid.


Asunto(s)
Tos/fisiopatología , Glucolípidos/metabolismo , Nociceptores/fisiología , Factores de Virulencia/metabolismo , Adulto , Animales , Línea Celular , Tos/etiología , Tos/microbiología , Femenino , Glucolípidos/fisiología , Cobayas , Interacciones Huésped-Patógeno , Humanos , Lípidos/fisiología , Pulmón/microbiología , Macrófagos/microbiología , Masculino , Ratones , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Cultivo Primario de Células , Tuberculosis/microbiología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/fisiopatología , Factores de Virulencia/fisiología
20.
Neurosci Bull ; 36(7): 685-695, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32221845

RESUMEN

Noxious mechanical information is transmitted through molecularly distinct nociceptors, with pinprick-evoked sharp sensitivity via A-fiber nociceptors marked by developmental expression of the neuropeptide Y receptor 2 (Npy2r) and von Frey filament-evoked punctate pressure information via unmyelinated C fiber nociceptors marked by MrgprD. However, the molecular programs controlling their development are only beginning to be understood. Here we demonstrate that Npy2r-expressing sensory neurons are in fact divided into two groups, based on transient or persistent Npy2r expression. Npy2r-transient neurons are myelinated, likely including A-fiber nociceptors, whereas Npy2r-persistent ones belong to unmyelinated pruriceptors that co-express Nppb. We then showed that the transcription factors NFIA and Runx1 are necessary for the development of Npy2r-transient A-fiber nociceptors and MrgprD+ C-fiber nociceptors, respectively. Behaviorally, mice with conditional knockout of Nfia, but not Runx1 showed a marked attenuation of pinprick-evoked nocifensive responses. Our studies therefore identify a transcription factor controlling the development of myelinated nociceptors.


Asunto(s)
Factores de Transcripción NFI , Nociceptores , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Femenino , Ganglios Espinales/fisiología , Masculino , Ratones , Ratones Noqueados , Factores de Transcripción NFI/fisiología , Fibras Nerviosas Amielínicas/fisiología , Nociceptores/fisiología , Receptores de Neuropéptido Y/fisiología , Células Receptoras Sensoriales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA