Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.960
Filtrar
Más filtros











Intervalo de año de publicación
1.
Med Oncol ; 41(6): 161, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767705

RESUMEN

Despite decades of basic and clinical research and trials of promising new therapies, cancer remains a major cause of morbidity and mortality due to the emergence of drug resistance to anticancer drugs. These resistance events have a very well-understood underlying mechanism, and their therapeutic relevance has long been recognized. Thus, drug resistance continues to be a major obstacle to providing cancer patients with the intended "cure". PAQR4 (Progestin and AdipoQ Receptor Family Member 4) gene is a recently identified novel protein-coding gene associated with various human cancers and acts through different signaling pathways. PAQR4 has a significant influence on multiple proteins that may regulate various gene expressions and may develop chemoresistance. This review discusses the roles of PAQR4 in tumor immunity, carcinogenesis, and chemoresistance. This paper is the first review, discussing PAQR4 in the pathogenesis of cancer. The review further explores the PAQR4 as a potential target in various malignancies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Resistencia a Antineoplásicos/genética , Oncogenes/genética , Terapia Molecular Dirigida/métodos , Antineoplásicos/uso terapéutico , Proteínas de la Membrana/genética , Animales , Transducción de Señal/genética , Transducción de Señal/efectos de los fármacos
2.
Sci Rep ; 14(1): 11715, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778164

RESUMEN

Recent studies have revealed that arginine is the most favorable target of amino acid alteration in most cancer types and it has been suggested that the high preference for arginine mutations reflects the critical roles of this amino acid in the function of proteins. High rates of mutations of arginine residues in cancer, however, might also be due to increased mutability of arginine codons of the CGN family as the CpG dinucleotides of these codons may be methylated. In the present work we have analyzed spectra of single base substitutions of cancer genes (oncogenes, tumor suppressor genes) and passenger genes in cancer tissues to assess the contributions of CpG hypermutability and selection to arginine mutations. Our studies have shown that arginines encoded by the CGN codon family display higher rates of mutation in both cancer genes and passenger genes than arginine codons AGA and AGG that are devoid of CpG dinucleotide, suggesting that the predominance of arginine mutations in cancer is primarily due to CpG hypermutability, rather than selection for arginine replacement. Nevertheless, our results also suggest that CGN codons for arginines may serve as Achilles' heels of cancer genes. CpG hypermutability of key arginines of proto-oncogenes, leading to high rates of recurrence of driver mutations, contributes significantly to carcinogenesis. Similarly, our results indicate that hypermutability of the CpG dinucleotide of CGA codons (converting them to TGA stop codons) contributes significantly to recurrent truncation and inactivation of tumor suppressor genes.


Asunto(s)
Arginina , Codón , Islas de CpG , Neoplasias , Arginina/genética , Arginina/química , Humanos , Codón/genética , Neoplasias/genética , Islas de CpG/genética , Mutación , Oncogenes/genética , Genes Supresores de Tumor
3.
Nat Commun ; 15(1): 4074, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744814

RESUMEN

Esophageal adenocarcinoma is a prominent example of cancer characterized by frequent amplifications in oncogenes. However, the mechanisms leading to amplicons that involve breakage-fusion-bridge cycles and extrachromosomal DNA are poorly understood. Here, we use 710 esophageal adenocarcinoma cases with matched samples and patient-derived organoids to disentangle complex amplicons and their associated mechanisms. Short-read sequencing identifies ERBB2, MYC, MDM2, and HMGA2 as the most frequent oncogenes amplified in extrachromosomal DNAs. We resolve complex extrachromosomal DNA and breakage-fusion-bridge cycles amplicons by integrating of de-novo assemblies and DNA methylation in nine long-read sequenced cases. Complex amplicons shared between precancerous biopsy and late-stage tumor, an enrichment of putative enhancer elements and mobile element insertions are potential drivers of complex amplicons' origin. We find that patient-derived organoids recapitulate extrachromosomal DNA observed in the primary tumors and single-cell DNA sequencing capture extrachromosomal DNA-driven clonal dynamics across passages. Prospectively, long-read and single-cell DNA sequencing technologies can lead to better prediction of clonal evolution in esophageal adenocarcinoma.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Organoides/patología , Amplificación de Genes , Metilación de ADN , Oncogenes/genética , Masculino , Análisis de Secuencia de ADN/métodos , Evolución Clonal/genética , Femenino
4.
PLoS One ; 19(5): e0296565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781195

RESUMEN

Epigenetic silencing through methylation is one of the major mechanisms for downregulation of tumor suppressor miRNAs in various malignancies. The aim of this study was to identify novel tumor suppressor miRNAs which are silenced by DNA hypermethylation and investigate the role of at least one of these in oral squamous cell carcinoma (OSCC) pathogenesis. We treated cells from an OSCC cell line SCC131 with 5-Azacytidine, a DNA methyltransferase inhibitor, to reactivate tumor suppressor miRNA genes silenced/downregulated due to DNA methylation. At 5-day post-treatment, total RNA was isolated from the 5-Azacytidine and vehicle control-treated cells. The expression of 2,459 mature miRNAs was analysed between 5-Azacytidine and control-treated OSCC cells by the microRNA microarray analysis. Of the 50 miRNAs which were found to be upregulated following 5-Azacytidine treatment, we decided to work with miR-6741-3p in details for further analysis, as it showed a mean fold expression of >4.0. The results of qRT-PCR, Western blotting, and dual-luciferase reporter assay indicated that miR-6741-3p directly targets the oncogene SRSF3 at the translational level only. The tumor-suppressive role of miR-6741-3p was established by various in vitro assays and in vivo study in NU/J athymic nude mice. Our results revealed that miR-6741-3p plays a tumor-suppressive role in OSCC pathogenesis, in part, by directly regulating SRSF3. Based on our observations, we propose that miR-6741-3p may serve as a potential biological target in tumor diagnostics, prognostic evaluation, and treatment of OSCC and perhaps other malignancies.


Asunto(s)
Carcinoma de Células Escamosas , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias de la Boca , Factores de Empalme Serina-Arginina , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Animales , Línea Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Metilación de ADN , Intrones/genética , Ratones Desnudos , Azacitidina/farmacología , Oncogenes/genética
5.
Pathol Res Pract ; 258: 155329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692083

RESUMEN

Fibrosarcoma is a challenging cancer originating from fibrous tissues, marked by aggressive growth and limited treatment options. The discovery of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs), has opened new pathways for understanding and treating this malignancy. These ncRNAs play crucial roles in gene regulation, cellular processes, and the tumor microenvironment. This review aims to explore the impact of ncRNAs on fibrosarcoma's pathogenesis, progression, and resistance to treatment, focusing on their mechanistic roles and therapeutic potential. A comprehensive review of literature from databases like PubMed and Google Scholar was conducted, focusing on the dysregulation of ncRNAs in fibrosarcoma, their contribution to tumor growth, metastasis, drug resistance, and their cellular pathway interactions. NcRNAs significantly influence fibrosarcoma, affecting cell proliferation, apoptosis, invasion, and angiogenesis. Their function as oncogenes or tumor suppressors makes them promising biomarkers and therapeutic targets. Understanding their interaction with the tumor microenvironment is essential for developing more effective treatments for fibrosarcoma. Targeting ncRNAs emerges as a promising strategy for fibrosarcoma therapy, offering hope to overcome the shortcomings of existing treatments. Further investigation is needed to clarify specific ncRNAs' roles in fibrosarcoma and to develop ncRNA-based therapies, highlighting the significance of ncRNAs in improving patient outcomes in this challenging cancer.


Asunto(s)
Fibrosarcoma , ARN no Traducido , Humanos , Fibrosarcoma/genética , Fibrosarcoma/patología , ARN no Traducido/genética , Regulación Neoplásica de la Expresión Génica , Oncogenes/genética , Microambiente Tumoral/genética , Genes Supresores de Tumor/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Animales
6.
Wiley Interdiscip Rev RNA ; 15(3): e1851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38702938

RESUMEN

Long noncoding RNAs (lncRNA) are a class of non-coding RNAs greater than 200 bp in length with limited peptide-coding function. The transcription of LINC00152 is derived from chromosome 2p11.2. Many studies prove that LINC00152 influences the progression of various tumors via promoting the tumor cells malignant phenotype, chemoresistance, and immune escape. LINC00152 is regulated by multiple transcription factors and DNA hypomethylation. In addition, LINC00152 participates in the regulation of complex molecular signaling networks through epigenetic regulation, protein interactions, and competitive endogenous RNA (ceRNA). Here, we provide a systematic review of the upstream regulatory factors of LINC00152 expression level in different types of tumors. In addition, we revisit the main functions and mechanisms of LINC00152 as driver oncogene and biomarker in pan-cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Asunto(s)
Neoplasias , Oncogenes , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Oncogenes/genética , Regulación Neoplásica de la Expresión Génica
7.
Biomed Res Int ; 2024: 8544837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803515

RESUMEN

The loss of RAB25 expression-RAS superfamily of GTPase characteristic of numerous breast cancers-corresponds with H-RAS point mutations, particularly in triple-negative breast cancers (TNBC), a subtype associated with a poor prognosis. To address the poorly understood factors dictating the progression of TNBC tumors, we examine the cooperative effects that loss of RAB25 expression in human mammary epithelial cell (HMEC) lines with H-RAS mutations confers in tumorigenesis. HMECs were immortalized by transduction with LXSN CDK4 R24C, a mutant form of cyclin-dependent kinase, followed by transduction with hTERT, a catalytic subunit of the telomerase enzyme. We found that with the loss of RAB25 and overexpression of mutant H-RAS61L, immortal HMECs transformed toward anchorage-independent growth and acquired an increased ability to migrate. Furthermore, cells express low CD24, high CD44, and low claudin levels, indicating stem-like properties upon transformation. Besides, loss of RAB25 and overexpression of H-RAS61L resulted in increased expression of transcription factors Snail and Slug that drive these cells to lose E-cadherin and undergo epithelial-mesenchymal transition (EMT). This study confirms that loss of RAB25 and overexpression of mutant H-RAS can drive HMECs toward a mesenchymal stem-like state. Our findings reveal that RAB25 functions as a tumor suppressor gene, and loss of RAB25 could serve as a novel biomarker of the claudin-low type of TNBC.


Asunto(s)
Transformación Celular Neoplásica , Claudinas , Células Epiteliales , Transición Epitelial-Mesenquimal , Proteínas de Unión al GTP rab , Humanos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Claudinas/genética , Claudinas/metabolismo , Femenino , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Regulación Neoplásica de la Expresión Génica , Oncogenes/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Mutación/genética
8.
Sci Rep ; 14(1): 11650, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773187

RESUMEN

Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.


Asunto(s)
Evolución Molecular , Mamíferos , Neoplasias , Filogenia , Animales , Mamíferos/genética , Neoplasias/genética , Humanos , Selección Genética , Oncogenes/genética , Genes Supresores de Tumor , Predisposición Genética a la Enfermedad
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734320

RESUMEN

Cells of multicellular organisms generate heterogeneity in a controlled and transient fashion during embryogenesis, which can be reactivated in pathologies such as cancer. Although genomic heterogeneity is an important part of tumorigenesis, continuous generation of phenotypic heterogeneity is central for the adaptation of cancer cells to the challenges of tumorigenesis and response to therapy. Here I discuss the capacity of generating heterogeneity, hereafter called cell hetness, in cancer cells both as the activation of hetness oncogenes and inactivation of hetness tumor suppressor genes, which increase the generation of heterogeneity, ultimately producing an increase in adaptability and cell fitness. Transcriptomic high hetness states in therapy-tolerant cell states denote its importance in cancer resistance to therapy. The definition of the concept of hetness will allow the understanding of its origins, its control during embryogenesis, its loss of control in tumorigenesis and cancer therapeutics and its active targeting.


Asunto(s)
Carcinogénesis , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Neoplasias/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Heterogeneidad Genética , Oncogenes/genética , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Genes Supresores de Tumor , Regulación Neoplásica de la Expresión Génica
10.
Nature ; 629(8012): 679-687, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693266

RESUMEN

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Asunto(s)
Heterogeneidad Genética , Genómica , Imagenología Tridimensional , Neoplasias Pancreáticas , Lesiones Precancerosas , Análisis de la Célula Individual , Adulto , Femenino , Humanos , Masculino , Células Clonales/metabolismo , Células Clonales/patología , Secuenciación del Exoma , Aprendizaje Automático , Mutación , Páncreas/anatomía & histología , Páncreas/citología , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Flujo de Trabajo , Progresión de la Enfermedad , Detección Precoz del Cáncer , Oncogenes/genética
11.
mBio ; 15(5): e0072924, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38624210

RESUMEN

The integration of HPV DNA into human chromosomes plays a pivotal role in the onset of papillomavirus-related cancers. HPV DNA integration often occurs by linearizing the viral DNA in the E1/E2 region, resulting in the loss of a critical viral early polyadenylation signal (PAS), which is essential for the polyadenylation of the E6E7 bicistronic transcripts and for the expression of the viral E6 and E7 oncogenes. Here, we provide compelling evidence that, despite the presence of numerous integrated viral DNA copies, virus-host fusion transcripts originate from only a single integrated HPV DNA in HPV16 and HPV18 cervical cancers and cervical cancer-derived cell lines. The host genomic elements neighboring the integrated HPV DNA are critical for the efficient expression of the viral oncogenes that leads to clonal cell expansion. The fusion RNAs that are produced use a host RNA polyadenylation signal downstream of the integration site, and almost all involve splicing to host sequences. In cell culture, siRNAs specifically targeting the host portion of the virus-host fusion transcripts effectively silenced viral E6 and E7 expression. This, in turn, inhibited cell growth and promoted cell senescence in HPV16+ CaSki and HPV18+ HeLa cells. Showing that HPV E6 and E7 expression from a single integration site is instrumental in clonal cell expansion sheds new light on the mechanisms of HPV-induced carcinogenesis and could be used for the development of precision medicine tailored to combat HPV-related malignancies. IMPORTANCE: Persistent oncogenic HPV infections lead to viral DNA integration into the human genome and the development of cervical, anogenital, and oropharyngeal cancers. The expression of the viral E6 and E7 oncogenes plays a key role in cell transformation and tumorigenesis. However, how E6 and E7 could be expressed from the integrated viral DNA which often lacks a viral polyadenylation signal in the cancer cells remains unknown. By analyzing the integrated HPV DNA sites and expressed HPV RNAs in cervical cancer tissues and cell lines, we show that HPV oncogenes are expressed from only one of multiple chromosomal HPV DNA integrated copies. A host polyadenylation signal downstream of the integrated viral DNA is used for polyadenylation and stabilization of the virus-host chimeric RNAs, making the oncogenic transcripts targetable by siRNAs. This observation provides further understanding of the tumorigenic mechanism of HPV integration and suggests possible therapeutic strategies for the development of precision medicine for HPV cancers.


Asunto(s)
ADN Viral , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Integración Viral , Humanos , Femenino , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/genética , Integración Viral/genética , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/genética , ADN Viral/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Línea Celular Tumoral , Oncogenes/genética , Poliadenilación
12.
Int J Oncol ; 64(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38639179

RESUMEN

The exosomal pathway is an essential mechanism that regulates the abnormal content of microRNAs (miRNAs) in hepatocellular carcinoma (HCC). The directional transport of miRNAs requires the assistance of RNA­binding proteins (RBPs). The present study found that RBPs participate in the regulation of miRNA content through the exosomal pathway in HCC cells. First, differential protein expression profiles in the serum exosomes of patients with HCC and benign liver disease were detected using mass spectrometry. The results revealed that ribosomal protein L9 (RPL9) was highly expressed in serum exosomes of patients with HCC. In addition, the downregulation of RPL9 markedly suppressed the proliferation, migration and invasion of HCC cells and reduced the biological activity of HCC­derived exosomes. In addition, using miRNA microarrays, the changes in exosomal miRNA profiles in HCC cells caused by RPL9 knockdown were examined. miR­24­3p and miR­185­5p were most differentially expressed, as verified by reverse transcription­quantitative PCR. Additionally, using RNA immunoprecipitation, it was found that RPL9 was directly bound to the two miRNAs and immunofluorescence assays confirmed that RPL9 was able to carry miRNAs into recipient cells via exosomes. Overexpression of miR­24­3p in cells increased the accumulation of miR­24­3p in exosomes and simultaneously upregulated RPL9. Excessive expression of miR­24­3p in exosomes also increased their bioactivity. Exosome­mediated miRNA regulation and transfer require the involvement of RBPs. RPL9 functions as an oncogene, can directly bind to specific miRNAs and can be co­transported to receptor cells through exosomes, thereby exerting its biological functions. These findings provide a novel approach for modulating miRNA profiles in HCC.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Neoplasias Hepáticas , MicroARNs , Proteínas Ribosómicas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Oncogenes/genética , Proteínas Ribosómicas/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
13.
Exp Cell Res ; 439(1): 114057, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679315

RESUMEN

Certain oncogenes, including mutant RAS and BRAF, induce a type of senescence known as oncogene-induced senescence (OIS) in normal cells in a cell-type-specific manner. OIS serves as a barrier to transformation by activated oncogenes. Our previous studies showed that mutant KRASV12 did not efficiently induce OIS in an hTERT/Cdk4-immortalized normal human bronchial epithelial cell line (HBEC3), but it did enhance both anchorage-dependent and anchorage-independent growth. In this study, we investigated whether mutant BRAF, a well-known inducer of OIS, could trigger OIS in HBEC3 cells. We also assessed the impact of mutant BRAF on the growth of HBEC3 cells, as no previous studies have examined this using a normal bronchial epithelial cell line model. We established an HBEC3 cell line, designated as HBEC3-BIN, that expresses mutant BRAFV600E in a doxycycline-regulated manner. Unlike our previous finding that KRASV12 upregulated both pERK and pAKT, mutant BRAFV600E upregulated pERK but not pAKT in HBEC3-BIN cells. Similar to KRASV12, BRAFV600E did not efficiently induce OIS. Interestingly, while BRAFV600E inhibited colony formation in anchorage-dependent conditions, it dramatically enhanced colony formation in anchorage-independent conditions in HBEC3-BIN. In HBEC3 cells without BRAFV600E or KRASV12 expression, p21 was only detected in the cytoplasm, and its localization was not altered by the expression of BRAFV600E or KRASV12. Next-generation sequencing analysis revealed an enrichment of gene sets known to be involved in carcinogenesis, including IL3/JAK/STAT3, IL2, STAT5, and the EMT pathway. Our results indicate that, unlike KRASV12, which promoted both, BRAFV600E enhances anchorage-independent growth but inhibits anchorage-dependent growth of HBEC3. This contrast may result from differences in activation signaling in the downstream pathways. Furthermore, HBEC3 cells appear to be inherently resistant to OIS, which may be partly due to the fact that p21 remains localized in the cytoplasm upon expression of BRAFV600E or KRASV12.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Senescencia Celular/genética , Mutación , Proliferación Celular/genética , Línea Celular , Células Epiteliales/metabolismo , Bronquios/metabolismo , Bronquios/citología , Oncogenes/genética , Transducción de Señal
14.
Dev Cell ; 59(10): 1317-1332.e5, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38574733

RESUMEN

UBE2F, a neddylation E2, neddylates CUL5 to activate cullin-RING ligase-5, upon coupling with neddylation E3 RBX2/SAG. Whether and how UBE2F controls pancreatic tumorigenesis is previously unknown. Here, we showed that UBE2F is essential for the growth of human pancreatic cancer cells with KRAS mutation. In the mouse KrasG12D pancreatic ductal adenocarcinoma (PDAC) model, Ube2f deletion suppresses cerulein-induced pancreatitis, and progression of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia. Mechanistically, Ube2f deletion inactivates the Mapk-c-Myc signals via blocking ubiquitylation of Diras2, a substrate of CRL5Asb11 E3 ligase. Biologically, DIRAS2 suppresses growth and survival of human pancreatic cancer cells harboring mutant KRAS, and Diras2 deletion largely rescues the phenotypes induced by Ube2f deletion. Collectively, Ube2f or Diras2 plays a tumor-promoting or tumor-suppressive role in the mouse KrasG12D PDAC model, respectively. The UBE2F-CRL5ASB11 axis could serve as a valid target for pancreatic cancer, whereas the levels of UBE2F or DIRAS2 may serve as prognostic biomarkers for PDAC patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Enzimas Ubiquitina-Conjugadoras , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular , Genes Supresores de Tumor , Oncogenes/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
15.
Gene ; 912: 148355, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38467314

RESUMEN

BACKGROUND: Breast cancer (BC) is the most prevalent malignant disease affecting women globally. PANoptosis, a novel form of cell death combining features of pyroptosis, apoptosis, and necroptosis, has recently gained attention. However, its precise function in BC and the predictive values of PANoptosis-related genes remain unclear. METHODS: We used the expression data and clinical information of BC tissues or normal breast tissues from public databases, and then successfully developed and verified a BC PANoptosis-related risk model through a combination of univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and Kaplan-Meier (KM) analysis. A nomogram was constructed to estimate survival probability, and its accuracy was assessed using calibration curves. RESULTS: Among 37 PANoptosis-related genes, we identified 4 differentially expressed genes related to overall survival (OS). Next, a risk model incorporating these four PANoptosis-related genes was established. Patients were stratified into low/high-risk groups based on the median risk score, with the low-risk group showing better prognoses and higher levels of immune infiltration. Utilizing the risk score and clinical features, we developed a nomogram to predict 1-, 3- and 5-year survival probability. X-linked inhibitor of apoptosis protein (XIAP) emerged as a potentially risky factor with the highest hazard ratio. In vitro experiments demonstrated that XIAP inhibition enhances the antitumor effect of doxorubicin through the PANoptosis pathway. CONCLUSION: PANoptosis holds an important role in BC prognosis and treatment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Oncogenes/genética , Doxorrubicina , Apoptosis/genética
16.
Oncogene ; 43(19): 1431-1444, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485737

RESUMEN

MET amplification/mutations are important targetable oncogenic drivers in NSCLC, however, acquired resistance is inevitable and the majority of patients with targetable MET alterations fail to respond to MET tyrosine kinase inhibitors (TKIs). Furthermore, MET amplification is among the most common mediators of TKI resistance. As such, novel therapies to target MET pathway and overcome MET TKI resistance are clearly needed. Here we show that the epithelial-mesenchymal transition (EMT) transcription factor, TWIST1 is a key downstream mediator of HGF/MET induced resistance through suppression of p27 and targeting TWIST1 can overcome resistance. We found that TWIST1 is overexpressed at the time of TKI resistance in multiple MET-dependent TKI acquired resistance PDX models. We have shown for the first time that MET directly stabilized the TWIST protein leading to TKI resistance and that TWIST1 was required for MET-driven lung tumorigenesis as well as could induce MET TKI resistance when overexpressed. TWIST1 mediated MET TKI resistance through suppression of p27 expression and genetic or pharmacologic inhibition of TWIST1 overcame TKI resistance in vitro and in vivo. Our findings suggest that targeting TWIST1 may be an effective therapeutic strategy to overcome resistance in MET-driven NSCLC as well as in other oncogene driven subtypes in which MET amplification is the resistance mechanism.


Asunto(s)
Resistencia a Antineoplásicos , Factor de Crecimiento de Hepatocito , Neoplasias Pulmonares , Proteínas Nucleares , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-met , Proteína 1 Relacionada con Twist , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Resistencia a Antineoplásicos/genética , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animales , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Oncogenes/genética , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cancer Sci ; 115(5): 1656-1664, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450844

RESUMEN

Driver oncogenes are investigated upfront at diagnosis using multi-CDx systems with next-generation sequencing techniques or multiplex reverse-transcriptase polymerase chain reaction assays. Additionally, from 2019, comprehensive genomic profiling (CGP) assays have been available in Japan for patients with advanced solid tumors who had completed or were expected to complete standard chemotherapy. These assays are expected to comprehensively detect the driver oncogenes, especially for patients with non-small cell lung cancer (NSCLC). However, there are no reports of nationwide research on the detection of driver oncogenes in patients with advanced NSCLC who undergo CGP assays, especially in those with undetected driver oncogenes at diagnosis. In this study, we investigated the proportion of driver oncogenes detected in patients with advanced NSCLC with undetectable driver oncogenes at initial diagnosis and in all patients with advanced NSCLC who underwent CGP assays. We retrospectively analyzed data from 986 patients with advanced NSCLC who underwent CGP assays between August 2019 and March 2022, using the Center for Cancer Genomics and Advanced Therapeutics database. The proportion of driver oncogenes newly detected in patients with NSCLC who tested negative for driver oncogenes at diagnosis and in all patients with NSCLC were investigated. Driver oncogenes were detected in 451 patients (45.7%). EGFR was the most common (16.5%), followed by KRAS (14.5%). Among the 330 patients with undetected EGFR, ALK, ROS1, and BRAF V600E mutations at diagnosis, 81 patients (24.5%) had newly identified driver oncogenes. CGP assays could be useful to identify driver oncogenes in patients with advanced NSCLC, including those initially undetected, facilitating personalized treatment.


Asunto(s)
Quinasa de Linfoma Anaplásico , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Mutación , Oncogenes , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Femenino , Anciano , Oncogenes/genética , Persona de Mediana Edad , Quinasa de Linfoma Anaplásico/genética , Estudios Retrospectivos , Japón , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Receptores ErbB/genética , Anciano de 80 o más Años , Adulto , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras/genética
18.
Methods Mol Biol ; 2769: 99-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315392

RESUMEN

Cholangiocarcinoma (CCA) is a malignancy affecting the epithelial cells that line the bile ducts. This cancer shows a poor prognosis and current treatments remain inefficient. Orthotopic CCA mouse models are useful for the development of innovative therapeutic strategies. Here, we describe an orthotopic model of intrahepatic CCA that can be easily induced in mice within 5 weeks at a high incidence. It is achieved by expressing two oncogenes, namely, (i) the intracellular domain of the Notch1 receptor (NICD) and (ii) AKT, in hepatocytes by means of the sleeping beauty transposon system. These plasmid vectors are delivered by hydrodynamic injection into the tail vein. The present chapter also describes how to perform magnetic resonance imaging (MRI) of the livers to visualize intrahepatic CCA nodules.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Ratones , Animales , Conductos Biliares Intrahepáticos , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Oncogenes/genética , Hígado/patología
19.
Mol Biotechnol ; 66(5): 1290-1302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38381376

RESUMEN

Anoikis plays an important role in cancer invasion and metastasis. However, the role of anoikis-related genes, AnRGs, in lung adenocarcinoma (LUAD) is not clear. First, anoikis-related genes (AnRGs) were obtained from the Genecard database. Second, the prognostic risk model of AnRGs was established by univariate Cox analysis, the Least Absolute Shrinkage and Selection Operator (LASSO) analysis, and multivariate Cox analysis. Finally, in vitro cell experiments were carried out to determine the expression and function of the key gene AnRGs. Three AnRGs (angiopoietin-like 4, ANGPTL4; Cyclin-Dependent Kinase Inhibitor 3, CDKN3; Solute Carrier Organic Anion Transporter Family Member 1B3, SLCO1B3) were screened for the construction of risk prediction model. Additionally, ANGPTL4 was significantly highly expressed in tumor cells, and the knockdown of ANGPTL4 expression on tumor cells could inhibit tumor cell migration and apoptosis. Constructing a risk model based on anoikis-related genes can effectively differentiate the prognosis of LUAD. ANGPTL4 can be used as a potential new target for LUAD treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Proteína 4 Similar a la Angiopoyetina , Anoicis , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Proteína 4 Similar a la Angiopoyetina/genética , Proteína 4 Similar a la Angiopoyetina/metabolismo , Humanos , Anoicis/genética , Pronóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Línea Celular Tumoral , Femenino , Movimiento Celular/genética , Masculino , Oncogenes/genética , Persona de Mediana Edad
20.
Life Sci ; 341: 122490, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336274

RESUMEN

AIMS: The "Warburg effect" has been developed from the discovery that hypoxia-inducible factor 1α (HIF-1α) could promote the conversion of pyruvate to lactate. However, no studies have linked hypoxia and lactate metabolism to uterine corpus endometrial carcinoma (UCEC). MAIN METHODS: Sequencing and clinical data of patients with UCEC were extracted from The Cancer Genome Atlas (TCGA) database. Hypoxia-related lactate metabolism genes (HRLGs) were screened using Spearman's correlation analysis. A prognostic signature based on HRLGs was developed using the least absolute shrinkage and selection operator (LASSO) algorithm. A comprehensive analysis was conducted on the molecular features, immune environment, mutation patterns, and response to drugs between different risk groups. In vitro and in vivo experiments were performed to verify the function of KIF23. KEY FINDINGS: A five HRLG-based prognostic signature was identified. The prognostic outcome was unfavorable for the high-risk subgroup. Observation of increased pathway activities associated with cell proliferation and DNA damage repair was noted in the high-risk subgroup. Additionally, notable correlations were observed between risk score and immune microenvironment, mutational features, and drug responsiveness. Further, we confirmed KIF23 as a novel oncogene in UCEC, whose silencing decreased proliferation and promoted apoptosis of cancer cells. KIF23 knockdown reduced tumor growth in nude mice. We demonstrated that KIF23 was upregulated under hypoxic stress in a HIF-1α dependent manner. Moreover, KIF23 regulated lactate dehydrogenase A expression. SIGNIFICANCE: The developed HRLG-related signature was associated with prognosis, immune microenvironment, and drug sensitivity in UCEC. We also revealed KIF23 as a hypoxia-regulated lactate metabolism-related oncogene.


Asunto(s)
Neoplasias Endometriales , Oncogenes , Animales , Ratones , Humanos , Femenino , Ratones Desnudos , Oncogenes/genética , Mutación , Hipoxia , Neoplasias Endometriales/genética , Microambiente Tumoral/genética , Proteínas Asociadas a Microtúbulos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA