Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674051

RESUMEN

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform. However, it is necessary to determine the N-glycan structures of an RBD to investigate its efficacy and functionality as a vaccine candidate or diagnostic reagent. Here, we analyzed the N-glycan profile of the RBD produced in rice callus. Of the two potential N-glycan acceptor sites, we found that one was not utilized and the other contained a mixture of complex-type N-glycans. This differs from the heterogeneous mixture of N-glycans found when an RBD is expressed in other hosts, including Nicotiana benthamiana. By comparing the glycosylation profiles of different hosts, we can select platforms that produce RBDs with the most beneficial N-glycan structures for different applications.


Asunto(s)
Oryza , Polisacáridos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Oryza/metabolismo , Oryza/genética , Oryza/virología , Polisacáridos/metabolismo , Glicosilación , Humanos , SARS-CoV-2/metabolismo , Dominios Proteicos , Unión Proteica , Plantas Modificadas Genéticamente/metabolismo , COVID-19/virología , COVID-19/metabolismo
2.
Viruses ; 14(2)2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35215984

RESUMEN

Ovarian tumor domain (OTU)-containing deubiquitinating enzymes (DUBs) are an essential DUB to maintain protein stability in plants and play important roles in plant growth development and stress response. However, there is little genome-wide identification and analysis of the OTU gene family in rice. In this study, we identified 20 genes of the OTU family in rice genome, which were classified into four groups based on the phylogenetic analysis. Their gene structures, conserved motifs and domains, chromosomal distribution, and cis elements in promoters were further studied. In addition, OTU gene expression patterns in response to plant hormone treatments, including SA, MeJA, NAA, BL, and ABA, were investigated by RT-qPCR analysis. The results showed that the expression profile of OsOTU genes exhibited plant hormone-specific expression. Expression levels of most of the rice OTU genes were significantly changed in response to rice stripe virus (RSV), rice black-streaked dwarf virus (RBSDV), Southern rice black-streaked dwarf virus (SRBSDV), and Rice stripe mosaic virus (RSMV). These results suggest that the rice OTU genes are involved in diverse hormone signaling pathways and in varied responses to virus infection, providing new insights for further functional study of OsOTU genes.


Asunto(s)
Enzimas Desubicuitinizantes/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/virología , Reguladores del Crecimiento de las Plantas/metabolismo , Estudio de Asociación del Genoma Completo , Filogenia , Enfermedades de las Plantas/virología , Reguladores del Crecimiento de las Plantas/farmacología , Virus de Plantas/patogenicidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Reoviridae/patogenicidad , Tenuivirus/patogenicidad
3.
Plant J ; 107(4): 1183-1197, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34153146

RESUMEN

Ferredoxin 1 (FD1) accepts and distributes electrons in the electron transfer chain of plants. Its expression is universally downregulated by viruses and its roles in plant immunity have been brought into focus over the past decade. However, the mechanism by which viruses regulate FD1 remains to be defined. In a previous report, we found that the expression of Nicotiana benthamiana FD1 (NbFD1) was downregulated following infection with potato virus X (PVX) and that NbFD1 regulates callose deposition at plasmodesmata to play a role in defense against PVX infection. We now report that NbFD1 is downregulated by rice stripe virus (RSV) infection and that silencing of NbFD1 also facilitates RSV infection, while viral infection was inhibited in a transgenic line overexpressing NbFD1, indicating that NbFD1 also functions in defense against RSV infection. Next, a RSV-derived small interfering RNA was identified that contributes to the downregulation of FD1 transcripts. Further analysis showed that the abscisic acid (ABA) which accumulates in RSV-infected plants also represses NbFD1 transcription. It does this by stimulating expression of ABA insensitive 5 (ABI5), which binds the ABA response element motifs in the NbFD1 promoter, resulting in negative regulation. Regulation of FD1 by ABA was also confirmed in RSV-infected plants of the natural host rice. The results therefore suggest a mechanism by which virus regulates chloroplast-related genes to suppress their defense roles.


Asunto(s)
Ferredoxinas/genética , Nicotiana/virología , Oryza/virología , Proteínas de Plantas/genética , Tenuivirus/patogenicidad , Ácido Abscísico , Arabidopsis/genética , Resistencia a la Enfermedad/genética , Regulación hacia Abajo , Ferredoxinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/fisiología , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , ARN Interferente Pequeño , Tenuivirus/genética , Nicotiana/genética , Nicotiana/metabolismo
4.
Sci China Life Sci ; 63(11): 1703-1713, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32303960

RESUMEN

RNA silencing is a potent antiviral mechanism in plants and animals. As a counter-defense, many viruses studied to date encode one or more viral suppressors of RNA silencing (VSR). In the latter case, how different VSRs encoded by a virus function in silencing remains to be fully understood. We previously showed that the nonstructural protein Pns10 of a Phytoreovirus, Rice dwarf virus (RDV), functions as a VSR. Here we present evidence that another nonstructural protein, Pns11, also functions as a VSR. While Pns10 was localized in the cytoplasm, Pns11 was localized both in the nucleus and chloroplasts. Pns11 has two bipartite nuclear localization signals (NLSs), which were required for nuclear as well as chloroplastic localization. The NLSs were also required for the silencing activities of Pns11. This is the first report that multiple VSRs encoded by a virus are localized in different subcellular compartments, and that a viral protein can be targeted to both the nucleus and chloroplast. These findings may have broad significance in studying the subcellular targeting of VSRs and other viral proteins in viral-host interactions.


Asunto(s)
Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Interferencia de ARN , Reoviridae/fisiología , Proteínas no Estructurales Virales/metabolismo , Interacciones Huésped-Patógeno , Oryza/virología , Hojas de la Planta/virología , Reoviridae/metabolismo , Nicotiana/virología
5.
Proc Natl Acad Sci U S A ; 117(16): 9112-9121, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32253321

RESUMEN

Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/inmunología , Oryza/inmunología , Proteínas de Plantas/metabolismo , Virus de Plantas/inmunología , Virus ARN/inmunología , Factores de Transcripción/metabolismo , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Ácidos Indolacéticos/metabolismo , Mutación , Oryza/genética , Oryza/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Virus de Plantas/metabolismo , Plantas Modificadas Genéticamente , Multimerización de Proteína/inmunología , Virus ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/inmunología , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virología , Factores de Transcripción/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
6.
Mol Plant Microbe Interact ; 33(3): 412-422, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31841359

RESUMEN

Viral suppressors of RNA silencing (VSRs) are a cluster of viral proteins that have evolved to counteract eukaryotic antiviral RNA silencing pathways, thereby contributing to viral pathogenicity. In this study, we revealed that the matrix protein P4 encoded by rice stripe mosaic virus (RSMV), which is an emerging cytoplasmic rhabdovirus, is a weak RNA silencing suppressor. By conducting yeast two-hybrid, bimolecular fluorescence complementation, and subcellular colocalization assays, we proved that P4 interacts with the rice endogenous suppressor of gene silencing 3 (OsSGS3). We also determined that P4 overexpression has no effect on OsSGS3 transcription. However, P4 can promote the degradation of OsSGS3 via ubiquitination and autophagy. Additionally, a potato virus X-based expression system was used to confirm that P4 enhances the development of mosaic symptoms on Nicotiana benthamiana leaves by promoting hydrogen peroxide accumulation but not cell death. To verify whether P4 is a pathogenicity factor in host plants, we generated transgenic P4-overexpressing rice plants that exhibited disease-related developmental defects including decreased plant height and excessive tillering. Our data suggest that RSMV-encoded P4 serves as a weak VSR that inhibits antiviral RNA silencing by targeting OsSGS3.


Asunto(s)
Silenciador del Gen , Virus del Mosaico/patogenicidad , Enfermedades de las Plantas/virología , Interferencia de ARN , Proteínas de la Matriz Viral/genética , Autofagia , Oryza/genética , Oryza/virología , Proteínas de Plantas , Plantas Modificadas Genéticamente , Potexvirus , Nicotiana , Ubiquitinación
7.
Comput Biol Chem ; 83: 107127, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31542706

RESUMEN

In order to maintain a consistent supply of rice globally, control of pathogens affecting crop production is a matter of due concern. Rice yellow mottle virus(RYMV) is known to cause a variety of symptoms which can result in reduced yield. Four ORFs can be identified in the genome of RYMV encoding for P1 (ORF1), Polyprotein (processed to produce VPg, protease, helicase, RdRp4) (ORF2), putative RdRp (ORF3) and capsid/coat protein (ORF4). This research was aimed at identifying genome encoded miRNAs of O. sativa that are targeted to the genome of Rice Yellow Mottle Virus (RYMV). A consensus of four miRNA target prediction algorithms (RNA22, miRanda, TargetFinder and psRNATarget) was computed, followed by calculation of free energies of miRNA-mRNA duplex formation. A phylogenetic tree was constructed to portray the evolutionary relationships between RYMV strains isolated to date. From the consensus of algorithms used, a total of seven O. sativa miRNAs were predicted and conservation of target site was finally evaluated. Predicted miRNAs can be further evaluated by experiments involving the testing of the success of in vitro gene silencing of RYMV genome; this can pave the way for development of RYMV resistant rice varieties in the future.


Asunto(s)
Silenciador del Gen , Genoma Viral/genética , MicroARNs/genética , Oryza/genética , Oryza/virología , Virus de Plantas/genética
8.
J Agric Food Chem ; 67(41): 11380-11387, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31535865

RESUMEN

Southern rice black-streaked dwarf virus (SRBSDV) causes disease in crops, which reduces the quality and yield. Several commercial antiviral agents are available to control the SRBSDV induced disease. However, the mechanism of antiviral agents controlling SRBSDV is largely unknown. Identifying targets in SRBSDV is a key step of antiviral agent discovery. Here, we investigated the potential protein target of the antiviral agent dufulin. We cloned and expressed a soluble viroplasmic P6 protein in the prokaryote Escherichia coli and the eukaryote Spodoptera frugiperda 9. The dissociation constants of dufulin with the purified P6 protein from E. coli and S. frugiperda 9 expression systems were 4.49 and 4.95 µM, respectively, indicating a strong binding affinity between dufulin and P6 protein. In vivo, dufulin significantly inhibited the expression of both P6 protein and P6 gene in the SRBSDV-infected rice leaves. This inhibition on P6 protein expression was also observed in transformed Nicotiana benthamiana where the P6 was overexpressed. Our data also showed that dufulin inhibited the duplication of SRBSDV in a dose-dependent manner in infected rice leaves with a half maximum effective concentration of 3.32 mM. It is therefore concluded that dufulin targets the viroplasmic protein P6 to inhibit the virulence of SRBSDV.


Asunto(s)
Antivirales/farmacología , Benzotiazoles/farmacología , Enfermedades de las Plantas/virología , Reoviridae/efectos de los fármacos , Proteínas Virales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Viral de la Expresión Génica/efectos de los fármacos , Oryza/virología , Reoviridae/genética , Reoviridae/metabolismo , Proteínas Virales/genética
9.
Plant J ; 98(5): 783-797, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30730076

RESUMEN

The hypersensitive-induced reaction (HIR) gene family is associated with the hypersensitive response (HR) that is a part of the plant defense system against bacterial and fungal pathogens. The involvement of HIR genes in response to viral pathogens has not yet been studied. We now report that the HIR3 genes of Nicotiana benthamiana and Oryza sativa (rice) were upregulated following rice stripe virus (RSV) infection. Silencing of HIR3s in N. benthamiana resulted in an increased accumulation of RSV RNAs, whereas overexpression of HIR3s in N. benthamiana or rice reduced the expression of RSV RNAs and decreased symptom severity, while also conferring resistance to Turnip mosaic virus, Potato virus X, and the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. Silencing of HIR3 genes in N. benthamiana reduced the content of salicylic acid (SA) and was accompanied by the downregulated expression of genes in the SA pathway. Transient expression of the two HIR3 gene homologs from N. benthamiana or the rice HIR3 gene in N. benthamiana leaves caused cell death and an accumulation of SA, but did not do so in EDS1-silenced plants or in plants expressing NahG. The results indicate that HIR3 contributes to plant basal resistance via an EDS1- and SA-dependent pathway.


Asunto(s)
Resistencia a la Enfermedad/genética , Nicotiana/genética , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/microbiología , Oryza/virología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Proteínas de Plantas/metabolismo , Potexvirus/fisiología , Potyvirus/fisiología , Pseudomonas syringae/fisiología , Transducción de Señal/genética , Tenuivirus/fisiología , Nicotiana/microbiología , Nicotiana/virología , Xanthomonas/fisiología
10.
Int J Mol Sci ; 20(2)2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30634635

RESUMEN

Rice stripe virus (RSV) is one of the most devastating viral pathogens in rice and can also cause the general chlorosis symptom in Nicotiana benthamiana plants. The chloroplast changes associated with chlorosis symptom suggest that RSV interrupts normal chloroplast functions. Although the change of proteins of the whole cell or inside the chloroplast in response to RSV infection have been revealed by proteomics, the mechanisms resulted in chloroplast-related symptoms and the crucial factors remain to be elucidated. RSV infection caused the malformation of chloroplast structure and a global reduction of chloroplast membrane protein complexes in N. benthamiana plants. Here, both the protoplast proteome and the chloroplast proteome were acquired simultaneously upon RSV infection, and the proteins in each fraction were analyzed. In the protoplasts, 1128 proteins were identified, among which 494 proteins presented significant changes during RSV; meanwhile, 659 proteins were identified from the chloroplasts, and 279 of these chloroplast proteins presented significant change. According to the label-free LC⁻MS/MS data, 66 nucleus-encoded chloroplast-related proteins (ChRPs), which only reduced in chloroplast but not in the whole protoplast, were identified, indicating that these nuclear-encoded ChRPswere not transported to chloroplasts during RSV infection. Gene ontology (GO) enrichment analysis confirmed that RSV infection changed the biological process of protein targeting to chloroplast, where 3 crucial ChRPs (K4CSN4, K4CR23, and K4BXN9) were involved in the regulation of protein targeting into chloroplast. In addition to these 3 proteins, 41 among the 63 candidate proteins were characterized to have chloroplast transit peptides. These results indicated that RSV infection changed the biological process of protein targeting into chloroplast and the location of ChRPs through crucial protein factors, which illuminated a new layer of RSV⁻host interaction that might contribute to the symptom development.


Asunto(s)
Cloroplastos/metabolismo , Oryza/metabolismo , Oryza/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Proteoma , Proteómica , Protoplastos/metabolismo , Cromatografía Liquida , Biología Computacional/métodos , Ontología de Genes , Fenotipo , Proteómica/métodos , Espectrometría de Masas en Tándem
11.
Molecules ; 23(9)2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30189617

RESUMEN

The rice hoja blanca virus (RHBV), transmitted by the planthopper insect Tagosodes orizicolus, is a disease that attacks rice and generates significant production losses in Colombia. Fedearroz 2000 and Colombia I commercial rice varieties, which have different resistance levels to the disease, were selected in this study. To identify proteins associated to the insect and virus signaling, a comparative proteomics study was performed. By comparing proteomic profiles, between virus-infected and control group plants in two-dimensional electrophoresis, proteins exhibiting significant changes in abundance were found. In another test, peptide dendrimers containing sequences conformationally restricted to α-helix from four of those rice proteins were synthesized. In the experiment, sera from mice inoculated with peptide dendrimers could recognize the corresponding native protein in ELISA assays. Reported comparative proteomic results provide new insights into the molecular mechanisms of plant response to the RHBV and comprehensive tools for the analysis of new crop varieties. Besides, results from conformational peptide dendrimer approach are promising and show that it is feasible to detect proteins as markers, and may have biological applications by decreasing the susceptibility to proteolytic degradation.


Asunto(s)
Anticuerpos/química , Anticuerpos/inmunología , Oryza/inmunología , Péptidos/química , Proteínas de Plantas/inmunología , Conformación Proteica , Dicroismo Circular , Oryza/metabolismo , Oryza/virología , Fenotipo , Proteómica/métodos , Espectrometría de Masas en Tándem , Tenuivirus
12.
Virology ; 524: 32-44, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30142571

RESUMEN

High-throughput deep sequencing and variant detection showed that variations of Rice stripe virus (RSV) populations obtained from small brown planthopper-transmitted rice plants and sap-inoculated N. benthamiana plants were single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels). The SNPs were more uniform across RSV genome, but InDels occurred mainly in the intergenic regions (IRs) and in the 5' or 3' noncoding regions. There were no clear patterns of InDels, although the inserted sequences were all from virus itself. Six, one, and one non-synonymous substitutions were respectively observed in the RdRP ORF, IR and the movement protein ORF. These non-synonymous substitutions were found to be stable, resulting in new consensus sequences in the NBL11 RSV population. Furthermore, the numbers of SNPs and InDels in RSV genome from N. benthamiana plants were much higher than that from O. sativa plants. These differences are likely caused by selection pressures generated by different host plants.


Asunto(s)
Genoma Viral/genética , Hemípteros/virología , Oryza/virología , Enfermedades de las Plantas/virología , Polimorfismo de Nucleótido Simple/genética , Tenuivirus/genética , Animales , ADN Intergénico/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Análisis de Secuencia de ARN , Tenuivirus/aislamiento & purificación , Nicotiana/virología
13.
Virol J ; 15(1): 105, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29940994

RESUMEN

BACKGROUND: Rice stripe virus (RSV) belongs to the genus Tenuivirus. It is transmitted by small brown planthoppers in a persistent and circulative-propagative manner and causes rice stripe disease (RSD). The NS3 protein of RSV, encoded by the viral strand of RNA3, is a viral suppressor of RNA silencing (VSR). NS3 plays a significant role in viral infection, and NS3-transgenic plants manifest resistance to the virus. METHODS: The stability and availability of NS3 produced by transgenic Nicotiana benthamiana was investigated by northern blot analysis. The accumulation of virus was detected by western blot analysis. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) in NS3-transgenic N. benthamiana. RESULTS: When the host plants were inoculated with RSV, symptoms and viral accumulation in NS3-transgenic N. benthamiana were reduced compared with the wild type. Transcriptome analysis identified 2533 differentially expressed genes (DEGs) in the NS3-transgenic N. benthamiana, including 597 upregulated genes and 1936 downregulated genes. These DEGs were classified into three Gene Ontology (GO) categories and were associated with 43 GO terms. KEGG pathway analysis revealed that these DEGs were involved in pathways associated with ribosomes (ko03010), photosynthesis (ko00195), photosynthesis-antenna proteins (ko00196), and carbon metabolism (ko01200). More than 70 DEGs were in these four pathways. Twelve DEGs were selected for RT-qPCR verification and subsequent analysis. The results showed that NS3 induced host resistance by affecting host gene expression. CONCLUSION: NS3, which plays dual roles in the process of infection, may act as a VSR during RSV infection, and enable viral resistance in transgenic host plants. NS3 from RSV affects the expression of genes associated with ribosomes, photosynthesis, and carbon metabolism in N. benthamiana. This study enhances our understanding of the interactions between VSRs and host plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Nicotiana/virología , Oryza/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Tenuivirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Silenciador del Gen , Fenotipo , Plantas Modificadas Genéticamente , ARN Interferente Pequeño/genética , Reproducibilidad de los Resultados , Transcriptoma
14.
New Phytol ; 219(3): 1085-1096, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29882354

RESUMEN

A large number of plant RNA viruses circulate between plants and insects. For RNA viruses, host alternations may impose a differential selective pressure on viral populations and induce variations in viral genomes. Here, we report the variations in the 3'-terminal regions of the multiple-segment RNA virus Rice stripe virus (RSV) that were discovered through de novo assembly of the genome using RNA sequencing data from infected host plants and vector insects. The newly assembled RSV genome contained 16- and 15-nt extensions at the 3'-termini of two genome segments compared with the published reference RSV genome. Our study demonstrated that these extensional sequences were consistently observed in two RSV isolates belonging to distinct genetic subtypes in RSV-infected rice, wheat and tobacco. Moreover, the de novo assembled genome of Southern rice black-streaked dwarf virus also contained 3'-terminal extensions in five RNA segments compared with the reference genome. Time course experiments confirmed that the 3'-terminal extensions of RSV were enriched in the vector insects, were gradually eliminated in the host plant and potentially affected viral replication. These findings indicate that variations in the 3'-termini of viral genomes may be different adaptive strategies for plant RNA viruses in insects and plants.


Asunto(s)
Variación Genética , Genoma Viral , Interacciones Huésped-Patógeno/genética , Insectos Vectores/virología , Oryza/virología , Tenuivirus/genética , Animales , Secuencia de Bases , Nucleótidos/genética , Enfermedades de las Plantas/virología , Reoviridae/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Tenuivirus/aislamiento & purificación , Tenuivirus/ultraestructura , Replicación Viral/genética
15.
Virol J ; 15(1): 72, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29678167

RESUMEN

BACKGROUND: In China, the rice pathogen Rice yellow stunt virus (RYSV), a member of the genus Nucleorhabdovirus in the family Rhabdoviridae, was a severe threat to rice production during the1960s and1970s. Fundamental aspects of the biology of this virus such as protein localization and formation of the RYSV viroplasm during infection of insect vector cells are largely unexplored. The specific role(s) of the structural proteins nucleoprotein (N) and phosphoprotein (P) in the assembly of the viroplasm during RYSV infection in insect vector is also unclear. METHODS: In present study, we used continuous leafhopper cell culture, immunocytochemical techniques, and transmission electron microscopy to investigate the subcellular distributions of N and P during RYSV infection. Both GST pull-down assay and yeast two-hybrid assay were used to assess the in vitro interaction of N and P. The dsRNA interference assay was performed to study the functional roles of N and P in the assembly of RYSV viroplasm. RESULTS: Here we demonstrated that N and P colocalized in the nucleus of RYSV-infected Nephotettix cincticeps cell and formed viroplasm-like structures (VpLSs). The transiently expressed N and P are sufficient to form VpLSs in the Sf9 cells. In addition, the interactions of N/P, N/N and P/P were confirmed in vitro. More interestingly, the accumulation of RYSV was significantly reduced when the transcription of N gene or P gene was knocked down by dsRNA treatment. CONCLUSIONS: In summary, our results suggest that N and P are the main viral factors responsible for the formation of viroplasm in RYSV-infected insect cells. Early during RYSV infection in the insect vector, N and P interacted with each other in the nucleus to form viroplasm-like structures, which are essential for the infection of RYSV.


Asunto(s)
Hemípteros/citología , Hemípteros/virología , Insectos Vectores/citología , Insectos Vectores/virología , Oryza/virología , Virus de Plantas/fisiología , Rhabdoviridae/metabolismo , Animales , Células Cultivadas , China , Técnicas de Silenciamiento del Gen , Hemípteros/ultraestructura , Insectos Vectores/ultraestructura , Técnicas del Sistema de Dos Híbridos , Proteínas Estructurales Virales/metabolismo , Replicación Viral
16.
Gene ; 639: 44-51, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28987346

RESUMEN

Plant Xrn4 is a cytoplasmic 5' to 3' exoribonuclease that is reported to play an antiviral role during viral infection as demonstrated by experiments using the Xrn4s of Nicotiana benthamiana and Arabidopsis thaliana. Meanwhile, little is known about the anti-viral activity of Xrn4 from other plants. Here, we cloned the cytoplasmic Xrn4 gene of Oryza sativa (OsXrn4), and demonstrated that its over-expression elevated the 5'-3' exoribonuclease activity in rice plants and conferred resistance to rice stripe virus, a negative-sense RNA virus causing serious losses in East Asia. The accumulation of viral RNAs was also decreased. Moreover, the ectopic expression of OsXrn4 in N. benthamiana also conferred plant resistance to tobacco mosaic virus infection. These results show that the monocotyledonous plant cytoplasmic Xrn4 also has an antiviral role and thus provides a strategy for producing transgenic plants resistant to viral infection.


Asunto(s)
Resistencia a la Enfermedad , Genes de Plantas , Oryza/genética , Enfermedades de las Plantas/inmunología , Virus del Mosaico del Tabaco/patogenicidad , Secuencia de Aminoácidos , Clonación Molecular , Oryza/inmunología , Oryza/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Nicotiana/virología
17.
Sci Rep ; 7(1): 16467, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184063

RESUMEN

Virion distribution and ultrastructural changes induced by the infection of maize or rice with four different reoviruses were examined. Rice black streaked dwarf virus (RBSDV, genus Fijivirus), Rice ragged stunt virus (RRSV, genus Oryzavirus), and Rice gall dwarf virus (RGDV, genus Phytoreovirus) were all phloem-limited and caused cellular hyperplasia in the phloem resulting in tumors or vein swelling and modifying the cellular arrangement of sieve elements (SEs). In contrast, virions of Rice dwarf virus (RDV, genus Phytoreovirus) were observed in both phloem and mesophyll and the virus did not cause hyperplasia of SEs. The three phloem-limited reoviruses (but not RDV) all induced more flexible gateways at the SE-SE interfaces, especially the non-sieve plate interfaces. These flexible gateways were also observed for the first time at the cellular interfaces between SE and phloem parenchyma (PP). In plants infected with any of the reoviruses, virus-like particles could be seen within the flexible gateways, suggesting that these gateways may serve as channels for the movement of plant reoviruses with their large virions between SEs or between SEs and PP. SE hyperplasia and the increase in flexible gateways may be a universal strategy for the movement of phloem-limited reoviruses.


Asunto(s)
Hiperplasia/patología , Hiperplasia/virología , Fenotipo , Floema/virología , Enfermedades de las Plantas/virología , Reoviridae/fisiología , Interacciones Huésped-Patógeno , Oryza/ultraestructura , Oryza/virología , Floema/ultraestructura , Tropismo Viral , Virión/ultraestructura , Zea mays/ultraestructura , Zea mays/virología
18.
Elife ; 62017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28994391

RESUMEN

Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1, were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1-knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection.


Asunto(s)
Etilenos/metabolismo , Interacciones Huésped-Patógeno , Metionina Adenosiltransferasa/metabolismo , Oryza/virología , Virus de Plantas/fisiología , Proteínas Virales/metabolismo , Virosis , Técnicas de Inactivación de Genes , Metionina Adenosiltransferasa/genética
19.
PLoS One ; 12(5): e0177518, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28494021

RESUMEN

As a core subunit of the SCF complex that promotes protein degradation through the 26S proteasome, S-phase kinase-associated protein 1 (SKP1) plays important roles in multiple cellular processes in eukaryotes, including gibberellin (GA), jasmonate, ethylene, auxin and light responses. P7-2 encoded by Rice black streaked dwarf virus (RBSDV), a devastating viral pathogen that causes severe symptoms in infected plants, interacts with SKP1 from different plants. However, whether RBSDV P7-2 forms a SCF complex and targets host proteins is poorly understood. In this study, we conducted yeast two-hybrid assays to further explore the interactions between P7-2 and 25 type I Oryza sativa SKP1-like (OSK) proteins, and found that P7-2 interacted with eight OSK members with different binding affinity. Co-immunoprecipitation assay further confirmed the interaction of P7-2 with OSK1, OSK5 and OSK20. It was also shown that P7-2, together with OSK1 and O. sativa Cullin-1, was able to form the SCF complex. Moreover, yeast two-hybrid assays revealed that P7-2 interacted with gibberellin insensitive dwarf2 (GID2) from rice and maize plants, which is essential for regulating the GA signaling pathway. It was further demonstrated that the N-terminal region of P7-2 was necessary for the interaction with GID2. Overall, these results indicated that P7-2 functioned as a component of the SCF complex in rice, and interaction of P7-2 with GID2 implied possible roles of the GA signaling pathway during RBSDV infection.


Asunto(s)
Giberelinas/metabolismo , Complejos Multiproteicos/metabolismo , Oryza/metabolismo , Oryza/virología , Proteínas de Plantas/metabolismo , Reoviridae/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Virales/metabolismo , Inmunoprecipitación , Hojas de la Planta/metabolismo , Unión Proteica , Reproducibilidad de los Resultados , Nicotiana/metabolismo , Técnicas del Sistema de Dos Híbridos , Zea mays
20.
Plant Physiol ; 174(2): 875-885, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28400493

RESUMEN

Virus-induced flowering (VIF) uses virus vectors to express Flowering Locus T (FT) to induce flowering in plants. This approach has recently attracted wide interest for its practical applications in accelerating breeding in crops and woody fruit trees. However, the insight into VIF and its potential as a powerful tool for dissecting florigenic proteins remained to be elucidated. Here, we describe the mechanism and further applications of Potato virus X (PVX)-based VIF in the short-day Nicotiana tabacum cultivar Maryland Mammoth. Ectopic delivery of Arabidopsis (Arabidopsis thaliana) AtFT by PVX/AtFT did not induce the expression of the endogenous FT ortholog NtFT4; however, it was sufficient to trigger flowering in Maryland Mammoth plants grown under noninductive long-day conditions. Infected tobacco plants developed no systemic symptoms, and the PVX-based VIF did not cause transgenerational flowering. We showed that the PVX-based VIF is a much more rapid method to examine the impacts of single amino acid mutations on AtFT for floral induction than making individual transgenic Arabidopsis lines for each mutation. We also used the PVX-based VIF to demonstrate that adding a His- or FLAG-tag to the N or C terminus of AtFT could affect its florigenic activity and that this system can be applied to assay the function of FT genes from heterologous species, including tomato (Solanum lycopersicum) SFT and rice (Oryza sativa) Hd3a Thus, the PVX-based VIF represents a simple and efficient system to identify individual amino acids that are essential for FT-mediated floral induction and to test the ability of mono- and dicotyledonous FT genes and FT fusion proteins to induce flowering.


Asunto(s)
Proteínas de Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/virología , Potexvirus/genética , Sustitución de Aminoácidos , Flores/virología , Solanum lycopersicum/genética , Solanum lycopersicum/virología , Oryza/genética , Oryza/virología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA