Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.046
Filtrar
1.
Nat Commun ; 15(1): 4716, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830843

RESUMEN

BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.


Asunto(s)
Proteína BRCA2 , Replicación del ADN , ARN Polimerasa II , Ribonucleasa H , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Terminación de la Transcripción Genética , Daño del ADN , Origen de Réplica , Estructuras R-Loop , Línea Celular Tumoral
2.
Genome Biol ; 25(1): 126, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773641

RESUMEN

BACKGROUND: DNA replication progression can be affected by the presence of physical barriers like the RNA polymerases, leading to replication stress and DNA damage. Nonetheless, we do not know how transcription influences overall DNA replication progression. RESULTS: To characterize sites where DNA replication forks stall and pause, we establish a genome-wide approach to identify them. This approach uses multiple timepoints during S-phase to identify replication fork/stalling hotspots as replication progresses through the genome. These sites are typically associated with increased DNA damage, overlapped with fragile sites and with breakpoints of rearrangements identified in cancers but do not overlap with replication origins. Overlaying these sites with a genome-wide analysis of RNA polymerase II transcription, we find that replication fork stalling/pausing sites inside genes are directly related to transcription progression and activity. Indeed, we find that slowing down transcription elongation slows down directly replication progression through genes. This indicates that transcription and replication can coexist over the same regions. Importantly, rearrangements found in cancers overlapping transcription-replication collision sites are detected in non-transformed cells and increase following treatment with ATM and ATR inhibitors. At the same time, we find instances where transcription activity favors replication progression because it reduces histone density. CONCLUSIONS: Altogether, our findings highlight how transcription and replication overlap during S-phase, with both positive and negative consequences for replication fork progression and genome stability by the coexistence of these two processes.


Asunto(s)
Replicación del ADN , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , Humanos , Fase S/genética , Daño del ADN , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Genoma Humano , Origen de Réplica
3.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567819

RESUMEN

Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.


Asunto(s)
Complejo de Reconocimiento del Origen , Proteínas de Saccharomyces cerevisiae , Humanos , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica/genética , Sitios de Unión , Replicación del ADN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromosomas Humanos/metabolismo , ADN/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
Nucleic Acids Res ; 51(18): 9748-9763, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638758

RESUMEN

Faithful cell division is the basis for the propagation of life and DNA replication must be precisely regulated. DNA replication stress is a prominent endogenous source of genome instability that not only leads to ageing, but also neuropathology and cancer development in humans. Specifically, the issues of how vertebrate cells select and activate origins of replication are of importance as, for example, insufficient origin firing leads to genomic instability and mutations in replication initiation factors lead to the rare human disease Meier-Gorlin syndrome. The mechanism of origin activation has been well characterised and reconstituted in yeast, however, an equal understanding of this process in higher eukaryotes is lacking. The firing of replication origins is driven by S-phase kinases (CDKs and DDK) and results in the activation of the replicative helicase and generation of two bi-directional replication forks. Our data, generated from cell-free Xenopus laevis egg extracts, show that DONSON is required for assembly of the active replicative helicase (CMG complex) at origins during replication initiation. DONSON has previously been shown to be essential during DNA replication, both in human cells and in Drosophila, but the mechanism of DONSON's action was unknown. Here we show that DONSON's presence is essential for replication initiation as it is required for Cdc45 and GINS association with Mcm2-7 complexes and helicase activation. To fulfil this role, DONSON interacts with the initiation factor, TopBP1, in a CDK-dependent manner. Following its initiation role, DONSON also forms a part of the replisome during the elongation stage of DNA replication. Mutations in DONSON have recently been shown to lead to the Meier-Gorlin syndrome; this novel replication initiation role of DONSON therefore provides the explanation for the phenotypes caused by DONSON mutations in patients.


Asunto(s)
Microtia Congénita , Trastornos del Crecimiento , Micrognatismo , Rótula , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Microtia Congénita/genética , Quinasas Ciclina-Dependientes/genética , Replicación del ADN/genética , Trastornos del Crecimiento/genética , Micrognatismo/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Rótula/anomalías , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445805

RESUMEN

Over the last decade, CDK4/6 inhibitors (palbociclib, ribociclib and abemaciclib) have emerged as promising anticancer drugs. Numerous studies have demonstrated that CDK4/6 inhibitors efficiently block the pRb-E2F pathway and induce cell cycle arrest in pRb-proficient cells. Based on these studies, the inhibitors have been approved by the FDA for treatment of advanced hormonal receptor (HR) positive breast cancers in combination with hormonal therapy. However, some evidence has recently shown unexpected effects of the inhibitors, underlining a need to characterize the effects of CDK4/6 inhibitors beyond pRb. Our study demonstrates how palbociclib impairs origin firing in the DNA replication process in pRb-deficient cell lines. Strikingly, despite the absence of pRb, cells treated with palbociclib synthesize less DNA while showing no cell cycle arrest. Furthermore, this CDK4/6 inhibitor treatment disturbs the temporal program of DNA replication and reduces the density of replication forks. Cells treated with palbociclib show a defect in the loading of the Pre-initiation complex (Pre-IC) proteins on chromatin, indicating a reduced initiation of DNA replication. Our findings highlight hidden effects of palbociclib on the dynamics of DNA replication and of its cytotoxic consequences on cell viability in the absence of pRb. This study provides a potential therapeutic application of palbociclib in combination with other drugs to target genomic instability in pRB-deficient cancers.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Origen de Réplica , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
6.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511331

RESUMEN

This review summarizes current knowledge about the mechanisms of timely binding and dissociation of two nucleoid proteins, IHF and Fis, which play fundamental roles in the initiation of chromosomal DNA replication in Escherichia coli. Replication is initiated from a unique replication origin called oriC and is tightly regulated so that it occurs only once per cell cycle. The timing of replication initiation at oriC is rigidly controlled by the timely binding of the initiator protein DnaA and IHF to oriC. The first part of this review presents up-to-date knowledge about the timely stabilization of oriC-IHF binding at oriC during replication initiation. Recent advances in our understanding of the genome-wide profile of cell cycle-coordinated IHF binding have revealed the oriC-specific stabilization of IHF binding by ATP-DnaA oligomers at oriC and by an initiation-specific IHF binding consensus sequence at oriC. The second part of this review summarizes the mechanism of the timely regulation of DnaA activity via the chromosomal loci DARS2 (DnaA-reactivating sequence 2) and datA. The timing of replication initiation at oriC is controlled predominantly by the phosphorylated form of the adenosine nucleotide bound to DnaA, i.e., ATP-DnaA, but not ADP-ADP, is competent for initiation. Before initiation, DARS2 increases the level of ATP-DnaA by stimulating the exchange of ADP for ATP on DnaA. This DARS2 function is activated by the site-specific and timely binding of both IHF and Fis within DARS2. After initiation, another chromosomal locus, datA, which inactivates ATP-DnaA by stimulating ATP hydrolysis, is activated by the timely binding of IHF. A recent study has shown that ATP-DnaA oligomers formed at DARS2-Fis binding sites competitively dissociate Fis via negative feedback, whereas IHF regulation at DARS2 and datA still remains to be investigated. This review summarizes the current knowledge about the specific role of IHF and Fis in the regulation of replication initiation and proposes a mechanism for the regulation of timely IHF binding and dissociation at DARS2 and datA.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/metabolismo , Origen de Réplica , Replicación del ADN , Ciclo Celular , Adenosina Trifosfato/metabolismo , ADN Bacteriano/genética , Factor Proteico para Inverción de Estimulación/genética , Factor Proteico para Inverción de Estimulación/metabolismo
7.
PLoS Pathog ; 19(6): e1010478, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37262099

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that is causally associated with various malignancies and autoimmune disease. Epstein-Barr Nuclear Antigen 1 (EBNA1) is the viral-encoded DNA binding protein required for viral episome maintenance and DNA replication during latent infection in proliferating cells. EBNA1 is known to be a highly stable protein, but the mechanisms regulating protein stability and how this may be linked to EBNA1 function is not fully understood. Proteomic analysis of EBNA1 revealed interaction with Procollagen Lysine-2 Oxoglutarate 5 Dioxygenase (PLOD) family of proteins. Depletion of PLOD1 by shRNA or inhibition with small molecule inhibitors 2,-2' dipyridyl resulted in the loss of EBNA1 protein levels, along with a selective growth inhibition of EBV-positive lymphoid cells. PLOD1 depletion also caused a loss of EBV episomes from latently infected cells and inhibited oriP-dependent DNA replication. Mass spectrometry identified EBNA1 peptides with lysine hydroxylation at K460 or K461. Mutation of K460, but not K461 abrogates EBNA1-driven DNA replication of oriP, but did not significantly affect EBNA1 DNA binding. Mutations in both K460 and K461 perturbed interactions with PLOD1, as well as decreased EBNA1 protein stability. These findings suggest that PLOD1 is a novel interaction partner of EBNA1 that regulates EBNA1 protein stability and function in viral plasmid replication, episome maintenance and host cell survival.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Humanos , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Lisina/genética , Proteómica , Replicación del ADN , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Replicación Viral , Estabilidad Proteica , Plásmidos , Origen de Réplica
8.
Nucleic Acids Res ; 51(12): 6286-6306, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37178000

RESUMEN

The Escherichia coli replication origin oriC contains the initiator ATP-DnaA-Oligomerization Region (DOR) and its flanking duplex unwinding element (DUE). In the Left-DOR subregion, ATP-DnaA forms a pentamer by binding to R1, R5M and three other DnaA boxes. The DNA-bending protein IHF binds sequence-specifically to the interspace between R1 and R5M boxes, promoting DUE unwinding, which is sustained predominantly by binding of R1/R5M-bound DnaAs to the single-stranded DUE (ssDUE). The present study describes DUE unwinding mechanisms promoted by DnaA and IHF-structural homolog HU, a ubiquitous protein in eubacterial species that binds DNA sequence-non-specifically, preferring bent DNA. Similar to IHF, HU promoted DUE unwinding dependent on ssDUE binding of R1/R5M-bound DnaAs. Unlike IHF, HU strictly required R1/R5M-bound DnaAs and interactions between the two DnaAs. Notably, HU site-specifically bound the R1-R5M interspace in a manner stimulated by ATP-DnaA and ssDUE. These findings suggest a model that interactions between the two DnaAs trigger DNA bending within the R1/R5M-interspace and initial DUE unwinding, which promotes site-specific HU binding that stabilizes the overall complex and DUE unwinding. Moreover, HU site-specifically bound the replication origin of the ancestral bacterium Thermotoga maritima depending on the cognate ATP-DnaA. The ssDUE recruitment mechanism could be evolutionarily conserved in eubacteria.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Origen de Réplica , Adenosina Trifosfato/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo
9.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047526

RESUMEN

The human papillomavirus (HPV) E2 protein is essential for regulating the initiation of viral DNA replication as well as the regulation of transcription of certain HPV-encoded genes. Its ability to recognize and bind to its four recognition sequences in the viral origin is a key step in the initiation of HPV DNA replication. Thus, understanding the mechanism of DNA binding by E2 protein and the unique roles played by individual DNA sequence elements of the replication origin is essential. We have purified the recombinant full-length HPV type 11 E2 protein. Quantitative DNA binding analysis indicated E2 protein bound all four DNA binding sites with reasonably high affinities but with distinct preferences. It bound its cognate binding sites 1, 2, and 4 with higher affinities, but bound binding site 3 with lower affinity. Analysis of binding to these sites unraveled multiple sequence elements that appeared to influence E2 binding affinity and target discrimination, including the sequence of spacer region, flanking sequences, and proximity of E2 binding sites. Thermodynamic analysis indicated hydrophobic interaction in the protein-DNA complex formation. Our studies indicate a large multi-protein complex formation on the HPV-origin DNA, likely due to reasonably high binding affinities as well as intrinsic oligomerization propensity of E2 dimers.


Asunto(s)
Replicación del ADN , Infecciones por Papillomavirus , Humanos , Secuencia de Bases , Sitios de Unión/genética , ADN Viral/genética , ADN Viral/metabolismo , Virus del Papiloma Humano , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecciones por Papillomavirus/genética , Origen de Réplica , Replicación Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
BMC Biol ; 21(1): 41, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829160

RESUMEN

BACKGROUND: Despite the process of DNA replication being mechanistically highly conserved, the location of origins of replication (ORI) may vary from one tissue to the next, or between rounds of replication in eukaryotes, suggesting flexibility in the choice of locations to initiate replication. Lists of human ORI therefore vary widely in number and location, and there are currently no methods available to compare them. Here, we propose a method of detection of ORI based on somatic mutation patterns generated by the mutator phenotype of damaged DNA polymerase epsilon (POLE). RESULTS: We report the genome-wide localization of constitutive ORI in POLE-mutated human tumors using whole genome sequencing data. Mutations accumulated after many rounds of replication of unsynchronized dividing cell populations in tumors allow to identify constitutive origins, which we show are shared with high fidelity between individuals and tumor types. Using a Smith-Waterman-like dynamic programming approach, we compared replication origin positions obtained from multiple different methods. The comparison allowed us to define a consensus set of replication origins, identified consistently by multiple ORI detection methods. Many DNA features co-localized with the consensus set of ORI, including chromatin loop anchors, G-quadruplexes, S/MARs, and CpGs. Among all features, the H2A.Z histone exhibited the most significant association. CONCLUSIONS: Our results show that mutation-based detection of replication origins is a viable approach to determining their location and associated sequence features.


Asunto(s)
Replicación del ADN , Neoplasias , Humanos , Origen de Réplica , ADN Polimerasa II/genética , ADN , Histonas/genética , Neoplasias/genética
11.
Mol Cell ; 83(3): 352-372, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36640769

RESUMEN

Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.


Asunto(s)
Centrómero , Replicación del ADN , Origen de Réplica , Centrómero/metabolismo , Complejo de Reconocimiento del Origen/genética , Origen de Réplica/genética , Saccharomyces cerevisiae/genética
12.
Cell Rep ; 41(11): 111836, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516748

RESUMEN

Chromosomal instability (CIN) is a hallmark of cancer and comprises structural CIN (S-CIN) and numerical or whole chromosomal CIN (W-CIN). Recent work indicated that replication stress (RS), known to contribute to S-CIN, also affects mitotic chromosome segregation, possibly explaining the common co-existence of S-CIN and W-CIN in human cancer. Here, we show that RS-induced increased origin firing is sufficient to trigger W-CIN in human cancer cells. We discovered that overexpression of origin firing genes, including GINS1 and CDC45, correlates with W-CIN in human cancer specimens and causes W-CIN in otherwise chromosomally stable human cells. Furthermore, modulation of the ATR-CDK1-RIF1 axis increases the number of firing origins and leads to W-CIN. Importantly, chromosome missegregation upon additional origin firing is mediated by increased mitotic microtubule growth rates, a mitotic defect prevalent in chromosomally unstable cancer cells. Thus, our study identifies increased replication origin firing as a cancer-relevant trigger for chromosomal instability.


Asunto(s)
Neoplasias , Origen de Réplica , Humanos , Origen de Réplica/genética , Mitosis , Inestabilidad Cromosómica/genética , Segregación Cromosómica , Neoplasias/genética , Aneuploidia
13.
Microbiol Spectr ; 10(6): e0214922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36264235

RESUMEN

Although the use of multiple replication origins for chromosome replication has been widely characterized in haloarchaea, whether it is possible to manipulate the chromosome copy number by their genetic engineering is not known, and how it would affect the cell functioning is poorly understood. Here, we demonstrate that deletion of the three active chromosomal origins in Haloferax mediterranei remarkably reduces its DNA amounts and ploidy numbers. Consequently, the mutant strain H. mediterranei Δ123 is more sensitive to UV and mitomycin C. Surprisingly, the cell size increases by 21.2%, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production in shake flask culture enhances from 7.23 to 8.11 g/L in ΔEPSΔ123, although there is also a decrease in cell growth. In this mutant, the chromosomal copy number decreases, whereas the pha-encoding pHM300 megaplasmid copy number increases. Moreover, our transcriptome analysis reveals that the genes involved in primary metabolisms are significantly downregulated in ΔEPSΔ123, whereas those responsible for starch utilization and precursor supplying for PHBV monomers are upregulated. This indicates that more energy and carbon flux is redirected from primary metabolism to PHBV synthesis, thereby enhancing its PHBV accumulation. These findings may therefore provide a rational design to enhance PHBV synthesis by simply tuning the replication origins to modulate the chromosome/megaplasmid copy number ratio and subsequently influence cellular metabolism and physiological functions. IMPORTANCE The haloarchaeon Haloferax mediterranei is a potential producer of PHBV (100% biodegradable plastic) from inexpensive carbon sources. We previously reported that H. mediterranei possessed three active chromosomal origins and, when these origins were deleted, a dormant origin was activated to initiate the replication of chromosome. In this context, in the present study, we first found a close connection between replication initiation and PHBV accumulation. We describe the potential industrial advantages of the strain H. mediterranei ΔEPSΔ123, which includes the enlargement of cell volume by 21.2% and enhancement of PHBV production by 11.2%. We further reveal the possible mechanism that contributes to the greater PHBV production in the ΔEPSΔ123 strain. Overall, we provide here a conceptual advance in the field of synthetic biology by modulating chromosome replication to improve the production of bio-based chemicals.


Asunto(s)
Ingeniería Genética , Origen de Réplica , Hidroxibutiratos , Poliésteres/química
14.
Sci Adv ; 8(40): eabq6657, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36197974

RESUMEN

DnaA, the initiator of Escherichia coli chromosomal replication, has in its adenosine triphosphatase (ATPase) domain residues required for adenosine 5'-triphosphate (ATP) binding and membrane attachment. Here, we show that D118Q substitution in the DnaA linker domain, a domain known to be without major regulatory functions, influences ATP binding of DnaA and replication initiation in vivo. Although initiation defective by itself, overexpression of DnaA(D118Q) caused overinitiation of replication in dnaA46ts cells and prevented cell growth. The growth defect was rescued by overexpressing the initiation inhibitor, SeqA, indicating that the growth inhibition resulted from overinitiation. Small deletions within the linker showed another unexpected phenotype: cellular growth without requiring normal levels of anionic membrane lipids, a property found in DnaA mutated in its ATPase domain. The deleted proteins were defective in association with anionic membrane vesicles. These results show that changes in the linker domain can alter DnaA functions similarly to the previously shown changes in the ATPase domain.


Asunto(s)
Proteínas de Unión al ADN , Escherichia coli , Adenosina/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lípidos de la Membrana/metabolismo , Origen de Réplica
15.
Proc Natl Acad Sci U S A ; 119(42): e2211568119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215487

RESUMEN

Eukaryotic DNA replication is initiated at multiple chromosomal sites known as origins of replication that are specifically recognized by the origin recognition complex (ORC) containing multiple ATPase sites. In budding yeast, ORC binds to specific DNA sequences known as autonomously replicating sequences (ARSs) that are mostly nucleosome depleted. However, nucleosomes may still inhibit the licensing of some origins by occluding ORC binding and subsequent MCM helicase loading. Using purified proteins and single-molecule visualization, we find here that the ORC can eject histones from a nucleosome in an ATP-dependent manner. The ORC selectively evicts H2A-H2B dimers but leaves the (H3-H4)2 tetramer on DNA. It also discriminates canonical H2A from the H2A.Z variant, evicting the former while retaining the latter. Finally, the bromo-adjacent homology (BAH) domain of the Orc1 subunit is essential for ORC-mediated histone eviction. These findings suggest that the ORC is a bona fide nucleosome remodeler that functions to create a local chromatin environment optimal for origin activity.


Asunto(s)
Nucleosomas , Complejo de Reconocimiento del Origen , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato , Cromatina , ADN/metabolismo , Replicación del ADN , Histonas/metabolismo , Nucleosomas/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica
16.
Genome Res ; 32(10): 1930-1940, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36100435

RESUMEN

Mutation density patterns reveal unique biological properties of specific genomic regions and shed light on the mechanisms of carcinogenesis. Although previous studies reported insightful mutation density patterns associated with certain genomic regions such as transcription start sites and DNA replication origins, a tool that can systematically investigate mutational spatial patterns is still lacking. Thus, we developed MutDens, a bioinformatic tool for comprehensive analysis of mutation density patterns around genomic features, namely, genomic positions, in humans and model species. By scanning the bidirectional vicinity regions of given positions, MutDens systematically characterizes the mutation density for single-base substitution mutational classes after adjusting for total mutation burden and local nucleotide proportion. Analysis results using MutDens not only verified the previously reported transcriptional strand bias around transcription start sites and replicative strand bias around DNA replication origins, but also identified novel mutation density patterns around other genomics features, such as enhancers and retrotransposon insertion polymorphism sites. To our knowledge, MutDens is the first tool that systematically calculates, examines, and compares mutation density patterns, thus providing a valuable avenue for investigating the mutational landscapes associated with important genomic features.


Asunto(s)
Genómica , Origen de Réplica , Humanos , Mutación , Sitio de Iniciación de la Transcripción , ADN
18.
J Virol ; 96(17): e0094922, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36037477

RESUMEN

Epstein-Barr nuclear antigen 1 (EBNA1) is a multifunctional viral-encoded DNA-binding protein essential for Epstein-Barr virus (EBV) DNA replication and episome maintenance. EBNA1 binds to two functionally distinct elements at the viral origin of plasmid replication (oriP), termed the dyad symmetry (DS) element, required for replication initiation and the family of repeats (FR) required for episome maintenance. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the EBNA1 DNA binding domain (DBD) from amino acids (aa) 459 to 614 and its interaction with two tandem sites at the DS and FR. We found that EBNA1 induces a strong DNA bending angle in the DS, while the FR is more linear. The N-terminal arm of the DBD (aa 444 to 468) makes extensive contact with DNA as it wraps around the minor groove, with some conformational variation among EBNA1 monomers. Mutation of variable-contact residues K460 and K461 had only minor effects on DNA binding but had abrogated oriP-dependent DNA replication. We also observed that the AT-rich intervening DNA between EBNA1 binding sites in the FR can be occupied by the EBNA1 AT hook, N-terminal domain (NTD) aa 1 to 90 to form a Zn-dependent stable complex with EBNA1 DBD on a 2×FR DNA template. We propose a model showing EBNA1 DBD and NTD cobinding at the FR and suggest that this may contribute to the oligomerization of viral episomes important for maintenance during latent infection. IMPORTANCE EBV latent infection is causally linked to diverse cancers and autoimmune disorders. EBNA1 is the viral-encoded DNA binding protein required for episomal maintenance during latent infection and is consistently expressed in all EBV tumors. The interaction of EBNA1 with different genetic elements confers different viral functions, such as replication initiation at DS and chromosome tethering at FR. Here, we used cryo-EM to determine the structure of the EBNA1 DNA-binding domain (DBD) bound to two tandem sites at the DS and at the FR. We also show that the NTD of EBNA1 can interact with the AT-rich DNA sequence between tandem EBNA1 DBD binding sites in the FR. These results provide new information on the mechanism of EBNA1 DNA binding at DS and FR and suggest a higher-order oligomeric structure of EBNA1 bound to FR. Our findings have implications for targeting EBNA1 in EBV-associated disease.


Asunto(s)
Antígenos Nucleares del Virus de Epstein-Barr/química , Herpesvirus Humano 4/química , Origen de Réplica , Sitios de Unión , Microscopía por Crioelectrón , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Infecciones por Virus de Epstein-Barr , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/ultraestructura , Herpesvirus Humano 4/metabolismo , Humanos , Infección Latente , Plásmidos , Replicación Viral
19.
DNA Repair (Amst) ; 118: 103384, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35973351

RESUMEN

In eukaryotes, the phosphorylation of replication initiation factors by protein kinases is crucial to DNA replication control. This control ensures that the genome is only copied once per cell cycle and that replication occurs in a timely manner, minimising stress. Indeed, uncontrolled DNA replication initiation causes genome instability and occurs early on in cancer development. Here we discuss the known roles of protein phosphatases in replication initiation as part of cell cycle control and the DNA damage response. We highlight how dephosphorylation ensures that DNA replication initiation events are robust, dynamic, and spatially regulated. As many kinases involved in replication control are targets for new chemotherapies, an understanding of the role of phosphatases may give critical insights into cancer treatment.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Fosfoproteínas Fosfatasas/metabolismo , Origen de Réplica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Cell Rep ; 39(9): 110871, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649380

RESUMEN

The maintenance of genome stability relies on coordinated control of origin activation and replication fork progression. How the interplay between these processes influences human genetic disease and cancer remains incompletely characterized. Here we show that mouse cells featuring Polε instability exhibit impaired genome-wide activation of DNA replication origins, in an origin-location-independent manner. Strikingly, Trp53 ablation in primary Polε hypomorphic cells increased Polε levels and origin activation and reduced DNA damage in a transcription-dependent manner. Transcriptome analysis of primary Trp53 knockout cells revealed that the TRP53-CDKN1A/P21 axis maintains appropriate levels of replication factors and CDK activity during unchallenged S phase. Loss of this control mechanism deregulates origin activation and perturbs genome-wide replication fork progression. Thus, while our data support an impaired origin activation model for genetic diseases affecting CMG formation, we propose that loss of the TRP53-CDKN1A/P21 tumor suppressor axis induces inappropriate origin activation and deregulates genome-wide fork progression.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , ADN Polimerasa II , Replicación del ADN , Proteínas de Unión a Poli-ADP-Ribosa , Origen de Réplica , Proteína p53 Supresora de Tumor , Animales , Proteínas de Ciclo Celular/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN/genética , ADN Polimerasa II/genética , Replicación del ADN/genética , Ratones , Proteínas de Unión a Poli-ADP-Ribosa/genética , Fase S , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA