Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39337255

RESUMEN

Nucleoside diphosphate kinases (NDPKs) are encoded by nme genes and exist in various isoforms. Based on interactions with other proteins, they are involved in signal transduction, development and pathological processes such as tumorigenesis, metastasis and heart failure. In this study, we report a 1.25 Å resolution structure of human homohexameric NDPK-C bound to ADP and describe the yet unknown complexes formed with GDP, UDP and cAMP, all obtained at a high resolution via X-ray crystallography. Each nucleotide represents a distinct group of mono- or diphosphate purine or pyrimidine bases. We analyzed different NDPK-C nucleotide complexes in the presence and absence of Mg2+ and explain how this ion plays an essential role in NDPKs' phosphotransferase activity. By analyzing a nucleotide-depleted NDPK-C structure, we detected conformational changes upon substrate binding and identify flexible regions in the substrate binding site. A comparison of NDPK-C with other human isoforms revealed a strong similarity in the overall composition with regard to the 3D structure, but significant differences in the charge and hydrophobicity of the isoforms' surfaces. This may play a role in isoform-specific NDPK interactions with ligands and/or important complex partners like other NDPK isoforms, as well as monomeric and heterotrimeric G proteins. Considering the recently discovered role of NDPK-C in different pathologies, these high-resolution structures thus might provide a basis for interaction studies with other proteins or small ligands, like activators or inhibitors.


Asunto(s)
Nucleósido Difosfato Quinasas NM23 , Humanos , Adenosina Difosfato/metabolismo , Adenosina Difosfato/química , Sitios de Unión , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Magnesio/metabolismo , Magnesio/química , Modelos Moleculares , Nucleósido Difosfato Quinasas NM23/metabolismo , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido-Difosfato Quinasa/química , Nucleósido-Difosfato Quinasa/metabolismo , Nucleósido-Difosfato Quinasa/genética , Nucleótidos/metabolismo , Nucleótidos/química , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , Uridina Difosfato/metabolismo , Uridina Difosfato/química
2.
J Biol Chem ; 300(8): 107588, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032654

RESUMEN

Protein phosphorylation by kinases regulates mammalian cell functions, such as growth, division, and signal transduction. Among human kinases, NME1 and NME2 are associated with metastatic tumor suppression but remain understudied due to the lack of tools to monitor their cellular substrates. In particular, NME1 and NME2 are multispecificity kinases phosphorylating serine, threonine, histidine, and aspartic acid residues of substrate proteins, and the heat and acid sensitivity of phosphohistidine and phosphoaspartate complicates substrate discovery and validation. To provide new substrate monitoring tools, we established the γ-phosphate-modified ATP analog, ATP-biotin, as a cosubstrate for phosphorylbiotinylation of NME1 and NME2 cellular substrates. Building upon this ATP-biotin compatibility, the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method enabled validation of a known substrate and the discovery of seven NME1 and three NME2 substrates. Given the paucity of methods to study kinase substrates, ATP-biotin and the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method are valuable tools to characterize the roles of NME1 and NME2 in human cell biology.


Asunto(s)
Biotinilación , Nucleósido Difosfato Quinasas NM23 , Humanos , Nucleósido Difosfato Quinasas NM23/metabolismo , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Especificidad por Sustrato , Fosforilación , Biotina/metabolismo , Biotina/química , Biotina/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Células HEK293 , Catálisis
3.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32947863

RESUMEN

Nucleoside diphosphate kinases (NDPK) are oligomeric proteins involved in the synthesis of nucleoside triphosphates. Their tridimensional structure has been solved by X-ray crystallography and shows that individual subunits present a conserved ferredoxin fold of about 140 residues in prokaryotes, archaea, eukaryotes and viruses. Monomers are functionally independent from each other inside NDPK complexes and the nucleoside kinase catalytic mechanism involves transient phosphorylation of the conserved catalytic histidine. To be active, monomers must assemble into conserved head to tail dimers, which further assemble into hexamers or tetramers. The interfaces between these oligomeric states are very different but, surprisingly, the assembly structure barely affects the catalytic efficiency of the enzyme. While it has been shown that assembly into hexamers induces full formation of the catalytic site and stabilizes the complex, it is unclear why assembly into tetramers is required for function. Several additional activities have been revealed for NDPK, especially in metastasis spreading, cytoskeleton dynamics, DNA binding and membrane remodeling. However, we still lack the high resolution structural data of NDPK in complex with different partners, which is necessary for deciphering the mechanism of these diverse functions. In this review we discuss advances in the structure, folding and stability of NDPKs.


Asunto(s)
Proteínas Bacterianas/química , Nucleósido-Difosfato Quinasa/química , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Nucleósido Difosfato Quinasas NM23/química , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica , Proteínas Protozoarias/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
4.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823988

RESUMEN

The NME (Non-metastatic) family members, also known as NDPKs (nucleoside diphosphate kinases), were originally identified and studied for their nucleoside diphosphate kinase activities. This family of kinases is extremely well conserved through evolution, being found in prokaryotes and eukaryotes, but also diverges enough to create a range of complexity, with homologous members having distinct functions in cells. In addition to nucleoside diphosphate kinase activity, some family members are reported to possess protein-histidine kinase activity, which, because of the lability of phosphohistidine, has been difficult to study due to the experimental challenges and lack of molecular tools. However, over the past few years, new methods to investigate this unstable modification and histidine kinase activity have been reported and scientific interest in this area is growing rapidly. This review presents a global overview of our current knowledge of the NME family and histidine phosphorylation, highlighting the underappreciated protein-histidine kinase activity of NME family members, specifically in human cells. In parallel, information about the structural and functional aspects of the NME family, and the knowns and unknowns of histidine kinase involvement in cell signaling are summarized.


Asunto(s)
Histidina/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Secuencia de Aminoácidos , Animales , Biocatálisis , Humanos , Nucleósido Difosfato Quinasas NM23/química , Fosforilación , Relación Estructura-Actividad
5.
Mol Cell Biochem ; 474(1-2): 95-112, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32705629

RESUMEN

The Nm23 metastasis suppressor family is involved in a variety of physiological and pathological processes including cell proliferation, differentiation, tumorigenesis, and metastasis. Given that Nm23 proteins may function as hexamers composed of different members of the family, especially Nm23-H1 and H2 isoforms, it is pertinent to assess the importance of interface and surface residues in defining the functional characteristics of Nm23 proteins. Using molecular modeling to identify clusters of residues that may affect dimer formation and isoform specificity, mutants of Nm23-H1 were constructed and assayed for their ability to modulate cell migration. Mutations of dimer interface residues Gly22 and Lys39 affected the expression level of Nm23-H1, without altering the transcript level. The reduced protein expression was not due to increased protein degradation or altered subcellular distribution. Substitution of the surface residues of Nm23-H1 with Nm23-H2-specific Ser131 and/or Lys124/135 affected the electrophoretic mobility of the protein. Moreover, in cell migration assays, several mutants with altered surface residues exhibited impaired ability to suppress the mobility of MDA-MB-231 cells. Collectively, the study suggests that disrupting the dimer interface may affect the expression of Nm23-H1, while the residues at α-helix and ß-sheet on the surface of Nm23-H1 may contribute to its metastasis suppressive function.


Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Proliferación Celular , Mutación , Nucleósido Difosfato Quinasas NM23/metabolismo , Secuencia de Aminoácidos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Modelos Moleculares , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Metástasis de la Neoplasia , Multimerización de Proteína , Células Tumorales Cultivadas
6.
Int J Mol Sci ; 21(7)2020 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-32235358

RESUMEN

Nucleoside diphosphate kinases (NDPK/NME/Nm23) are enzymes composed of subunits NME1/NDPK A and NME2/NDPK B, responsible for the maintenance of the cellular (d)NTP pool and involved in other cellular processes, such as metastasis suppression and DNA damage repair. Although eukaryotic NDPKs are active only as hexamers, it is unclear whether other NME functions require the hexameric form, and how the isoenzyme composition varies in different cellular compartments. To examine the effect of DNA damage on intracellular localization of NME1 and NME2 and the composition of NME oligomers in the nucleus and the cytoplasm, we used live-cell imaging and the FRET/FLIM technique. We showed that exogenous NME1 and NME2 proteins co-localize in the cytoplasm of non-irradiated cells, and move simultaneously to the nucleus after gamma irradiation. The FRET/FLIM experiments imply that, after DNA damage, there is a slight shift in the homomer/heteromer balance between the nucleus and the cytoplasm. Collectively, our results indicate that, after irradiation, NME1 and NME2 engage in mutual functions in the nucleus, possibly performing specific functions in their homomeric states. Finally, we demonstrated that fluorophores fused to the N-termini of NME polypeptides produce the largest FRET effect and thus recommend this orientation for use in similar studies.


Asunto(s)
Daño del ADN/genética , Daño del ADN/efectos de la radiación , Nucleósido Difosfato Quinasas NM23/genética , Radiación Ionizante , Animales , Biomarcadores , Línea Celular , Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Rayos gamma , Humanos , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/metabolismo , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas
7.
Biochemistry ; 58(24): 2710-2714, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31141673

RESUMEN

Nucleoside diphosphate kinases (Nmes or NDPKs) have been implicated in a multitude of cellular processes, including an important role in metastasis suppression, and several enzymatic activities have been assigned to the Nme family. Nevertheless, for many of these processes, it has not been possible to establish a strong connection between Nme enzymatic activity and the relevant biological function. We hypothesized that, in addition to its known enzymatic functions, members of the Nme family might also regulate signaling cascades by acting on key signal transducers. Accordingly, here we show that Nme1 directly interacts with the calcium/calmodulin-dependent kinase II (CaMKII). Using purified proteins, we monitored the phosphorylation of a number of CaMKII substrates and determined that at nanomolar levels Nme1 enhances the phosphorylation of T-type substrates; this modulation shifts to inhibition at low micromolar concentrations. Specifically, the autophosphorylation of CaMKII at Thr286 is completely inhibited by 2 µM Nme1, a feature that distinguishes Nme1 from other known endogenous CaMKII inhibitors. Importantly, CaMKII inhibition does not require phosphotransfer activity by Nme1 because the kinase-dead Nme1 H118F mutant is as effective as the wild-type form of the enzyme. Our results provide a novel molecular mechanism whereby Nme1 could modulate diverse cellular processes in a manner that is independent of its known enzymatic activities.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Pruebas de Enzimas , Ratones , Mutación , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Unión Proteica , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
8.
Biochemistry ; 58(15): 1975-1991, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30920805

RESUMEN

The nuclease hypersensitive element III1 (NHE III1) upstream c-MYC promoter harbors a transcription-silencing G-quadruplex (Pu27) element. Dynamic turnover of various transcription factors (TFs) across Pu27 to control c-MYC transcription homeostasis is enigmatic. Here, we reveal that native Pu27 evolves truncated G-quadruplex isomers (Pu19, Pu22, Pu24, and Pu25) in cells that are optimal intracellular targets of specific TFs in a sequence- and structure-dependent manner. Nuclear magnetic resonance and isothermal titration calorimetry envisaged that NM23-H2 (nucleoside diphosphate kinase) and nucleolin induce conformational fluctuations in Pu27 to sample specific conformationally restricted conformer(s). Structural investigations revealed that the flanking guanines at 5'-Pu27 control solvent exposure at G-quartets upon NM23-H2 and nucleolin binding driving Pu27 unfolding and folding, respectively. Transient chromatin immunoprecipitations confirmed that NM23-H2 drives the conformation switch to Pu24 that outcompetes nucleolin recruitment. Similarly, nucleolin arrests Pu27 in the Pu22 conformer minimizing NM23-H2 binding at Pu27. hnRNPK (heterogeneous nuclear ribonucleoprotein K) positively regulates NM23-H2 and nucleolin association at Pu27 despite their antagonism. On the basis of these results, we simulated the transcription kinetics in a feed-forward loop in which the transcription output responds to hnRNPK-induced early activation via NM23-H2 association, which favors Pu24 formation at NHE III1 reducing nucleolin occupancy and driving quadruplex unfolding to initiate transcription. NM23-H2 further promotes hnRNPK deposition across NHE III1 altering Pu27 plasticity that finally enriches the nucleolin abundance to drive Pu22 formation and weaken NM23-H2 binding to extinguish transcription. This mechanism involves three positive feedback loops (NM23-H2-hnRNPK, NM23-H2-CNBP, and hnRNPK-nucleolin) and one negative feedback loop (NM23-H2-nucleolin) controlling optimal turnover and residence time of TFs at Pu27 to homeostatically regulate c-MYC transcription.


Asunto(s)
ADN/química , G-Cuádruplex , Homeostasis , Proteínas Proto-Oncogénicas c-myc/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/química , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Isomerismo , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Nucleolina
9.
Biomark Med ; 12(5): 419-425, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29697269

RESUMEN

AIM: Biomarkers are molecules measured in plasma, serum or other body fluids to characterize a disease. PARK7 and NDKA roles in the management of stroke are still on study. Therefore, their potentials need to be developed in totality. The aim of this review is to demonstrate that PARK7 and NDKA could present more clinical important information as biomarkers for management of stroke disease. Main contents: Four main aspects of PARK7 and NDKA are exploited in this review. First, their diagnostic value is discussed in order to demonstrate their possible role as stroke diagnosis markers. Second, this article will exploit the correlation of both markers with time, by showing their dynamic changes in serum and plasma. Third, it describes the observed relationship of their levels with NIH Stroke Scale. The last aspect visits the possibility of their implementation in stroke therapy. CONCLUSION: This article explores recent findings and proposes the potential roles that PARK7 and NDKA play in the management of acute stroke disease.


Asunto(s)
Nucleósido Difosfato Quinasas NM23/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Accidente Cerebrovascular/metabolismo , Biomarcadores/sangre , Biomarcadores/química , Biomarcadores/metabolismo , Humanos , Nucleósido Difosfato Quinasas NM23/sangre , Nucleósido Difosfato Quinasas NM23/líquido cefalorraquídeo , Nucleósido Difosfato Quinasas NM23/química , Proteína Desglicasa DJ-1/sangre , Proteína Desglicasa DJ-1/líquido cefalorraquídeo , Proteína Desglicasa DJ-1/química , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/líquido cefalorraquídeo , Accidente Cerebrovascular/diagnóstico
10.
Lab Invest ; 98(5): 571-581, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29449633

RESUMEN

The understanding of protein-protein interactions is crucial in order to generate a second level of functional genomic analysis in human disease. Within a cellular microenvironment, protein-protein interactions generate new functions that can be defined by single or multiple modes of protein interactions. We outline here the clinical importance of targeting of the Nme-1 (NDPK-A)-Prune-1 protein complex in cancer, where an imbalance in the formation of this protein-protein complex can result in inhibition of tumor progression. We discuss here recent functional data using a small synthetic competitive cell-permeable peptide (CPP) that has shown therapeutic efficacy for impairing formation of the Nme-1-Prune-1 protein complex in mouse preclinical xenograft tumor models (e.g., breast, prostate, colon, and neuroblastoma). We thus believe that further discoveries in the near future related to the identification of new protein-protein interactions will have great impact on the development of new therapeutic strategies against various cancers.


Asunto(s)
Proteínas Portadoras/fisiología , Péptidos de Penetración Celular/farmacología , Nucleósido Difosfato Quinasas NM23/fisiología , Neoplasias/tratamiento farmacológico , Proteínas Portadoras/química , Péptidos de Penetración Celular/uso terapéutico , Humanos , Nucleósido Difosfato Quinasas NM23/química , Neoplasias/patología , Monoéster Fosfórico Hidrolasas , Fosforilación , Proteína p53 Supresora de Tumor/fisiología
11.
Lab Invest ; 98(3): 304-314, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29400699

RESUMEN

Nucleoside diphosphate kinases are enzymes present in all domains of life. In animals, they are called Nme or Nm23 proteins, and are divided into group I and II. Human Nme1 was the first protein identified as a metastasis suppressor. Because of its medical importance, it has been extensively studied. In spite of the large research effort, the exact mechanism of metastasis suppression remains unclear. It is unknown which of the biochemical properties or biological functions are responsible for the antimetastatic role of the mammalian Nme1. Furthermore, it is not clear at which point in the evolution of life group I Nme proteins acquired the potential to suppress metastasis, a process that is usually associated with complex animals. In this study we performed a series of tests and assays on a group I Nme protein from filasterean Capsaspora owczarzaki, a close unicellular relative of animals. The aim was to compare the protein to the well-known human Nme1 and Nme2 homologs, as well as with the homolog from a simple animal-sponge (Porifera), in order to see how the proteins changed with the transition to multicellularity, and subsequently in the evolution of complex animals. We found that premetazoan-type protein is highly similar to the homologs from sponge and human, in terms of biochemical characteristics and potential biological functions. Like the human Nme1 and Nme2, it is able to diminish the migratory potential of human cancer cells in culture.


Asunto(s)
Movimiento Celular , Eucariontes/enzimología , Nucleósido Difosfato Quinasas NM23/metabolismo , Secuencia de Aminoácidos , Ensayos de Migración Celular , Eucariontes/genética , Evolución Molecular , Células HeLa , Humanos , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética
12.
J Biol Chem ; 292(37): 15205-15215, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28717007

RESUMEN

Transcriptional activation of the human telomerase reverse transcriptase (hTERT) gene, which remains repressed in adult somatic cells, is critical during tumorigenesis. Several transcription factors and the epigenetic state of the hTERT promoter are known to be important for tight control of hTERT in normal tissues, but the molecular mechanisms leading to hTERT reactivation in cancer are not well-understood. Surprisingly, here we found occupancy of the metastasis suppressor non-metastatic 2 (NME2) within the hTERT core promoter in HT1080 fibrosarcoma cells and HCT116 colon cancer cells and NME2-mediated transcriptional repression of hTERT in these cells. We also report that loss of NME2 results in up-regulated hTERT expression. Mechanistically, additional results indicated that the RE1-silencing transcription factor (REST)-lysine-specific histone demethylase 1 (LSD1) co-repressor complex associates with the hTERT promoter in an NME2-dependent way and that this assembly is required for maintaining repressive chromatin at the hTERT promoter. Interestingly, a G-quadruplex motif at the hTERT promoter was essential for occupancy of NME2 and the REST repressor complex on the hTERT promoter. In light of this mechanistic insight, we studied the effects of G-quadruplex-binding ligands on hTERT expression and observed that several of these ligands repressed hTERT expression. Together, our results support a mechanism of hTERT epigenetic control involving a G-quadruplex promoter motif, which potentially can be targeted by tailored small molecules.


Asunto(s)
Carcinoma/metabolismo , Represión Epigenética , Fibrosarcoma/metabolismo , G-Cuádruplex , Nucleósido Difosfato Quinasas NM23/metabolismo , Regiones Promotoras Genéticas , Telomerasa/metabolismo , Sustitución de Aminoácidos , Carcinoma/enzimología , Carcinoma/patología , Línea Celular Tumoral , Células Cultivadas , Inmunoprecipitación de Cromatina , Fibrosarcoma/enzimología , Fibrosarcoma/patología , Genes Reporteros , Histona Demetilasas/química , Histona Demetilasas/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Nucleósido Difosfato Quinasas NM23/antagonistas & inhibidores , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Mutación Puntual , Multimerización de Proteína , Interferencia de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Telomerasa/antagonistas & inhibidores , Telomerasa/genética
13.
J Med Chem ; 60(16): 6924-6941, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28714689

RESUMEN

c-MYC is one of the important human proto-oncogenes, and transcriptional factor NM23-H2 can activate c-MYC transcription by recognizing the G-quadruplex in the promoter of the gene. Small molecules that inhibit c-MYC transcription by disrupting the NM23-H2/G-quadruplex interaction might be a promising strategy for developing selective anticancer agents. In recent studies, we developed a series of isaindigotone derivatives, which can bind to G-quadruplex and NM23-H2, thus down-regulating c-MYC ( J. Med. Chem. 2017 , 60 , 1292 - 1308 ). Herein, a series of novel isaindigotone derivatives were designed, synthesized, and screened for NM23-H2 selective binding ligands. Among them, compound 37 showed a high specific binding affinity to NM23-H2, effectively disrupting the interaction of NM23-H2 with G-quadruplex, and it strongly down-regulated c-MYC transcription. Furthermore, 37 induced cell cycle arrest and apoptosis, and it exhibited good tumor growth inhibition in a mouse xenograft model. This work provides a new strategy to modulate c-MYC transcription for the development of selective anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , G-Cuádruplex , Nucleósido Difosfato Quinasas NM23/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Pirroles/farmacología , Quinazolinas/farmacología , Quinazolinonas/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Doxorrubicina/farmacología , Diseño de Fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Ligandos , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Pirroles/administración & dosificación , Pirroles/síntesis química , Pirroles/química , Quinazolinas/administración & dosificación , Quinazolinas/síntesis química , Quinazolinas/química , Quinazolinonas/administración & dosificación , Quinazolinonas/síntesis química , Quinazolinonas/química , Relación Estructura-Actividad , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Steroid Biochem Mol Biol ; 171: 270-280, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28457968

RESUMEN

17beta-hydroxysteroid dehydrogenase type 5 (17ß-HSD5) is an important enzyme associated with sex steroid metabolism in hormone-dependent cancer. However, reports on its expression and its prognostic value in breast cancer are inconsistent. Here, we demonstrate the impact of 17ß-HSD5 expression modulation on the proteome of estrogen receptor-positive (ER+) breast cancer cells. RNA interference technique (siRNA) was used to knock down 17ß-HSD5 gene expression in the ER+ breast cancer cell line MCF-7 and the proteome of the 17ß-HSD5-knockdown cells was compared to that of MCF-7 cells using two-dimensional (2-D) gel electrophoresis followed by mass spectrometry analysis. Ingenuity pathway analysis (IPA) was additionally used to assess functional enrichment analyses of the proteomic dataset, including protein network and canonical pathways. Our proteomic analysis revealed only four differentially expressed protein spots (fold change > 2, p<0.05) between the two cell lines. The four spots were up-regulated in 17ß-HSD5-knockdown MCF-7 cells, and comprised 21 proteins involved in two networks and in functions that include apoptosis inhibition, regulation of cell growth and differentiation, signal transduction and tumor metastasis. Among the proteins are nucleoside diphosphate kinase A (NME1), 78kDa glucose-regulated protein (GRP78) and phosphoglycerate kinase 1 (PGK1). We also showed that expression of 17ß-HSD5 and that of the apoptosis inhibitor GRP78 are strongly but negatively correlated. Consistent with their opposite regulation, GRP78 knockdown decreased MCF-7 cell viability whereas 17ß-HSD5 knockdown or inhibition increased cell viability and proliferation. Besides, IPA analysis revealed that ubiquitination pathway is significantly affected by 17ß-HSD5 knockdown. Furthermore, IPA predicted the proto-oncogene c-Myc as an upstream regulator linked to the tumor-secreted protein PGK1. The latter is over-expressed in invasive ductal breast carcinoma as compared with normal breast tissue and its expression increased following 17ß-HSD5 knockdown. Our present results indicate a 17ß-HSD5 role in down-regulating breast cancer development. We thus propose that 17ß-HSD5 may not be a potent target for breast cancer treatment but its low expression could represent a poor prognosis factor.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/metabolismo , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoglicerato Quinasa/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiesteroide Deshidrogenasas/química , 3-Hidroxiesteroide Deshidrogenasas/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Neoplasias de la Mama/patología , Proliferación Celular , Supervivencia Celular , Chaperón BiP del Retículo Endoplásmico , Activación Enzimática , Femenino , Perfilación de la Expresión Génica , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Hidroxiprostaglandina Deshidrogenasas/antagonistas & inhibidores , Hidroxiprostaglandina Deshidrogenasas/química , Hidroxiprostaglandina Deshidrogenasas/genética , Procesamiento de Imagen Asistido por Computador , Células MCF-7 , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/genética , Proteómica/métodos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Receptores de Estrógenos/metabolismo , Electroforesis Bidimensional Diferencial en Gel
15.
Mol Cells ; 39(5): 403-9, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27094059

RESUMEN

NME1 is a well-known metastasis suppressor which has been reported to be downregulated in some highly aggressive cancer cells. Although most studies have focused on NME1, the NME1 gene also encodes the protein (NME1L) containing N-terminal 25 extra amino acids by alternative splicing. According to previous studies, NME1L has potent anti-metastatic activity, in comparison with NME1, by interacting with IKKß and regulating its activity. In the present study, we tried to define the role of the N-terminal 25 amino acids of NME1L in NF-κB activation signaling. Unfortunately, the sequence itself did not interact with IKKß, suggesting that it may be not enough to constitute the functional structure. Further construction of NME1L fragments and biochemical analysis revealed that N-terminal 84 residues constitute minimal structure for homodimerization, IKKß interaction and regulation of NF-κB signaling. The inhibitory effect of the fragment on cancer cell migration and NF-κB-stimulated gene expression was equivalent to that of whole NME1L. The data suggest that the N-terminal 84 residues may be a core region for the anti-metastatic activity of NME1L. Based on this result, further structural analysis of the binding between NME1L and IKKß may help in understanding the anti-metastatic activity of NME1L and provide direction to NME1L and IKKß-related anti-cancer drug design.


Asunto(s)
Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Nucleósido Difosfato Quinasas NM23/farmacología , Unión Proteica , Multimerización de Proteína , Transducción de Señal
16.
PLoS One ; 11(3): e0149097, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26950439

RESUMEN

Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Membrana Celular/metabolismo , Polaridad Celular , AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Citosol/metabolismo , Células Epiteliales/citología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Nucleósido Difosfato Quinasas NM23/química , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Sistema Respiratorio/citología , Adulto Joven
17.
Gene ; 582(2): 112-21, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26869315

RESUMEN

Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Empalme Alternativo/genética , Animales , Humanos , Familia de Multigenes , Mutación/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Estructura Terciaria de Proteína
18.
Nucleic Acids Res ; 43(14): 6677-91, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26117539

RESUMEN

c-MYC is an important oncogene that is considered as an effective target for anticancer therapy. Regulation of this gene's transcription is one avenue for c-MYC-targeting drug design. Direct binding to a transcription factor and generating the intervention of a transcriptional programme appears to be an effective way to modulate gene transcription. NM23-H2 is a transcription factor for c-MYC and is proven to be related to the secondary structures in the promoter. Here, we first screened our small-molecule library for NM23-H2 binders and then sifted through the inhibitors that could target and interfere with the interaction process between NM23-H2 and the guanine-rich promoter sequence of c-MYC. As a result, a quinazolone derivative, SYSU-ID-01: , showed a significant interference effect towards NM23-H2 binding to the guanine-rich promoter DNA sequence. Further analyses of the compound-protein interaction and the protein-DNA interaction provided insight into the mode of action for SYSU-ID-01: . Cellular evaluation results showed that SYSU-ID-01: could abrogate NM23-H2 binding to the c-MYC promoter, resulting in downregulation of c-MYC transcription and dramatically suppressed HeLa cell growth. These findings provide a new way of c-MYC transcriptional control through interfering with NM23-H2 binding to guanine-rich promoter sequences by small molecules.


Asunto(s)
Nucleósido Difosfato Quinasas NM23/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/genética , Quinazolinonas/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Apoptosis , Células Cultivadas , ADN/metabolismo , Regulación hacia Abajo , Células HeLa , Humanos , Ratones , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Quinazolinonas/química , Bibliotecas de Moléculas Pequeñas
19.
Naunyn Schmiedebergs Arch Pharmacol ; 388(2): 243-56, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25413836

RESUMEN

Substantial effort has been directed at elucidating the functions of the products of the Nm23 tumor metastasis suppressor genes over the past two decades, with the ultimate goal of exploring their translational potentials in changing cancer patients' outcomes. Much attention has been focused on the better-known Nm23-H1, but despite having high sequence similarity, Nm23-H2 functions differently in many aspects. Besides acting as a metastasis suppressor, compelling data suggest that Nm23-H2 may modulate various tumor-associated biological events to enhance tumorigenesis in human solid tumors and hematological malignancies. Linkage to tumorigenesis may occur through the ability of Nm23-H2 to regulate transcription, cell proliferation, apoptosis, differentiation, and telomerase activity. In this review, we examine the linkages of Nm23-H2 to tumorigenesis in terms of its biochemical and structural properties and discuss its potential role in various tumor-associated events.


Asunto(s)
Nucleósido Difosfato Quinasas NM23/metabolismo , Neoplasias/metabolismo , Animales , Diferenciación Celular , Genes myc , Humanos , Células Madre Multipotentes/fisiología , Nucleósido Difosfato Quinasas NM23/química , Conformación Proteica , Telomerasa/metabolismo
20.
Toxicol Appl Pharmacol ; 281(3): 310-6, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25447407

RESUMEN

Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 µM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Endotelio Vascular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neovascularización Patológica/prevención & control , Tocoferoles/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Antimetabolitos Antineoplásicos/farmacología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/metabolismo , Relación Dosis-Respuesta a Droga , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Metaloproteinasa 2 de la Matriz/química , Metaloproteinasa 2 de la Matriz/metabolismo , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/agonistas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA