Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
2.
Commun Biol ; 7(1): 569, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750228

RESUMEN

Accumulation of amyloid-ß (Aß) and tau tangles are hallmarks of Alzheimer's disease. Aß is extracellular while tau tangles are typically intracellular, and it is unknown how these two proteinopathies are connected. Here, we use data of 1206 elders and test that RNA expression levels of GPER1, a transmembrane protein, modify the association of Aß with tau tangles. GPER1 RNA expression is related to more tau tangles (p = 0.001). Moreover, GPER1 expression modifies the association of immunohistochemistry-derived Aß load with tau tangles (p = 0.044). Similarly, GPER1 expression modifies the association between Aß proteoforms and tau tangles: total Aß protein (p = 0.030) and Aß38 peptide (p = 0.002). Using single nuclei RNA-seq indicates that GPER1 RNA expression in astrocytes modifies the relation of Aß load with tau tangles (p = 0.002), but not GPER1 in excitatory neurons or endothelial cells. We conclude that GPER1 may be a link between Aß and tau tangles driven mainly by astrocytic GPER1 expression.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Proteínas tau , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Femenino , Masculino , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Anciano , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Anciano de 80 o más Años , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Astrocitos/metabolismo
3.
Alzheimers Dement ; 20(4): 2894-2905, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520322

RESUMEN

INTRODUCTION: Tau aggregation into paired helical filaments and neurofibrillary tangles is characteristic of Alzheimer's disease (AD) and related disorders. However, biochemical assays for the quantification of soluble, earlier-stage tau aggregates are lacking. We describe an immunoassay that is selective for tau oligomers and related soluble aggregates over monomers. METHODS: A homogeneous (single-antibody) immunoassay was developed using a novel anti-tau monoclonal antibody and validated with recombinant and brain tissue-derived tau. RESULTS: The assay signals were concentration dependent for recombinant tau aggregates in solution but not monomers, and recognized peptides within, but not outside, the aggregation-prone microtubule binding region. The signals in inferior and middle frontal cortical tissue homogenates increased with neuropathologically determined Braak staging, and were higher in insoluble than soluble homogenized brain fractions. Autopsy-verified AD gave stronger signals than other neurodegenerative diseases. DISCUSSION: The quantitative oligomer/soluble aggregate-specific assay can identify soluble tau aggregates, including oligomers, from monomers in human and in vitro biospecimens. HIGHLIGHTS: The aggregation of tau to form fibrils and neurofibrillary tangles is a key feature of Alzheimer's disease. However, biochemical assays for the quantification of oligomers/soluble aggregated forms of tau are lacking. We developed a new assay that preferentially binds to soluble tau aggregates, including oligomers and fibrils, versus monomers. The assay signal increased corresponding to the total protein content, Braak staging, and insolubility of the sequentially homogenized brain tissue fractions in an autopsy-verified cohort. The assay recognized tau peptides containing the microtubule binding region but not those covering the N- or C-terminal regions only.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Ovillos Neurofibrilares , Inmunoensayo , Péptidos/metabolismo
4.
Biomolecules ; 14(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38540715

RESUMEN

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by cognitive decline and neuropathological hallmarks, including ß-amyloid (Aß) plaques, Tau tangles, synaptic dysfunction and neurodegeneration. Emerging evidence suggests that abnormal iron (Fe) metabolism plays a role in AD pathogenesis, but the precise spatial distribution of the Fe and its transporters, such as ferroportin (FPN), within affected brain regions remains poorly understood. This study investigates the distribution of Fe and FPN in the CA1 region of the human hippocampus in AD patients with a micrometer lateral resolution using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For this purpose, we visualized and quantified Fe and FPN in three separated CA1 layers: stratum molecular-radial (SMR), stratum pyramidal (SP) and stratum oriens (SO). Additionally, chromogenic immunohistochemistry was used to examine the distribution and colocalization with Tau and Aß proteins. The results show that Fe accumulation was significantly higher in AD brains, particularly in SMR and SO. However, FPN did not present significantly changes in AD, although it showed a non-uniform distribution across CA1 layers, with elevated levels in SP and SO. Interestingly, minimal overlap was observed between Fe and FPN signals, and none between Fe and areas rich in neurofibrillary tangles (NFTs) or neuritic plaques (NP). In conclusion, the lack of correlation between Fe and FPN signals suggests complex regulatory mechanisms in AD Fe metabolism and deposition. These findings highlight the complexity of Fe dysregulation in AD and its potential role in disease progression.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Transporte de Catión , Terapia por Láser , Humanos , Enfermedad de Alzheimer/metabolismo , Hierro/metabolismo , Hipocampo/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología
5.
Eur J Med Chem ; 269: 116359, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38537514

RESUMEN

Alzheimer's disease (AD) is a detrimental neurodegenerative disease affecting the elderly. Clinically, it is characterized by progressive memory decline and subsequent loss of broader cognitive functions. Current drugs provide only symptomatic relief but do not have profound disease-modifying effects. There is an unmet need to identify novel pharmacological agents for AD therapy. Neuropathologically, the characteristic hallmarks of the disease are extracellular senile plaques containing amyloid ß-peptides and intracellular neurofibrillary tangles containing hyperphosphorylated microtubule-associated protein tau. Simultaneously, oxidative stress, neuroinflammation and mitochondrial dysfunction in specific brain regions are early events during the process of AD pathologic changes and are associated with Aß/tau toxicity. Here, we first summarized probable pathogenic mechanisms leading to neurodegeneration and hopefully identify pathways that serve as specific targets to improve therapy for AD. We then reviewed the mechanisms that underlie disease-modifying effects of natural polyphenols, with a focus on nuclear factor erythroid 2-related factor 2 activators for AD treatment. Lastly, we discussed challenges in the preclinical to clinical translation of natural polyphenols. In conclusion, there is evidence that natural polyphenols can be therapeutically useful in AD through their multifaceted mechanism of action. However, more clinical studies are needed to confirm these effects.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Polifenoles/farmacología , Polifenoles/uso terapéutico , Ovillos Neurofibrilares/metabolismo , Proteínas tau/metabolismo
6.
ACS Chem Neurosci ; 14(21): 3959-3971, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37830541

RESUMEN

The microtubule-associated protein tau (MAPT) has a critical role in the development and preservation of the nervous system. However, tau's dysfunction and accumulation in the human brain can lead to several neurodegenerative diseases, such as Alzheimer's disease, Down's syndrome, and frontotemporal dementia. The microtubule binding (MTB) domain plays a significant, important role in determining the tau's pathophysiology, as the core of paired helical filaments PHF6* (275VQIINK280) and PHF6 (306VQIVYK311) of R2 and R3 repeat units, respectively, are formed in this region, which promotes tau aggregation. Post-translational modifications, and in particular lysine acetylation at K280 of PHF6* and K311 of PHF6, have been previously established to promote tau misfolding and aggregation. However, the exact aggregation mechanism is not known. In this study, we established an atomic-level nucleation-extension mechanism of the separated aggregation of acetylated PHF6* and PHF6 hexapeptides, respectively, of tau. We show that the acetylation of the lysine residues promotes the formation of ß-sheet enriched high-ordered oligomers. The Markov state model analysis of ac-PHF6* and ac-PHF6 aggregation revealed the formation of an antiparallel dimer nucleus which could be extended from both sides in a parallel manner to form mixed-oriented and high-ordered oligomers. Our study describes the detailed mechanism for acetylation-driven tau aggregation, which provides valuable insights into the effect of post-translation modification in altering the pathophysiology of tau hexapeptides.


Asunto(s)
Enfermedad de Alzheimer , Simulación de Dinámica Molecular , Humanos , Lisina/metabolismo , Proteínas tau/metabolismo , Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo , Ovillos Neurofibrilares/metabolismo , Proteínas Represoras/metabolismo
7.
Curr Alzheimer Res ; 20(7): 453-458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670715

RESUMEN

Multiple studies have proposed important roles of T cells in the pathogenesis of Alzheimer's disease. Given the successful application of immune-based therapy for cancer and a variety of diseases, T cell-modifying therapy becomes an attractive way to develop new therapies for Alzheimer's disease and perhaps neurodegenerative diseases in general. However, most of these studies address peripheral T cell responses, while direct pathological evidence documenting T cell infiltration relative to Alzheimer's disease pathological markers (i.e., amyloid plaque and neurofibrillary tangle) is sparse and at best, very preliminary in both human subjects and relevant animal models. Here, we concisely summarize the available pathological data that directly corresponds to T cell infiltration, critically analyze the current knowledge gaps, and thoughtfully propose several key recommendations for future research.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/patología , Linfocitos T/patología , Ovillos Neurofibrilares/patología , Neuropatología , Péptidos beta-Amiloides , Placa Amiloide/patología
8.
Biomed Microdevices ; 25(3): 25, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37470844

RESUMEN

Early diagnosis of Alzheimer's disease (AD) is critical for preventing disease progression, however, the diagnosis of AD remains challenging for most patients due to limitations of current sensing technologies. A common pathological feature found in AD-affected brains is the accumulation of Amyloid-ß (Aß) polypeptides, which lead to neurofibrillary tangles and neuroinflammatory plaques. Here, we developed a portable ultrasensitive FET biosensor chip based on a self-assembled nanoporous membrane for ultrasensitive detection of Aß protein in complex environments. The microscale semiconductor channel was covered with a self-assembled organic nanoporous membrane modified by antibody molecules to pick up and amplify the Aß protein signal. The nanoporous structure helps protect the sensitive channel from non-target proteins and improves its stability since no chemical functionalization process involved, largely reduces background noise of the sensing platform. When a bio-gated target is captured, the doping state of the polymer bulk could be tuned and amplified the strength of the weak signal, achieving ultrasensitive detecting performance (enabling the device to detect target protein less than 1 fg/ml in 1 µl sample). Moreover, the device simplifies the circuit connection by integrating all the connections on a 2 cm × 2 cm chip, avoiding expensive and complex manufacturing processes, and makes it usable for portable prognosis. We believe that this ultrasensitive, portable, low-cost Aß sensor chip shows the great potential in the early diagnosis of AD and large-scale population screening applications.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Nanoporos , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/análisis , Ovillos Neurofibrilares/patología
9.
Acta Neuropathol Commun ; 11(1): 45, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934255

RESUMEN

New histological techniques are needed to examine protein distribution in human tissues, which can reveal cell shape and disease pathology connections. Spatial proteomics has changed the study of tumor microenvironments by identifying spatial relationships of immunomodulatory cells and proteins and contributing to the discovery of new cancer immunotherapy biomarkers. However, the fast-expanding toolkit of spatial proteomic approaches has yet to be systematically applied to investigate pathological alterations in the aging human brain in health and disease states. Moreover, post-mortem human brain tissue presents distinct technical problems due to fixation procedures and autofluorescence, which limit fluorescence methodologies. This study sought to develop a multiplex immunohistochemistry approach (visualizing the immunostain with brightfield microscopy). Quantitative multiplex Immunohistochemistry with Visual colorimetric staining to Enhance Regional protein localization (QUIVER) was developed to address these technical challenges. Using QUIVER, a ten-channel pseudo-fluorescent image was generated using chromogen removal and digital microscopy to identify unique molecular microglia phenotypes. Next, the study asked if the tissue environment, specifically the amyloid plaques and neurofibrillary tangles characteristic of Alzheimer's disease, has any bearing on microglia's cellular and molecular phenotypes. QUIVER allowed the visualization of five molecular microglia/macrophage phenotypes using digital pathology tools. The recognizable reactive and homeostatic microglia/macrophage phenotypes demonstrated spatial polarization towards and away from amyloid plaques, respectively. Yet, microglia morphology appearance did not always correspond to molecular phenotype. This research not only sheds light on the biology of microglia but also offers QUIVER, a new tool for examining pathological alterations in the brains of the elderly.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Placa Amiloide/patología , Proteómica , Ovillos Neurofibrilares/patología , Encéfalo/patología , Temblor/patología , Péptidos beta-Amiloides/metabolismo
10.
Cell Mol Neurobiol ; 43(6): 2953-2962, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36988771

RESUMEN

Alzheimer's disease (AD) is a progressive neuroinflammatory and neurodegenerative disorder that affects different regions of the brain. Its pathophysiology includes the accumulation of ß-amyloid protein, formation of neurofibrillary tangles, and inflammatory processes. Genetic factors are involved in the onset of AD, but they are not fully elucidated. Identification of gene expression in encephalic tissues of patients with AD may help elucidate its development. Our objectives were to characterize and compare the gene expression of CDK10, CDK11, FOXO1, and FOXO3 in encephalic tissue samples from AD patients and elderly controls, from the auditory cortex and cerebellum. RT-qPCR was used on samples from 82 individuals (45 with AD and 37 controls). We observed a statistically significant increase in CDK10 (p = 0.029*) and CDK11 (p = 0.048*) gene expression in the AD group compared to the control, which was most evident in the cerebellum. Furthermore, the Spearman test demonstrated the presence of a positive correlation of gene expression both in the auditory cortex in the AD group (r = 0.046/p = 0.004) and control group (r = 0.454/p = 0.005); and in the cerebellum in the AD group (r = 0.654 /p < 0.001). There was no statistically significant difference and correlation in the gene expression of FOXO1 and FOXO3 in the AD group and the control. In conclusion, CDK10 and CDK11 have high expression in AD patients compared to control, and they present a positive correlation of gene expression in the analyzed groups and tissues, which suggests that they play an important role in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/metabolismo , Encéfalo/metabolismo , Expresión Génica , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo
11.
J Comp Neurol ; 531(18): 2080-2108, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36989381

RESUMEN

Neurofibrillary tangles (NFTs) contain abnormally phosphorylated tau proteins, which spread within components of the medial temporal lobe (MTL) memory circuit in Alzheimer's disease (AD). Here, we used quantitative immunohistochemistry to determine the density of posttranslational oligomeric (TOC1 and TNT1), phosphorylated (AT8), and late truncated (TauC3) tau epitopes within the MTL subfields including entorhinal cortex (EC) layer II, subiculum, Cornu Ammonis (CA) subfields, and dentate gyrus (DG) in subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), and AD. We also examined whether alterations of the nuclear alternative splicing protein, SRSF2, are associated with tau pathology. Although a significant increase in TOC1, TNT1, and AT8 neuron density occurred in the EC in MCI and AD, subicular, DG granule cell, and CA1 and CA3 densities were only significantly higher in AD. TauC3 counts were not different between connectome regions and clinical groups. SRSF2 intensity in AT8-positive cells decreased significantly in all regions independent of the clinical groups examined. CA1 and subicular AT8, TauC3, and oligomeric densities correlated across clinical groups. EC AT8 counts correlated with CA subfields and subicular and DG values across clinical groups. Oligomeric and AT8 CA1, EC, and subicular density correlated with Braak stage. Decreased nuclear SRSF2 in the presence of cytoplasmic phosphorylated tau suggests a dual-hit process in NFT formation within the entorhinal hippocampal connectome during the onset of AD. Although oligomeric and phosphorylated tau follow a stereotypical pattern, clinical disease stage determined density of tau deposition and not anatomic location within the entorhinal-hippocampal connectome.


Asunto(s)
Enfermedad de Alzheimer , Conectoma , Humanos , Enfermedad de Alzheimer/patología , Empalmosomas/metabolismo , Empalmosomas/patología , Hipocampo/metabolismo , Proteínas tau/metabolismo , Ovillos Neurofibrilares/patología
12.
Biosensors (Basel) ; 13(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36831917

RESUMEN

The identification of protein aggregates as biomarkers for neurodegeneration is an area of interest for disease diagnosis and treatment development. In this work, we present novel super luminescent conjugated polyelectrolyte molecules as ex vivo sensors for tau-paired helical filaments (PHFs) and amyloid-ß (Aß) plaques. We evaluated the use of two oligo-p-phenylene ethynylenes (OPEs), anionic OPE12- and cationic OPE24+, as stains for fibrillar protein pathology in brain sections of transgenic mouse (rTg4510) and rat (TgF344-AD) models of Alzheimer's disease (AD) tauopathy, and post-mortem brain sections from human frontotemporal dementia (FTD). OPE12- displayed selectivity for PHFs in fluorimetry assays and strong staining of neurofibrillary tangles (NFTs) in mouse and human brain tissue sections, while OPE24+ stained both NFTs and Aß plaques. Both OPEs stained the brain sections with limited background or non-specific staining. This novel family of sensors outperformed the gold-standard dye Thioflavin T in sensing capacities and co-stained with conventional phosphorylated tau (AT180) and Aß (4G8) antibodies. As the OPEs readily bind protein amyloids in vitro and ex vivo, they are selective and rapid tools for identifying proteopathic inclusions relevant to AD. Such OPEs can be useful in understanding pathogenesis and in creating in vivo diagnostically relevant detection tools for neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Ovillos Neurofibrilares , Ratones , Humanos , Ratas , Animales , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Placa Amiloide , Proteínas tau , Enfermedad de Alzheimer/diagnóstico , Encéfalo/metabolismo , Péptidos beta-Amiloides , Coloración y Etiquetado , Etilenos/metabolismo
13.
J Chem Inf Model ; 63(4): 1351-1361, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36786552

RESUMEN

In tauopathies such as Alzheimer's disease (AD), aberrant phosphorylation causes the dissociation of tau proteins from microtubules. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments and insoluble neurofibrillary tangles (NFTs). NFTs is a hallmark of AD, while oligomers are found to be the most toxic form of the tau aggregates. Therefore, understanding tau oligomerization with regard to abnormal phosphorylation is important for the therapeutic development of AD. In this study, we investigated the impact of phosphorylated Ser289, one of the 40 aberrant phosphorylation sites of full-length tau proteins, on monomeric and dimeric structures of tau repeat R2 peptides. We carried out intensive replica exchange molecular dynamics simulation with a total simulation time of up to 0.1 ms. Our result showed that the phosphorylation significantly affected the structures of both the monomer and the dimer. For the monomer, the phosphorylation enhanced ordered-disordered structural transition and intramolecular interaction, leading to more compactness of the phosphorylated R2 compared to the wild-type one. As to the dimer, the phosphorylation increased intermolecular interaction and ß-sheet formation, which can accelerate the oligomerization of R2 peptides. This result suggests that the phosphorylation at Ser289 is likely to promote tau aggregation. We also observed a phosphorylated Ser289-Na+-phosphorylated Ser289 bridge in the phosphorylated R2 dimer, suggesting an important role of cation ions in tau aggregation. Our findings suggest that phosphorylation at Ser289 should be taken into account in the inhibitor screening of tau oligomerization.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Fosforilación , Enfermedad de Alzheimer/metabolismo , Ovillos Neurofibrilares/metabolismo , Péptidos/metabolismo , Polímeros
14.
Neuropathology ; 43(4): 326-332, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36593715

RESUMEN

We report an autopsy case of progressive supranuclear palsy (PSP-Richardson syndrome). The individual had been enrolled in a phase 2 trial and received a monoclonal tau antibody (tilavonemab, ABBV-8E12); he died of intrahepatic cholangiocarcinoma and gastrointestinal bleeding during the clinical trial. Neuropathological examination demonstrated neuronal loss, gliosis, and widespread deposits of phosphorylated tau in the neurofibrillary tangles, tufted astrocytes, coiled bodies, and threads, which mainly occurred in the inferior olive nucleus, dentate nucleus of the cerebellum, substantia nigra, midbrain tegmentum, subthalamic nuclei, globus pallidus, putamen, and precentral gyrus, confirming typical PSP pathology. Phosphorylated tau was also found to accumulate in Betz cells, Purkinje cells, and pencil fibers in the basal ganglia. In conclusion, no additional changes or pathological modifications, which were expected from immunotherapy targeting tau, were visible in the present case.


Asunto(s)
Parálisis Supranuclear Progresiva , Masculino , Humanos , Parálisis Supranuclear Progresiva/patología , Anticuerpos Monoclonales/uso terapéutico , Autopsia , Ganglios Basales/patología , Ovillos Neurofibrilares/patología , Proteínas tau/metabolismo
15.
Neurology ; 100(14): e1474-e1487, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36697247

RESUMEN

BACKGROUND AND OBJECTIVES: Lifetime risk of Alzheimer disease (AD) dementia is twofold higher in women compared with men, and low estrogen levels in postmenopause have been suggested as a possible contributor. We examined 3 ER (GPER1, ER2, and ER1) variants in association with AD traits as an indirect method to test the association between estrogen and AD in women. Although the study focus was on women, in a comparison, we separately examined ER molecular variants in men. METHODS: Participants were followed for an average of 10 years in one of the 2 longitudinal clinical pathologic studies of aging. Global cognition was assessed using a composite score derived from 19 neuropsychological tests' scores. Postmortem pathologic assessment included examination of 3 AD (amyloid-ß and tau tangles determined by immunohistochemistry, and a global AD pathology score derived from diffuse and neurotic plaques and neurofibrillary tangle count) and 8 non-AD pathology indices. ER molecular genomic variants included genotyping and examining ER DNA methylation and RNA expression in brain regions including the dorsolateral prefrontal cortex (DLPFC) that are major players in cognition and often have AD pathology. RESULTS: The mean age of women (N = 1711) at baseline was 78.0 (SD = 7.7) years. In women, GPER1 molecular variants had the most consistent associations with AD traits. GPER1 DNA methylation was associated with cognitive decline, tau tangle density, and global AD pathology score. GPER1 RNA expression in DLPFC was related to cognitive decline and tau tangle density. Other associations included associations of ER2 and ER1 sequence variants and DNA methylation with cognition. RNA expressions in DLPFC of genes involved in signaling mechanisms of activated ERs were also associated with cognitive decline and tau tangle density in women. In men (N = 651, average age at baseline: 77.4 [SD = 7.3]), there were less robust associations between ER molecular genomic variants and AD cognitive and pathologic traits. No consistent association was seen between ER molecular genomic variations and non-AD pathologies in either of the sexes. DISCUSSION: ER DNA methylation and RNA expression, and to some extent ER polymorphisms, were associated with AD cognitive and pathologic traits in women, and to a lesser extent in men.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Disfunción Cognitiva/patología , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/patología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , ARN/metabolismo , Proteínas tau/metabolismo , Anciano de 80 o más Años
16.
Drug Chem Toxicol ; 46(3): 510-522, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35443844

RESUMEN

Aluminum (Al) is an environmentally abundant metal that is not essential for life. There is considerable evidence that Al as a neurotoxic xenobiotic may play a role in the pathogenesis of neurodegenerative diseases like Alzheimer's disease (AD). Exposure to aluminum has been shown to cause neuronal damage that resembles the symptoms of AD. In this review, we will summarize recent data about Al as the possible risk of incidence of AD. Then glycogen synthase kinase-3 beta (GSK3ß) contributes to the hyperphosphorylation of Tau protein, the main component of neurofibrillary tangles, one of the hallmarks of AD as one of the mechanisms behind Al neurotoxicity will be covered. Overall, there is still a need for epidemiological studies and more in vivo and in vitro studies to determine the exact mechanisms of its neurotoxicity and the role of GSK3ß in both Al toxic effect and AD.


Asunto(s)
Aluminio , Enfermedad de Alzheimer , Glucógeno Sintasa Quinasa 3 beta , Humanos , Aluminio/metabolismo , Aluminio/toxicidad , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ovillos Neurofibrilares/metabolismo , Fosforilación , Proteínas tau/metabolismo
17.
Neuroscience ; 518: 112-118, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35469971

RESUMEN

Disruption of calcium (Ca2+) homeostasis is emerging as a prevalent feature of aging and aging-associated neurodegenerative diseases, including Alzheimer's disease (AD), the most common type of tauopathy. This disease is characterized by the combined presence of extracellular neuritic plaques composed by amyloid ß-peptides (Aß) and neurofibrillary tangles of tau. The association of calcium dyshomeostasis with Aß has been extensively studied, however its link with tau has been less investigated. Thus, this review will concentrate on the functional link between tau and the plasma membrane Ca2+ pump (PMCA) and other membrane proteins involved in the regulation of intracellular calcium and/or its association with neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas tau/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Enfermedad de Alzheimer/metabolismo , Membrana Celular/metabolismo , Ovillos Neurofibrilares/metabolismo
18.
WIREs Mech Dis ; 15(2): e1591, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36494193

RESUMEN

Alzheimer's disease (AD) is one of the progressive neurodegenerative disorders and the most common cause of dementia in the elderly worldwide causing difficulties in the daily life of the patient. AD is characterized by the aberrant accumulation of ß-amyloid plaques and tau protein-containing neurofibrillary tangles (NFTs) in the brain giving rise to neuroinflammation, oxidative stress, synaptic failure, and eventual neuronal cell death. The total cost of care in AD treatment and related health care activities is enormous and pharmaceutical drugs approved by Food and Drug Administration have not manifested sufficient efficacy in protection and therapy. In recent years, there are growing studies that contribute a fundamental understanding to AD pathogenesis, AD-associated risk factors, and pharmacological intervention. However, greater molecular process-oriented research in company with suitable experimental models is still of the essence to enhance the prospects for AD therapy and cell lines as a disease model are still the major part of this milestone. In this review, we provide an insight into molecular mechanisms, particularly the recent concept in gut-brain axis, vascular dysfunction and autophagy, and current models used in the study of AD. Here, we emphasized the importance of therapeutic strategy targeting multiple mechanisms together with utilizing appropriate models for the discovery of novel effective AD therapy. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.


Asunto(s)
Enfermedad de Alzheimer , Estados Unidos , Humanos , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/metabolismo , Encéfalo/metabolismo , Autofagia
19.
Neuropathology ; 43(1): 44-50, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36341554

RESUMEN

Tauopathies, including Alzheimer's disease and primary age-related tauopathy (PART), present heterogeneous clinico-pathological phenotypes that include dementia, aphasia, motor neuron diseases, and psychiatric symptoms. PART is neuropathologically characterized by the presence of neurofibrillary tangles in limbic regions without significant Aß deposition, but its clinical features have not yet been fully established. Here, we present two patients with distinct psychosis and behavioral symptoms. At autopsy, these patients showed tau pathologies that could not be classified as typical PART, although PART-like neurofibrillary tangles were present in limbic regions. Clinically, both patients were admitted to mental hospitals due to severe delusions or other neuropsychiatric/behavioral symptoms. The first case presented with hallucination, delusion, and apathy at age 70, and died of pancreatic cancer at age 75. He had neuronal cytoplasmic inclusions with selective accumulation of 3Rtau in the striatum and thorn-shaped astrocytes in the amygdala. The second case, who presented with abnormal behaviors such as wandering, agitation and disinhibition, exhibited limbic neurodegeneration with massive 4R tau-positive oligodendroglial inclusions in the medial temporal white matter. His age at onset was 73, and the duration of disease was 15 years. These findings support the notion that distinct limbic tau pathology with concomitant degeneration of the related neural circuits might induce specific psychosis and behavioral symptoms. This underlines the importance of neuropathological evaluation for both clinical education and practice in the fields of neuropathology and neuropsychiatry.


Asunto(s)
Enfermedad de Alzheimer , Trastornos Psicóticos , Tauopatías , Masculino , Humanos , Proteínas tau , Autopsia , Tauopatías/complicaciones , Tauopatías/patología , Enfermedad de Alzheimer/patología , Ovillos Neurofibrilares/patología , Trastornos Psicóticos/patología
20.
Neuropathology ; 43(2): 181-189, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36321363

RESUMEN

We report on a 116-year-old Japanese woman who was the first officially documented supercentenarian to be autopsied in the world. She lived a remarkably healthy life until suffering cerebral infarction at 109 years of age. She became Japan's oldest person at 113 years and died in 1995 from colon cancer at 116 years 175 days. Her medical records show the delayed onset of stroke, cancer, dementia, and heart disease and the importance of appropriate medical treatment and intensive dedicated care provided during the last stage of her life. She was the longest-lived person in Japan for 21 years from 1993 until 2014. The neuropathological findings of her autopsied brain were briefly reported in the Japanese literature in 1997. In this study, we reinvestigated her brain and spinal cord in more detail. Severe cerebrovascular lesions and cervical spondylotic myelopathy were found to be the main causes of her disability. Although the density of senile plaques was relatively high, the distribution of neurofibrillary tangles was limited. Ghost tangles and argyrophilic grains were mild. The mildness of tau pathological changes in her neurons, in other words the resistance of neurons to tau pathology, may be a factor responsible for her longevity.


Asunto(s)
Encéfalo , Infarto Cerebral , Ovillos Neurofibrilares , Humanos , Femenino , Trastornos Cerebrovasculares , Anciano de 80 o más Años , Centenarios , Encéfalo/patología , Ovillos Neurofibrilares/patología , Japón , Autopsia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA