Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.619
Filtrar
1.
Sci Adv ; 10(20): eadk9076, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748792

RESUMEN

Acute myeloid leukemia (AML) driven by the activation of EVI1 due to chromosome 3q26/MECOM rearrangements is incurable. Because transcription factors such as EVI1 are notoriously hard to target, insight into the mechanism by which EVI1 drives myeloid transformation could provide alternative avenues for therapy. Applying protein folding predictions combined with proteomics technologies, we demonstrate that interaction of EVI1 with CTBP1 and CTBP2 via a single PLDLS motif is indispensable for leukemic transformation. A 4× PLDLS repeat construct outcompetes binding of EVI1 to CTBP1 and CTBP2 and inhibits proliferation of 3q26/MECOM rearranged AML in vitro and in xenotransplant models. This proof-of-concept study opens the possibility to target one of the most incurable forms of AML with specific EVI1-CTBP inhibitors. This has important implications for other tumor types with aberrant expression of EVI1 and for cancers transformed by different CTBP-dependent oncogenic transcription factors.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas de Unión al ADN , Leucemia Mieloide Aguda , Proteína del Locus del Complejo MDS1 y EV11 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Proteína del Locus del Complejo MDS1 y EV11/genética , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Humanos , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Unión Proteica , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
J Exp Clin Cancer Res ; 43(1): 137, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711119

RESUMEN

BACKGROUND: The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS: Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS: We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models.  CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas de Unión al ADN , Melanoma , Humanos , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
BMC Cancer ; 24(1): 554, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698344

RESUMEN

BACKGROUND: Prostate cancer is dependent on androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) has proven effective in targeting prostate cancer. However, castration-resistant prostate cancer (CRPC) eventually emerges. AR signaling inhibitors (ARSI) have been also used, but resistance to these agents develops due to genetic AR alterations and epigenetic dysregulation. METHODS: In this study, we investigated the role of OCT1, a member of the OCT family, in an AR-positive CRPC patient-derived xenograft established from a patient with resistance to ARSI and chemotherapy. We conducted a genome-wide analysis chromatin immunoprecipitation followed by sequencing and bioinformatic analyses using public database. RESULTS: Genome-wide analysis of OCT1 target genes in PDX 201.1 A revealed distinct OCT1 binding sites compared to treatment-naïve cells. Bioinformatic analyses revealed that OCT1-regulated genes were associated with cell migration and immune system regulation. In particular, C-terminal Binding Protein 2 (CTBP2), an OCT1/AR target gene, was correlated with poor prognosis and immunosuppressive effects in the tumor microenvironment. Metascape revealed that CTBP2 knockdown affects genes related to the immune response to bacteria. Furthermore, TISIDB analysis suggested the relationship between CTBP2 expression and immune cell infiltration in prostate cancer, suggesting that it may contribute to immune evasion in CRPC. CONCLUSIONS: Our findings shed light on the genome-wide network of OCT1 and AR in AR-positive CRPC and highlight the potential role of CTBP2 in immune response and tumor progression. Targeting CTBP2 may represent a promising therapeutic approach for aggressive AR-positive CRPC. Further validation will be required to explore novel therapeutic strategies for CRPC management.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas Co-Represoras , Regulación Neoplásica de la Expresión Génica , Factor 1 de Transcripción de Unión a Octámeros , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Ratones , Animales , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Regulación hacia Arriba , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Microambiente Tumoral , Transducción de Señal
4.
Genomics ; 116(3): 110846, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642856

RESUMEN

Period circadian regulator 3 (PER3) functions as a tumor suppressor in various cancers. However, the role of PER3 in multiple myeloma (MM) has not been reported yet. Through this study, we aimed to investigate the potential role of PER3 in MM and the underlying mechanisms. RT-qPCR and western blotting were used to determine the mRNA and protein expression levels of PER3. Glyoxylate reductase 1 homolog (GLYR1) was predicted to be a transcription factor of PER3. The binding sites of GLYR1 on the promoter region of PER3 were analyzed using UCSC and confirmed using luciferase and chromatin immunoprecipitation assays. Viability, apoptosis, and metathesis were determined using CCK-8, colony formation, TUNEL, and transwell assays. We found that PER3 expression decreased in MM. Low PER3 levels may predict poor survival rates; PER3 overexpression suppresses the viability and migration of MM cells and promotes apoptosis. Moreover, GLYR1 transcriptionally activates PER3, and the knockdown of PER3 alleviates the effects of GLYR1 and induces its malignant behavior in MM cells. To conclude, GLYR1 upregulates PER3 and suppresses the aggressive behavior of MM cells, suggesting that GLYR1/PER3 signaling may be a potential therapeutic target for MM.


Asunto(s)
Movimiento Celular , Proliferación Celular , Mieloma Múltiple , Proteínas Circadianas Period , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Línea Celular Tumoral , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Apoptosis , Regulación Neoplásica de la Expresión Génica
5.
BMC Genomics ; 25(1): 425, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684983

RESUMEN

BACKGROUND: Purple non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis] has become popular because of its richness in anthocyanin. However, anthocyanin only accumulates in the upper epidermis of leaves. Further studies are needed to investigate the molecular mechanisms underlying the specific accumulation of it. RESULTS: In this study, we used the laser capture frozen section method (LCM) to divide purple (ZBC) and green (LBC) non-heading Chinese cabbage leaves into upper and lower epidermis parts (Pup represents the purple upper epidermis, Plow represents the purple lower epidermis, Gup represents the green upper epidermis, Glow represents the green lower epidermis). Through transcriptome sequencing, we found that the DIHYDROFLAVONOL 4-REDUCTASE-encoding gene BcDFR, is strongly expressed in Pup but hardly in others (Plow, Gup, Glow). Further, a deletion and insertion in the promoter of BcDFR in LBC were found, which may interfere with BcDFR expression. Subsequent analysis of gene structure and conserved structural domains showed that BcDFR is highly conserved in Brassica species. The predicted protein-protein interaction network of BcDFR suggests that it interacts with almost all functional proteins in the anthocyanin biosynthesis pathway. Finally, the results of the tobacco transient expression also demonstrated that BcDFR promotes the synthesis and accumulation of anthocyanin. CONCLUSIONS: BcDFR is specifically highly expressed on the upper epidermis of purple non-heading Chinese cabbage leaves and regulates anthocyanin biosynthesis and accumulation. Our study provides new insights into the functional analysis and transcriptional regulatory network of anthocyanin-related genes in purple non-heading Chinese cabbage.


Asunto(s)
Antocianinas , Brassica , Proteínas de Plantas , Antocianinas/biosíntesis , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Captura por Microdisección con Láser , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , RNA-Seq , Regiones Promotoras Genéticas
6.
Gene ; 914: 148403, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521112

RESUMEN

Recently, mounting evidence has highlighted the essential function of the C-terminal binding protein-1 divergent transcript (CTBP1-DT) in malignancies. However, its role in kidney renal clear cell carcinoma (KIRC) remains largely unknown. Our study aimed to identify the potential function of CTBP1-DT in KIRC. RT-qPCR, Kaplan-Meier survival analysis, Cox regression analysis, and nomogram analysis were utilized to determine the expression and effects of CTBP1-DT on survival. The subcellular localization of CTBP1-DT was determined using RNA fluorescence in situ hybridization (FISH). To investigate the functions of CTBP1-DT in regulating KIRC cell proliferation, migration, invasion, lipid synthesis, and apoptosis, we conducted CCK8, EdU, Transwell, and Oil Red O staining and cell apoptosis staining assays. The relationships between CTBP1-DT and the tumor microenvironment were investigated with multiple bioinformatics analysis algorithms and databases, including CYBERSORT, TIMER2, Spearman correlation test, tumor mutation burden (TMB), microsatellite instability (MSI), and immunophenoscore (IPS). According to our results, CTBP1-DT is a lncRNA located in the nucleus that is significantly upregulated in KIRC and is correlated with better clinical outcomes. Downregulating CTBP1-DT inhibited cell viability, migration, invasion, and lipid synthesis but triggered cell apoptosis. Additionally, we explored the potential effect of CTBP1-DT in regulating immune cell infiltration in KIRC and other malignancies. Furthermore, CTBP1-DT could be used to predict the effectiveness of targeted drugs and immune checkpoint inhibitors. In conclusion, we identified CTBP1-DT as a potential immunological biomarker and discovered the potential role of CTBP1-DT in regulating lipid synthesis and apoptosis resistance.


Asunto(s)
Oxidorreductasas de Alcohol , Apoptosis , Biomarcadores de Tumor , Carcinoma de Células Renales , Proliferación Celular , Proteínas de Unión al ADN , Humanos , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/inmunología , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/inmunología , Neoplasias Renales/metabolismo , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Lípidos , Pronóstico , Masculino , Femenino
7.
Blood Adv ; 8(9): 2217-2234, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38457926

RESUMEN

ABSTRACT: Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation targets IRF4 for proliferation and survival. MYC and IRF4 are still considered "undruggable," as most small-molecule inhibitors suffer from low potency, suboptimal pharmacokinetic properties, and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM. Here, we uncovered an unappreciated tumor-suppressive role of C-terminal binding protein 2 (CTBP2) in MM via strong inhibition of the MYC-IRF4 axis. In contrast to epithelial cancers, CTBP2 is frequently downregulated in MM, in association with shortened survival, hyperproliferative features, and adverse clinical outcomes. Restoration of CTBP2 exhibited potent antitumor effects against MM in vitro and in vivo, with marked repression of the MYC-IRF4 network genes. Mechanistically, CTBP2 impeded the transcription of MYC and IRF4 by histone H3 lysine 27 deacetylation (H3K27ac) and indirectly via activation of the MYC repressor IFIT3. In addition, activation of the interferon gene signature by CTBP2 suggested its concomitant immunomodulatory role in MM. Epigenetic studies have revealed the contribution of polycomb-mediated silencing and DNA methylation to CTBP2 inactivation in MM. Notably, inhibitors of Enhance of zeste homolog 2, histone deacetylase, and DNA methyltransferase, currently under evaluation in clinical trials, were effective in restoring CTBP2 expression in MM. Our findings indicated that the loss of CTBP2 plays an essential role in myelomagenesis and deciphers an additional mechanistic link to MYC-IRF4 dysregulation in MM. We envision that the identification of novel critical regulators will facilitate the development of selective and effective approaches for treating this MYC/IRF4-addicted malignancy.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas Co-Represoras , Factores Reguladores del Interferón , Mieloma Múltiple , Proteínas Proto-Oncogénicas c-myc , Animales , Humanos , Ratones , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor/metabolismo , Proteínas Co-Represoras/antagonistas & inhibidores , Proteínas Co-Represoras/metabolismo
8.
Cancer Sci ; 115(5): 1492-1504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38476086

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as important molecules and potential new targets for human cancers. This study investigates the function of lncRNA CTBP1 antisense RNA (CTBP1-AS) in prostate cancer (PCa) and explores the entailed molecular mechanism. Aberrantly expressed genes potentially correlated with PCa progression were probed using integrated bioinformatics analyses. A cohort of 68 patients with PCa was included, and their tumor and para-cancerous tissues were collected. CTBP1-AS was highly expressed in PCa tissues and cells and associated with poor patient prognosis. By contrast, tumor protein p63 (TP63) and S100 calcium binding protein A14 (S100A14) were poorly expressed in the PCa tissues and cells. CTBP1-AS did not affect TP63 expression; however it blocked the TP63-mediated transcriptional activation of S100A14, thereby reducing its expression. CTBP1-AS silencing suppressed proliferation, apoptosis resistance, migration, invasion, and tumorigenicity of PCa cell lines, while its overexpression led to inverse results. The malignant phenotype of cells was further weakened by TP63 overexpression but restored following artificial S100A14 silencing. In conclusion, this study demonstrates that CTBP1-AS plays an oncogenic role in PCa by blocking TP63-mediated transcriptional activation of S100A14. This may provide insight into the management of PCa.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata , ARN Largo no Codificante , Factores de Transcripción , Proteínas Supresoras de Tumor , Animales , Humanos , Masculino , Ratones , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
9.
Chem Biol Interact ; 391: 110896, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301882

RESUMEN

Aldo-keto reductase-7A (AKR7A) subfamily belongs to the AKR superfamily and is associated with detoxification of aldehydes and ketones by reducing them to the corresponding alcohols. So far five members of ARK7A subfamily are identified: two human members-AKR7A2 and AKR7A3, two rat members-AKR7A1 and AKR7A4, and one mouse member-AKR7A5, which are implicated in several diseases including neurodegenerative diseases and cancer. AKR7A members share similar crystal structures and protein functional domains, but have different substrate specificity, inducibility and biological functions. This review will summarize the research progress of AKR7A members in substrate specificity, tissue distribution, inducibility, crystal structure and biological function. The significance of AKR7A members in the occurrence and development of diseases will also be discussed.


Asunto(s)
Aldehído Reductasa , Hígado , Ratas , Ratones , Animales , Humanos , Aldo-Ceto Reductasas/metabolismo , Hígado/metabolismo , Aldehído Reductasa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Especificidad por Sustrato
10.
J Biol Chem ; 300(1): 105490, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000659

RESUMEN

The C-terminal binding protein (CtBP) is a transcriptional corepressor that plays critical roles in development, tumorigenesis, and cell fate. CtBP proteins are structurally similar to alpha hydroxyacid dehydrogenases and feature a prominent intrinsically disordered region in the C terminus. In the mammalian system, CtBP proteins lacking the C-terminal domain (CTD) are able to function as transcriptional regulators and oligomerize, putting into question the significance of this unstructured domain for gene regulation. Yet, the presence of an unstructured CTD of ∼100 residues, including some short motifs, is conserved across Bilateria, indicating the importance of maintaining this domain over evolutionary time. To uncover the significance of the CtBP CTD, we functionally tested naturally occurring Drosophila isoforms of CtBP that possess or lack the CTD, namely CtBP(L) and CtBP(S). We used the CRISPRi system to recruit dCas9-CtBP(L) and dCas9-CtBP(S) to endogenous promoters to directly compare their transcriptional impacts in vivo. Interestingly, CtBP(S) was able to significantly repress transcription of the Mpp6 promoter, while CtBP(L) was much weaker, suggesting that the long CTD may modulate CtBP's repression activity. In contrast, in cell culture, the isoforms behaved similarly on a transfected Mpp6 reporter gene. The context-specific differences in activity of these two developmentally regulated isoforms suggests that the CTD may help provide a spectrum of repression activity suitable for developmental programs.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas de Drosophila , Regulación de la Expresión Génica , Dominios Proteicos , Proteínas Represoras , Animales , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Drosophila/enzimología , Drosophila/genética , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/metabolismo , Dominios Proteicos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Línea Celular , Regulación de la Expresión Génica/genética
11.
Planta ; 258(6): 107, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37897513

RESUMEN

MAIN CONCLUSION: The present investigation profoundly asserted the catalytic potential of plant-based aldo-ketoreductase, postulating its role in polyketide biosynthesis and providing new insights for tailored biosynthesis of vital plant polyketides for therapeutics. Plants hold great potential as a future source of innovative biocatalysts, expanding the possibilities within chemical reactions and generating a variety of benefits. The aldo-keto reductase (AKR) superfamily includes a huge collection of NAD(P)H-dependent oxidoreductases that carry out a variety of redox reactions essential for biosynthesis, detoxification, and intermediary metabolism. The present study involved the isolation, cloning, and purification of a novel aldo-ketoreductase (AvAKR) from the leaves of Aloe vera (Aloe barbadensis Miller) by heterologous gene expression in Escherichia coli based on the unigene sequences of putative ketoreductase and cDNA library screening by oligonucleotide hybridization. The in-silico structural analysis, phylogenetic relationship, and molecular modeling were outranged to approach the novelty of the sequence. Additionally, agroinfiltration of the candidate gene tagged with a green fluorescent protein (GFP) was employed for transient expression in the Nicotiana benthamiana to evaluate the sub-cellular localization of the candidate gene. The AvAKR preferred cytoplasmic localization and shared similarities with the known plant AKRs, keeping the majority of the conserved active-site residues in the AKR superfamily enzymes. The enzyme facilitated the NADPH-dependent reduction of various carbonyl substrates, including benzaldehyde and sugars, proclaiming a broad spectrum range. Our study successfully isolated and characterized a novel aldo-ketoreductase (AvAKR) from Aloe vera, highlighting its versatile NADPH-dependent carbonyl reduction proficiency therewith showcasing its potential as a versatile biocatalyst in diverse redox reactions.


Asunto(s)
Aldehído Reductasa , Aloe , Aldo-Ceto Reductasas/genética , Aldehído Reductasa/genética , Aldehído Reductasa/química , Aldehído Reductasa/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aloe/genética , Aloe/metabolismo , Filogenia , NADP/genética , Plantas/metabolismo
12.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37643007

RESUMEN

PCIF1 can mediate the methylation of N6,2'-O-dimethyladenosine (m6Am) in mRNA. Yet, the detailed interplay between PCIF1 and the potential cofactors and its pathological significance remain elusive. Here, we demonstrated that PCIF1-mediated cap mRNA m6Am modification promoted head and neck squamous cell carcinoma progression both in vitro and in vivo. CTBP2 was identified as a cofactor of PCIF1 to catalyze m6Am deposition on mRNA. CLIP-Seq data demonstrated that CTBP2 bound to similar mRNAs as compared with PCIF1. We then used the m6Am-Seq method to profile the mRNA m6Am site at single-base resolution and found that mRNA of TET2, a well-known tumor suppressor, was a major target substrate of the PCIF1-CTBP2 complex. Mechanistically, knockout of CTBP2 reduced PCIF1 occupancy on TET2 mRNA, and the PCIF1-CTBP2 complex negatively regulated the translation of TET2 mRNA. Collectively, our study demonstrates the oncogenic function of the epitranscriptome regulator PCIF1-CTBP2 complex, highlighting the importance of the m6Am modification in tumor progression.


Asunto(s)
Neoplasias de Cabeza y Cuello , Factores de Transcripción , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/genética , Neoplasias de Cabeza y Cuello/genética , Metilación , Proteínas Nucleares/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Factores de Transcripción/metabolismo
13.
Oncogene ; 42(16): 1294-1307, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36879117

RESUMEN

Oncometabolites, such as D/L-2-hydroxyglutarate (2HG), have directly been implicated in carcinogenesis; however, the underlying molecular mechanisms remain poorly understood. Here, we showed that the levels of the L-enantiomer of 2HG (L2HG) were specifically increased in colorectal cancer (CRC) tissues and cell lines compared with the D-enantiomer of 2HG (D2HG). In addition, L2HG increased the expression of ATF4 and its target genes by activating the mTOR pathway, which subsequently provided amino acids and improved the survival of CRC cells under serum deprivation. Downregulating the expression of L-2-hydroxyglutarate dehydrogenase (L2HGDH) and oxoglutarate dehydrogenase (OGDH) increased L2HG levels in CRC, thereby activating mTOR-ATF4 signaling. Furthermore, L2HGDH overexpression reduced L2HG-mediated mTOR-ATF4 signaling under hypoxia, whereas L2HGDH knockdown promoted tumor growth and amino acid metabolism in vivo. Together, these results indicate that L2HG ameliorates nutritional stress by activating the mTOR-ATF4 axis and thus could be a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Neoplasias Colorrectales/patología , Aminoácidos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Oxidorreductasas de Alcohol/metabolismo
14.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188886, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37001619

RESUMEN

The classical role of C-terminal binding protein (CtBP) is that of a global corepressor. However, its exact mechanism of repression is not known. In this review, we elucidate the repression motif used by CtBP. Further, we provide other unifying features of its mechanism of action. For example, in the presence of a high NADH/NAD+ ratio in the cell, causing a low glycolytic condition, the NADH-bound dimeric form of CtBP causes global repression, maintaining balances and homeostases of many cellular processes, under the cell surveillance of p53 and NFkB. In contrast, in the presence of a low NADH/NAD+ ratio, causing a high glycolytic condition, the NADH-free monomeric form of CtBP blocks p53 function and NFkB-mediated transcription. Further, a low NADH/NAD+ ratio upsets the homeostases and balances in the absence of the cell surveillances of p53 and NFkB, causing global instability, the dominant outcome of CtBP's action in carcinogenesis, in cells in a high glycolytic state.


Asunto(s)
NAD , Proteína p53 Supresora de Tumor , Humanos , NAD/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , FN-kappa B/metabolismo
15.
Biochem Biophys Res Commun ; 650: 9-16, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764210

RESUMEN

CTBP1 has been demonstrated as a co-repressor in the transcriptional regulation of downstream genes and is involved in various cell process. However, the mechanism of CTBP1 in the progression of prostate cancer is still unclear. Here, we aim to investigate how CTBP1 exerts its role in prostate cancer progression, especially how CTBP1 was regulated by the upstream genes. We found that CTBP1 was highly expressed in prostate cancer and promoted the cell viability, migration, invasion and glycolysis of prostate cancer cells. CDH1 was verified to be the target of CTBP1. We determined that CTBP1 could directly bind with SP1 to inhibit the transcription of CDH1. Moreover, succinylation of CTBP1 was found to be up-regulated in prostate cancer cell. Further studies demonstrated that KAT2A promotes the succinylation of CTBP1 and mediates the transcription suppressing activity of it. In addition, the K46 and K280 was confirmed to be the two sites that regulated by KAT2A. In vivo studies further indicated that CTBP1 could promote the growth of prostate cancer, and this effect of CTBP1 could be partially reversed by KAT2A knockdown. Taken together, we found that succinylation of CTBP1 mediated by KAT2A suppresses the inhibitory activity of CTBP1 on the transcription of CDH1, thus act as an oncogene.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias de la Próstata , Humanos , Masculino , Oxidorreductasas de Alcohol/metabolismo , Antígenos CD , Cadherinas/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Neoplasias de la Próstata/genética , Factores de Transcripción/metabolismo
16.
Cell Biol Toxicol ; 39(6): 2631-2645, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36715854

RESUMEN

Emerging reports demonstrated that long non-coding RNAs (lncRNAs) play a role in the pathogenesis and metastasis of cancers. However, the biological functions and underlying mechanisms of LncRNA CEBPA-AS1 in acute myeloid leukemia (AML) remain largely elusive. The level of CEBPA-AS1 was examined in AML clinical tissues and cell lines via fluorescence in situ hybridization (FISH) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In vivo and in vitro functional tests were applied to identify the pro-oncogenic role of CEBPA-AS1 in AML development. The overexpressed CEBPA-AS1 was linked to poor survival in AML patients. Moreover, the relationships among CEBPA-AS1, Zinc Finger Protein X-Linked (ZFX), and miR-24-3p were predicted by bioinformatics and validated by RNA immunoprecipitation (RIP) and luciferase reporter assays. Our findings unveiled that transcription factor ZFX particularly interacted with the promoter of CEBPA-AS1 and activated CEBPA-AS1 transcription. Downregulation of CEBPA-AS1 inhibited the proliferation and invasion while promoted apoptosis of AML cells in in vitro, as well as in vivo, xenograft tumor growth was modified. However, overexpression of CEBPA-AS1 observed the opposite effects. Furthermore, CEBPA-AS1 acted as a competitive endogenous RNA (ceRNA) of miR-24-3p to attenuate the repressive effects of miR-24-3p on its downstream target CTBP2. Taken together, this study emphasized the pro-oncogenic role of CEBPA-AS1 in AML and illustrated its connections with the upstream transcription factor ZFX and the downstream regulative axis miR-24-3p/CTBP2, providing important insights to the cancerogenic process in AML.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Regulación hacia Arriba/genética , Línea Celular Tumoral , Hibridación Fluorescente in Situ , Leucemia Mieloide Aguda/genética , Factores de Transcripción/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Movimiento Celular/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo
17.
Mol Biol Rep ; 50(1): 531-540, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36352178

RESUMEN

BACKGROUND: Carbonyl reductase 1 (CBR1) is a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase with broad substrate specificity. CBR1 catalyzes the reduction of numerous carbonyl compounds, including quinones, prostaglandins, menadione, and multiple xenobiotics, while also participating in various cellular processes, such as carcinogenesis, apoptosis, signal transduction, and drug resistance. In this study, we aimed to generate transgenic mice overexpressing mouse Cbr1 (mCbr1), characterize the mCbr1 expression in different organs, and identify changes in protein expression patterns. METHODS AND RESULTS: To facilitate a deeper understanding of the functions of CBR1, we generated transgenic mice overexpressing CBR1 throughout the body. These transgenic mice overexpress 3xFLAG-tagged mCbr1 (3xFLAG-mCbr1) under the CAG promoter. Two lines of transgenic mice were generated, one with 3xFLAG-mCbr1 expression in multiple tissues, and the other, with specific expression of 3xFLAG-mCbr1 in the heart. Pathway and network analysis using transgenic mouse hearts identified 73 proteins with levels of expression correlating with mCbr1 overexpression. The expression of voltage-gated anion channels, which may be directly related to calcium ion-related myocardial contraction, was also upregulated. CONCLUSION: mCbr1 transgenic mice may be useful for further in vivo analyses of the molecular mechanisms regulated by Cbr1; such analyses will provide a better understanding of its effects on carcinogenesis and cardiotoxicity of certain cancer drugs.


Asunto(s)
Antineoplásicos , Carbonil Reductasa (NADPH) , Ratones , Animales , Ratones Transgénicos , Antineoplásicos/farmacología , Apoptosis , Carcinogénesis , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo
18.
Front Immunol ; 13: 935465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844620

RESUMEN

Memory T cells play an essential role in infectious and tumor immunity. Vitamin A metabolites such as retinoic acid are immune modulators, but the role of vitamin A metabolism in memory T-cell differentiation is unclear. In this study, we identified retinol dehydrogenase 10 (Rdh10), which metabolizes vitamin A to retinal (RAL), as a key molecule for regulating T cell differentiation. T cell-specific Rdh10 deficiency enhanced memory T-cell formation through blocking RAL production in infection model. Epigenetic profiling revealed that retinoic acid receptor (RAR) signaling activated by vitamin A metabolites induced comprehensive epigenetic repression of memory T cell-associated genes, including TCF7, thereby promoting effector T-cell differentiation. Importantly, memory T cells generated by Rdh deficiency and blocking RAR signaling elicited potent anti-tumor responses in adoptive T-cell transfer setting. Thus, T cell differentiation is regulated by vitamin A metabolism and its signaling, which should be novel targets for memory T cell-based cancer immunotherapy.


Asunto(s)
Neoplasias , Vitamina A , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Inmunoterapia , Células T de Memoria , Neoplasias/terapia , Tretinoina/farmacología , Vitamina A/metabolismo
19.
Dis Markers ; 2022: 7155525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655916

RESUMEN

Background: Gestational choriocarcinoma (GC) is a rare malignant gestational trophoblastic tumor. Long noncoding RNA (lncRNA) CBR3 antisense RNA 1 (CBR3-AS1) has been reported to serve as a critical oncogene and facilitate tumor progression. Besides, we found that CBR3-AS1 is implicated in GC progression. Materials and Methods: Gene and protein expression was detected via quantitative reverse transcription PCR (RT-qPCR) and western blot analyses, respectively. CCK-8 assay and colony formation assay were performed to assess cell proliferative abilities while flow cytometry analysis was applied for cell cycle and apoptosis. To analyze the specific mechanism among CBR3-AS1, SET domain containing 4 (SETD4), and polypyrimidine tract binding protein 1 (PTBP1), RNA binding protein immunoprecipitation (RIP), RNA pulldown, and mRNA stability assays were conducted. Results: CBR3-AS1 was markedly upregulated in GC cells, and its downregulation suppressed cell proliferation, induced cell cycle arrest, but promoted cell apoptosis in GC. SETD4 was determined as the downstream mRNA of CBR3-AS1 and positively regulated by CBR3-AS1 in GC cells. Furthermore, CBR3-AS1 could interact with its RNA binding protein (RBP) PTBP1, thereby stabilizing SETD4 mRNA. Rescue assays verified that CBR3-AS1 facilitates GC cell malignant proliferation via SETD4. Conclusion: CBR3-AS1 accelerates the malignant proliferation of GC cells via stabilizing SETD4.


Asunto(s)
Coriocarcinoma , Enfermedad Trofoblástica Gestacional , ARN sin Sentido , Oxidorreductasas de Alcohol/metabolismo , Proliferación Celular/genética , Coriocarcinoma/genética , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Proteína de Unión al Tracto de Polipirimidina/genética , Embarazo , ARN sin Sentido/genética , ARN Mensajero
20.
Oncogene ; 41(29): 3719-3731, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35739335

RESUMEN

Metabolic reprogramming has been shown to be involved in cancer-induced pre-metastatic niche (PMN) formation, but the underlying mechanisms have been insufficiently explored. Here, we showed that hydroxyacid oxidase 1 (HAO1), a rate-limiting enzyme of oxalate synthesis, was upregulated in the alveolar epithelial cells of mice bearing metastatic breast cancer cells at the pre-metastatic stage, leading to oxalate accumulation in lung tissue. Lung oxalate accumulation induced neutrophil extracellular trap (NET) formation by activating NADPH oxidase, which facilitated the formation of pre-metastatic niche. In addition, lung oxalate accumulation promoted the proliferation of metastatic cancer cells by activating the MAPK signaling pathway. Pharmacologic inhibition of HAO1 could effectively suppress the lung oxalate accumulation induced by primary cancer, consequently dampening lung metastasis of breast cancer. Breast cancer cells induced HAO1 expression and oxalate accumulation in alveolar epithelial cells by activating TLR3-IRF3 signaling. Collectively, these findings underscore the role of HAO1-mediated oxalate metabolism in cancer-induced lung PMN formation and metastasis. HAO1 could be an appealing therapeutic target for preventing lung metastasis of cancer.


Asunto(s)
Oxidorreductasas de Alcohol , Trampas Extracelulares , Neoplasias Pulmonares , Oxidorreductasas de Alcohol/metabolismo , Animales , Trampas Extracelulares/metabolismo , Pulmón/patología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Ratones , Oxalatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA