Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38704134

RESUMEN

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Asunto(s)
Células Progenitoras Endoteliales , Hematopoyesis , PPAR delta , Especies Reactivas de Oxígeno , Humanos , PPAR delta/metabolismo , PPAR delta/genética , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Hematopoyesis/efectos de los fármacos , Masculino , Femenino , Fluorouracilo/farmacología , Persona de Mediana Edad , Ratones , Tiazoles/farmacología , NADPH Oxidasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adulto , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico
2.
Eur J Pharmacol ; 972: 176565, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38599309

RESUMEN

Blockade of PD-1/PD-L1 immune checkpoint is wildly used for multiple types of cancer treatment, while the low response rate for patients is still completely unknown. As nuclear hormone receptor, PPARδ (peroxisome-proliferator-activated receptor) regulates cell proliferation, inflammation, and tumor progression, while the effect of PPARδ on tumor immune escape is still unclear. Here we found that PPARδ antagonist GSK0660 significantly reduced colon cancer cell PD-L1 protein and gene expression. Luciferase analysis showed that GSK0660 decreased PD-L1 gene transcription activity. Moreover, reduced PD-L1 expression in colon cancer cells led to increased T cell activity. Further analysis showed that GSK0660 decreased PD-L1 expression in a PPARδ dependent manner. Implanted tumor model analysis showed that GSK0660 inhibited tumor immune escape and the combined PD-1 antibody with GSK0660 effectively enhanced colorectal cancer immunotherapy. These findings suggest that GSK0660 treatment could be an effective strategy for cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Inmunoterapia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Humanos , Animales , Inmunoterapia/métodos , Ratones , Línea Celular Tumoral , PPAR delta/genética , PPAR delta/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias del Colon/inmunología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Neoplasias del Colon/genética , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Escape del Tumor/efectos de los fármacos , Ratones Endogámicos BALB C
3.
PeerJ ; 12: e17082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529307

RESUMEN

Background: Peroxisome proliferator-activated receptors (PPARs) exert multiple functions in the initiation and progression of stomach adenocarcinomas (STAD). This study analyzed the relationship between PPARs and the immune status, molecular mutations, and drug therapy in STAD. Methods: The expression profiles of three PPAR genes (PPARA, PPARD and PPARG) were downloaded from The Cancer Genome Atlas (TCGA) dataset to analyze their expression patterns across pan-cancer. The associations between PPARs and clinicopathologic features, prognosis, tumor microenvironment, genome mutation and drug sensitivity were also explored. Co-expression between two PPAR genes was calculated using Pearson analysis. Regulatory pathways of PPARs were scored using gene set variation analysis (GSVA) package. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, Cell Counting Kit-8 (CCK-8) assay and transwell assay were conducted to analyze the expression and function of the PPAR genes in STAD cell lines (AGS and SGC7901 cells). Results: PPARA, PPARD and PPARG were more abnormally expressed in STAD samples and cell lines when compared to most of 32 type cancers in TCGA. In STAD, the expression of PPARD was higher in Grade 3+4 and male patients, while that of PPARG was higher in patient with Grade 3+4 and age > 60. Patients in high-PPARA expression group tended to have longer survival time. Co-expression analysis revealed 6 genes significantly correlated with the three PPAR genes in STAD. Single-sample GSEA (ssGSEA) showed that the three PPAR genes were enriched in 23 pathways, including MITOTIC_SPINDLE, MYC_TARGETS_V1, E2F_TARGETS and were closely correlated with immune cells, including NK_cells_resting, T_cells_CD4_memory_resting, and macrophages_M0. Immune checkpoint genes (CD274, SIGLEC15) were abnormally expressed between high-PPAR expression and low-PPAR expression groups. TTN, MUC16, FAT2 and ANK3 genes had a high mutation frequency in both high-PPARA/PPARG and low-PPARA/PPARG expression group. Fourteen and two PPARA/PPARD drugs were identified to be able to effectively treat patients in high-PPARA/PPARG and low-PPARA/PPARG expression groups, respectively. We also found that the chemotherapy drug Vinorelbine was positively correlated with the three PPAR genes, showing the potential of Vinorelbine to serve as a treatment drug for STAD. Furthermore, cell experiments demonstrated that PPARG had higher expression in AGS and SGC7901 cells, and that inhibiting PPARG suppressed the viability, migration and invasion of AGS and SGC7901 cells. Conclusions: The current results confirmed that the three PPAR genes (PPARA, PPARD and PPARG) affected STAD development through mediating immune microenvironment and genome mutation.


Asunto(s)
Adenocarcinoma , PPAR delta , Humanos , Masculino , PPAR gamma/genética , Vinorelbina , PPAR alfa/genética , PPAR delta/genética , Adenocarcinoma/tratamiento farmacológico , Resistencia a Medicamentos , Estómago , Microambiente Tumoral/genética
4.
In Vivo ; 38(2): 657-664, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38418133

RESUMEN

BACKGROUND/AIM: Myelodysplastic syndromes (MDS) are clinically heterogeneous hematological malignancies with an increased risk of transformation to acute myeloid leukemia, emphasizing the importance of identifying new diagnostic and prognostic markers. This study sought to investigate the predictive ability of all-trans retinoic acid (ATRA)-dependent nuclear transcription factors RARα and PPARß/δ gene expression in MDS patients. MATERIALS AND METHODS: Peripheral blood specimens were collected from 49 MDS patients and 15 healthy volunteers. The specimens were further separated in Ficoll density gradient to obtain the mononuclear cells fractions. Gene expression analysis was carried out using quantitative real-time polymerase chain reaction (qRT-PCR) technique. RESULTS: In the mononuclear cell fractions of MDS patients, RARα expression was increased (p<0.05) and PPARß/δ expression was decreased (p<0.01) compared to healthy volunteers. When RARα and PPARß/δ expression was compared in groups of MDS patients with different risks of disease progression, no statistically significant difference was found for RARα expression, while PPARß/δ expression was significantly lower in the high-risk group of patients compared to the low-risk group (p<0.05). The expression of RARα was significantly associated with overall survival (p<0.05). ROC analysis showed that the expression of PPARß/δ, rather than RARα expression, could have potential diagnostic value for MDS patients (AUC=0.75, p=0.003 and AUC=0.65, p=0.081, respectively). CONCLUSION: RARα and PPARß/δ genes are putative biomarkers that may be associated with the diagnosis and prognosis of MDS.


Asunto(s)
Síndromes Mielodisplásicos , PPAR delta , PPAR-beta , Humanos , Relevancia Clínica , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , PPAR delta/genética , PPAR delta/metabolismo , PPAR-beta/genética , PPAR-beta/metabolismo , Tretinoina
5.
Sci Total Environ ; 912: 168949, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38042186

RESUMEN

Di-2-ethylhexyl phthalic acid (DEHP) is one of the most widely used plasticizers in the industry, which can improve the flexibility and durability of plastics. It is prone to migrate from various daily plastic products through wear and leaching into the surrounding environment and decompose into the more toxic metabolite mono-2-ethylhexyl phthalic acid (MEHP) after entering the human body. However, the impacts and mechanisms of MEHP on neuroblastoma are unclear. We exposed MYCN-amplified neuroblastoma SK-N-BE(2)C cells to an environmentally related concentration of MEHP and found that MEHP increased the proliferation and migration ability of tumor cells. The peroxisome proliferator-activated receptor (PPAR) ß/δ pathway was identified as a pivotal signaling pathway in neuroblastoma, mediating the effects of MEHP through transcriptional sequencing analysis. Because MEHP can bind to the PPARß/δ protein and initiate the expression of the downstream gene angiopoietin-like 4 (ANGPTL4), the PPARß/δ-specific agonist GW501516 and antagonist GSK3787, the recombinant human ANGPTL4 protein, and the knockdown of gene expression confirmed the regulation of the PPARß/δ-ANGPTL4 axis on the malignant phenotype of neuroblastoma. Based on the critical role of PPARß/δ and ANGPTL4 in the metabolic process, a non-targeted metabolomics analysis revealed that MEHP altered multiple metabolic pathways, particularly lipid metabolites involving fatty acyls, glycerophospholipids, and sterol lipids, which may also be potential factors promoting tumor progression. We have demonstrated for the first time that MEHP can target binding to PPARß/δ and affect the progression of neuroblastoma by activating the PPARß/δ-ANGPTL4 axis. This mechanism confirms the health risks of plasticizers as tumor promoters and provides new data support for targeted prevention and treatment of neuroblastoma.


Asunto(s)
Dietilhexil Ftalato/análogos & derivados , Neuroblastoma , PPAR delta , PPAR-beta , Ácidos Ftálicos , Humanos , PPAR-beta/agonistas , PPAR-beta/genética , PPAR-beta/metabolismo , Proteína Proto-Oncogénica N-Myc , Plastificantes/toxicidad , Angiopoyetinas/genética , Angiopoyetinas/metabolismo , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/metabolismo , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , Proteína 4 Similar a la Angiopoyetina
6.
Liver Int ; 43(12): 2808-2823, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37833850

RESUMEN

BACKGROUND AND AIMS: Hepatic ischaemia/reperfusion injury (HIRI) is a pathophysiological process that occurs during the liver resection and transplantation. Reportedly, peroxisome proliferator-activated receptor ß/δ (PPARß/δ) can ameliorate kidney and myocardial ischaemia/reperfusion injury. However, the effect of PPARß/δ in HIRI remains unclear. METHODS: Mouse hepatic ischaemia/reperfusion (I/R) models were constructed for in vivo study. Primary hepatocytes and Kupffer cells (KCs) isolated from mice and cell anoxia/reoxygenation (A/R) injury model were constructed for in vitro study. Liver injury and inflammation were investigated. Small molecular compounds (GW0742 and GSK0660) and adenoviruses were used to interfere with PPARß/δ. RESULTS: We found that PPARß/δ expression was increased in the I/R and A/R models. Overexpression of PPARß/δ in hepatocytes alleviated A/R-induced cell apoptosis, while knockdown of PPARß/δ in hepatocytes aggravated A/R injury. Activation of PPARß/δ by GW0742 protected against I/R-induced liver damage, inflammation and cell death, whereas inhibition of PPARß/δ by GSK0660 had the opposite effects. Consistent results were obtained in mouse I/R models through the tail vein injection of adenovirus-mediated PPARß/δ overexpression or knockdown vectors. Furthermore, knockdown and overexpression of PPARß/δ in KCs aggravated and ameliorated A/R-induced hepatocyte injury, respectively. Gene ontology and gene set enrichment analysis showed that PPARß/δ deletion was significantly enriched in the NF-κB pathway. PPARß/δ inhibited the expression of p-IKBα and p-P65 and decreased NF-κB activity. CONCLUSIONS: PPARß/δ exerts anti-inflammatory and anti-apoptotic effects on HIRI by inhibiting the NF-κB pathway, and hepatocytes and KCs may play a synergistic role in this phenomenon. Thus, PPARß/δ is a potential therapeutic target for HIRI.


Asunto(s)
PPAR delta , PPAR-beta , Daño por Reperfusión , Ratones , Animales , PPAR-beta/genética , PPAR-beta/metabolismo , FN-kappa B/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , Hígado/metabolismo , Tiazoles/farmacología , Inflamación , Modelos Animales de Enfermedad , Daño por Reperfusión/prevención & control , Isquemia
7.
Gastric Cancer ; 26(6): 904-917, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572185

RESUMEN

BACKGROUND: Peroxisome proliferator-activated receptor delta (PPARδ) promotes inflammation and carcinogenesis in many organs, but the underlying mechanisms remains elusive. In stomachs, PPARδ significantly increases chemokine Ccl20 expression in gastric epithelial cells while inducing gastric adenocarcinoma (GAC). CCR6 is the sole receptor of CCL20. Here, we examine the role of PPARδ-mediated Ccl20/Ccr6 signaling in GAC carcinogenesis and investigate the underlying mechanisms. METHODS: The effects of PPARδ inhibition by its specific antagonist GSK3787 on GAC were examined in the mice with villin-promoter-driven PPARδ overexpression (PpardTG). RNAscope Duplex Assays were used to measure Ccl20 and Ccr6 levels in stomachs and spleens. Subsets of stomach-infiltrating immune cells were measured via flow cytometry or immunostaining in PpardTG mice fed GSK3787 or control diet. A panel of 13 optimized proinflammatory chemokines in mouse sera were quantified by an enzyme-linked immunosorbent assay. RESULTS: GSK3787 significantly suppressed GAC carcinogenesis in PpardTG mice. PPARδ increased Ccl20 level to chemoattract Ccr6+ immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells and T regulatory cells, but decreased CD8+ T cells in gastric tissues. GSK3787 suppressed PPARδ-induced gastric immunosuppression by inhibiting Ccl20/Ccr6 axis. Furthermore, Ccl20 protein levels increased in sera of PpardTG mice starting at the age preceding gastric tumor development and further increased with GAC progression as the mice aged. GSK3787 decreased the PPARδ-upregulated Ccl20 levels in sera of the mice. CONCLUSIONS: PPARδ dysregulation of Ccl20/Ccr6 axis promotes GAC carcinogenesis by remodeling gastric tumor microenvironment. CCL20 might be a potential biomarker for the early detection and progression of GAC.


Asunto(s)
Adenocarcinoma , PPAR delta , Neoplasias Gástricas , Humanos , Animales , Ratones , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , PPAR delta/genética , Linfocitos T CD8-positivos , Microambiente Tumoral , Carcinogénesis , Receptores CCR6/genética , Receptores CCR6/metabolismo
8.
Arch Biochem Biophys ; 731: 109428, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36228705

RESUMEN

Cannabidiolic acid (CBDA) can activate peroxisome proliferator-activated receptor-α (PPARα) and PPARγ. Whether CBDA can activate PPARß/δ has not been examined sufficiently to date. Since previous studies showed that triple-negative breast cancer cells respond to activation of PPARß/δ, the present study examined the effect of CBDA in MDA-MB-231 cells and compared the activities of CBDA with known PPARß/δ agonists/antagonists. Expression of the PPARß/δ target genes angiopoietin-like 4 (ANGPTL4) and adipocyte differentiation-related protein (ADRP) was increased by CBDA. Interestingly, ligand activation of PPARß/δ with GW501516 caused an increase in expression of both ANGPTL4 and ADRP, but the magnitude of this effect was markedly increased when co-treated with CBDA. Specificity of these effects were confirmed by showing that CBDA-induced expression of ANGPTL4 and ADRP is mitigated in the presence of either a PPARß/δ antagonist or an inverse agonist. Results from these studies suggest that CBDA can synergize with PPARß/δ and might interact with endogenous agonists that modulate PPARß/δ function.


Asunto(s)
Cannabinoides , PPAR delta , PPAR-beta , PPAR-beta/genética , PPAR-beta/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , PPAR alfa
9.
Nutrients ; 14(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36297109

RESUMEN

The obesity genetic effect may play a major role in obesogenic environment. A combined case-control and an 18-month follow-up were carried out, including a total of 311 controls and 118 obese cases. All participants were aged in the range of 20-55 y/o. The body mass index (BMI) of obese cases and normal controls was in the range of 27.0-34.9 and 18.5-23.9 kg/m2, respectively. The rs712221 on Estrogen receptor1 (ESR1) and rs2016520 on Peroxisome proliferator-activated receptor delta (PPARD) showed significant associations with obesity. The TT (odds ratio (OR): 2.42; 95% confidence interval (CI): 1.46-4.01) and TT/TC (OR: 2.80; 95% CI: 1.14-6.85) genotypes on rs712221 and rs2016520 had significantly higher obesity risks, respectively. Moreover, the synergic effect of these two risk SNPs (2-RGH) exhibited an almost geometrical increase in obesity risk (OR: 7.00; 95% CI: 2.23-21.99). Obese individuals with 2-RGH had apparently higher changes in BMI increase, body weight gain and dietary fiber intake but a lower total energy intake within the 18-month follow-up.


Asunto(s)
PPAR delta , Humanos , Anciano , Haplotipos , PPAR delta/genética , Estudios de Seguimiento , Polimorfismo de Nucleótido Simple , Genotipo , Obesidad/epidemiología , Obesidad/genética , Estrógenos , China/epidemiología , Fibras de la Dieta
10.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955783

RESUMEN

Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. Renal proximal tubule disorder is the main symptom of Cd chronic poisoning. Our previous study demonstrated that Cd inhibits the total activities of peroxisome proliferator-activated receptor (PPAR) transcription factors in human and rat proximal tubular cells. In this study, we investigated the involvement of PPAR in Cd renal toxicity using the HK-2 human proximal tubular cell line. Among PPAR isoform genes, only PPARD knockdown significantly showed resistance to Cd toxicity in HK-2 cells. The transcriptional activity of PPARδ was decreased not only by PPARD knockdown but also by Cd treatment. DNA microarray analysis showed that PPARD knockdown changed the expression of apoptosis-related genes in HK-2 cells. PPARD knockdown decreased apoptosis signals and caspase-3 activity induced by Cd treatment. PPARD knockdown did not affect the intracellular Cd level after Cd treatment. These results suggest that PPARδ plays a critical role in the modification of susceptibility to Cd renal toxicity and that the apoptosis pathway may be involved in PPARδ-related Cd toxicity.


Asunto(s)
Intoxicación por Cadmio , PPAR delta , Animales , Cadmio/metabolismo , Cadmio/toxicidad , Intoxicación por Cadmio/metabolismo , Células Epiteliales/metabolismo , Humanos , Túbulos Renales Proximales/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , Ratas
11.
Biomed Pharmacother ; 151: 113172, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35644115

RESUMEN

Diabetic vasculopathy is a major health problem worldwide. Peripheral arterial disease (PAD), and in its severe form, critical limb ischemia is a major form of diabetic vasculopathy with limited treatment options. Existing literature suggested an important role of PPARδ in vascular homeostasis. It remains elusive for using PPARδ as a potential therapeutic target due to mostly the side effects of PPARδ agonists. To explore the roles of PPARδ in endothelial homeostasis, endothelial cell (EC) selective Ppard knockout and controlled mice were subjected to hindlimb ischemia (HLI) injury. The muscle ECs were sorted for single-cell RNA sequencing (scRNA-seq) analysis. HLI was also performed in high fat diet (HFD)-induced obese mice to examine the function of PPARδ in obese mice with delayed vascular repair. Adeno-associated virus type 1 (AAV1) carrying ICAM2 promoter to target endothelium for overexpressing PPARδ was injected into the injured muscles of normal chow- and HFD-fed obese mice before HLI surgery was performed. scRNA-seq analysis of ECs in ischemic muscles revealed a pivotal role of PPARδ in endothelial homeostasis. PPARδ expression was diminished both after HLI injury, and also in obese mice, which showed further delayed vascular repair. Endothelium-targeted delivery of PPARδ by AAV1 improved perfusion recovery, increased capillary density, restored endothelial integrity, suppressed vascular inflammation, and promoted muscle regeneration in ischemic hindlimbs of both lean and obese mice. Our study indicated the effectiveness of endothelium-targeted PPARδ overexpression for restoring functional vasculature after ischemic injury, which might be a promising option of gene therapy to treat PAD and CLI.


Asunto(s)
Diabetes Mellitus , PPAR delta , Lesiones del Sistema Vascular , Animales , Dependovirus/genética , Dependovirus/metabolismo , Diabetes Mellitus/genética , Modelos Animales de Enfermedad , Endotelio , Miembro Posterior/metabolismo , Isquemia/complicaciones , Isquemia/metabolismo , Isquemia/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Músculo Esquelético/metabolismo , Neovascularización Fisiológica , PPAR delta/genética , PPAR delta/metabolismo , Serogrupo
12.
Nat Commun ; 13(1): 2665, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562376

RESUMEN

Pancreatic intraepithelial neoplasia (PanIN) is a precursor of pancreatic ductal adenocarcinoma (PDAC), which commonly occurs in the general populations with aging. Although most PanIN lesions (PanINs) harbor oncogenic KRAS mutations that initiate pancreatic tumorigenesis; PanINs rarely progress to PDAC. Critical factors that promote this progression, especially targetable ones, remain poorly defined. We show that peroxisome proliferator-activated receptor-delta (PPARδ), a lipid nuclear receptor, is upregulated in PanINs in humans and mice. Furthermore, PPARδ ligand activation by a high-fat diet or GW501516 (a highly selective, synthetic PPARδ ligand) in mutant KRASG12D (KRASmu) pancreatic epithelial cells strongly accelerates PanIN progression to PDAC. This PPARδ activation induces KRASmu pancreatic epithelial cells to secrete CCL2, which recruits immunosuppressive macrophages and myeloid-derived suppressor cells into pancreas via the CCL2/CCR2 axis to orchestrate an immunosuppressive tumor microenvironment and subsequently drive PanIN progression to PDAC. Our data identify PPARδ signaling as a potential molecular target to prevent PDAC development in subjects harboring PanINs.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , PPAR delta , Neoplasias Pancreáticas , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/patología , Humanos , Ligandos , Ratones , PPAR delta/genética , Páncreas/patología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral/genética , Neoplasias Pancreáticas
13.
Stem Cell Res Ther ; 13(1): 167, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461240

RESUMEN

BACKGROUND: Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using MSC derived from the bone marrow of PPARß/δ (Peroxisome proliferator-activated receptors ß/δ) knockout mice that the acute cardioprotective properties of MSC during the first hour of reperfusion are PPARß/δ-dependent but not related to the anti-inflammatory effect of MSC. However, the role of the modulation of PPARß/δ expression on MSC cardioprotective and anti-apoptotic properties has never been investigated. OBJECTIVES: The aim of this study was to investigate the role of PPARß/δ modulation (inhibition or activation) in MSC therapeutic properties in vitro and ex vivo in an experimental model of myocardial infarction. METHODS AND RESULTS: Naïve MSC and MSC pharmacologically activated or inhibited for PPARß/δ were challenged with H2O2. Through specific DNA fragmentation quantification and qRT-PCR experiments, we evidenced in vitro an increased resistance to oxidative stress in MSC pre-treated by the PPARß/δ agonist GW0742 versus naïve MSC. In addition, PPARß/δ-priming allowed to reveal the anti-apoptotic effect of MSC on cardiomyocytes and endothelial cells in vitro. When injected during reperfusion, in an ex vivo heart model of myocardial infarction, 3.75 × 105 PPARß/δ-primed MSC/heart provided the same cardioprotective efficiency than 7.5 × 105 naïve MSC, identified as the optimal dose in our experimental model. This enhanced short-term cardioprotective effect was associated with an increase in both anti-apoptotic effects and the number of MSC detected in the left ventricular wall at 1 h of reperfusion. By contrast, PPARß/δ inhibition in MSC before their administration in post-ischemic hearts during reperfusion decreased their cardioprotective effects. CONCLUSION: Altogether these results revealed that PPARß/δ-primed MSC exhibit an increased resistance to oxidative stress and enhanced anti-apoptotic properties on cardiac cells in vitro. PPARß/δ-priming appears as an innovative strategy to enhance the cardioprotective effects of MSC and to decrease the therapeutic injected doses. These results could be of major interest to improve MSC efficacy for the cardioprotection of injured myocardium in AMI patients.


Asunto(s)
Células Madre Mesenquimatosas , Infarto del Miocardio , Daño por Reperfusión Miocárdica , PPAR delta , PPAR-beta , Animales , Células Endoteliales/metabolismo , Peróxido de Hidrógeno , Células Madre Mesenquimatosas/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/terapia , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , PPAR-beta/agonistas , PPAR-beta/genética , PPAR-beta/metabolismo , Tiazoles
14.
Cells ; 11(5)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269515

RESUMEN

BACKGROUND AND AIMS: Non-alcoholic steatohepatitis (NASH) is a life-threatening stage of non-alcoholic fatty liver disease (NAFLD) for which no drugs have been approved. We have previously shown that human-derived hepatic in vitro models can be used to mimic key cellular mechanisms involved in the progression of NASH. In the present study, we first characterize the transcriptome of multiple in vitro NASH models. Subsequently, we investigate how elafibranor, which is a peroxisome proliferator-activated receptor (PPAR)-α/δ agonist that has recently failed a phase 3 clinical trial as a potential anti-NASH compound, modulates the transcriptome of these models. Finally, we compare the elafibranor-induced gene expression modulation to transcriptome data of patients with improved/resolved NAFLD/NASH upon bariatric surgery, which is the only proven clinical NASH therapy. METHODS: Human whole genome microarrays were used for the transcriptomics evaluation of hepatic in vitro models. Comparison to publicly available clinical datasets was conducted using multiple bioinformatic application tools. RESULTS: Primary human hepatocytes (PHH), HepaRG, and human skin stem cell-derived hepatic progenitors (hSKP-HPC) exposed to NASH-inducing triggers exhibit up to 35% overlap with datasets of liver samples from NASH patients. Exposure of the in vitro NASH models to elafibranor partially reversed the transcriptional modulations, predicting an inhibition of toll-like receptor (TLR)-2/4/9-mediated inflammatory responses, NFκB-signaling, hepatic fibrosis, and leukocyte migration. These transcriptomic changes were also observed in the datasets of liver samples of patients with resolved NASH. Peroxisome Proliferator Activated Receptor Alpha (PPARA), PPARG Coactivator 1 Alpha (PPARGC1A), and Sirtuin 1 (SIRT1) were identified as the major common upstream regulators upon exposure to elafibranor. Analysis of the downstream mechanistic networks further revealed that angiopoietin Like 4 (ANGPTL4), pyruvate dehydrogenase kinase 4 (PDK4), and perilipin 2 (PLIN2), which are involved in the promotion of hepatic lipid accumulation, were also commonly upregulated by elafibranor in all in vitro NASH models. Contrarily, these genes were not upregulated in liver samples of patients with resolved NASH. CONCLUSION: Transcriptomics comparison between in vitro NASH models exposed to elafibranor and clinical datasets of NAFLD patients after bariatric surgery reveals commonly modulated anti-inflammatory responses, but discordant modulations of key factors in lipid metabolism. This discordant adverse effect of elafibranor deserves further investigation when assessing PPAR-α/δ agonism as a potential anti-NASH therapy.


Asunto(s)
Cirugía Bariátrica , Enfermedad del Hígado Graso no Alcohólico , PPAR delta , Chalconas , Humanos , Hipoglucemiantes/uso terapéutico , Metabolismo de los Lípidos/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , Propionatos , Transcriptoma/genética
15.
J Transl Med ; 20(1): 86, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151320

RESUMEN

BACKGROUND: Peroxisome proliferator-activated receptor-beta/delta (PPARδ) was considered as the key regulator involved in the evolution of various tumors. Given that PPARδ potential role in hepatocellular carcinoma (HCC) is still obscure, we comprehensively assessed its expression pattern, prognosis, functions and correlation with tumor microenvironment in HCC using public database data and in vitro studies. METHODS: Transcriptional data and clinical data in the TCGA and GEO database were analyzed in R software. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemistry were used to detect the expression level of related RNA and proteins. The malignant biological characteristics were explored by cell counting Kit-8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EdU) assay and wound healing assay. RESULTS: Our results illustrated that PPARδ expression was significantly higher in HCC tissues and HCC cell lines. Elevated expression of PPARδ suggested poor clinical staging and prognosis in HCC. Ligand-activated PPARδ expression promoted the proliferation and invasion of HCC cells via PDK1/AKT/GSK3ß signaling pathway. The expression of PPARδ was closely related to the HCC tumor microenvironment. CONCLUSIONS: PPARδ plays an important part in HCC progression, penetrating investigation of the related regulatory mechanism may shed light upon further biological and pharmacological value.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , PPAR delta , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Neoplasias Hepáticas/patología , PPAR delta/genética , PPAR delta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Microambiente Tumoral
16.
Theranostics ; 12(4): 1855-1869, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198077

RESUMEN

Rationale: Restoration of vascular perfusion in peripheral arterial disease involves a combination of neovessel formation and the functional restoration of vascular endothelium. Previous studies indicated that ligand-dependent PPARδ activation enhances angiogenesis. However, how PPARδ is triggered by hypoxia and its downstream effects during post-ischemic vascular repair was not well understood. Methods: We induced experimental hindlimb ischemia in endothelial cell selective Ppard knockout induced by Cdh5-Cre mediated deletion of floxed Ppard allele in mice and their wild type control and observed blood perfusion, capillary density, vascular relaxation, and vascular leakage. Results: Deletion of endothelial Ppard delayed perfusion recovery and tissue repair, accompanied by delayed post-ischemic angiogenesis, impaired restoration of vascular integrity, more vascular leakage and enhanced inflammatory responses. At the molecular level, hypoxia upregulated and activated PPARδ in endothelial cells, whereas PPARδ reciprocally stabilized HIF1α protein to prevent its ubiquitin-mediated degradation. PPARδ directly bound to the oxygen-dependent degradation domain of HIF1α at the ligand-dependent domain of PPARδ. Importantly, this HIF1α-PPARδ interaction was independent of PPARδ ligand. Adeno-associated virus mediated endothelium-targeted overexpression of stable HIF1α in vivo improved perfusion recovery, suppressed vascular inflammation, and enhanced vascular repair, to counteract with the effect of Ppard knockout after hindlimb ischemia in mice. Conclusions: In summary, hypoxia-induced, ligand-independent activation of PPARδ in ECs stabilizes HIF1α and serves as a critical regulator for HIF1α activation to facilitate the post-ischemic restoration of vascular homeostasis.


Asunto(s)
PPAR delta , Animales , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Miembro Posterior , Hipoxia/metabolismo , Isquemia , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica , PPAR delta/genética , PPAR delta/metabolismo , PPAR delta/farmacología
17.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163565

RESUMEN

Peroxisome proliferator-activated receptor delta (PPARD) is a nuclear receptor known to play an essential role in regulation of cell metabolism, cell proliferation, inflammation, and tumorigenesis in normal and cancer cells. Recently, we found that a newly generated villin-PPARD mouse model, in which PPARD is overexpressed in villin-positive gastric progenitor cells, demonstrated spontaneous development of large, invasive gastric tumors as the mice aged. However, the role of PPARD in regulation of downstream metabolism in normal gastric and tumor cells is elusive. The aim of the present study was to find PPARD-regulated downstream metabolic changes and to determine the potential significance of those changes to gastric tumorigenesis in mice. Hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, and liquid chromatography-mass spectrometry were employed for metabolic profiling to determine the PPARD-regulated metabolite changes in PPARD mice at different ages during the development of gastric cancer, and the changes were compared to corresponding wild-type mice. Nuclear magnetic resonance spectroscopy-based metabolomic screening results showed higher levels of inosine monophosphate (p = 0.0054), uracil (p = 0.0205), phenylalanine (p = 0.017), glycine (p = 0.014), and isocitrate (p = 0.029) and lower levels of inosine (p = 0.0188) in 55-week-old PPARD mice than in 55-week-old wild-type mice. As the PPARD mice aged from 10 weeks to 35 weeks and 55 weeks, we observed significant changes in levels of the metabolites inosine monophosphate (p = 0.0054), adenosine monophosphate (p = 0.009), UDP-glucose (p = 0.0006), and oxypurinol (p = 0.039). Hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy performed to measure lactate flux in live 10-week-old PPARD mice with no gastric tumors and 35-week-old PPARD mice with gastric tumors did not reveal a significant difference in the ratio of lactate to total pyruvate plus lactate, indicating that this PPARD-induced spontaneous gastric tumor development does not require glycolysis as the main source of fuel for tumorigenesis. Liquid chromatography-mass spectrometry-based measurement of fatty acid levels showed lower linoleic acid, palmitic acid, oleic acid, and steric acid levels in 55-week-old PPARD mice than in 10-week-old PPARD mice, supporting fatty acid oxidation as a bioenergy source for PPARD-expressing gastric tumors.


Asunto(s)
Metabolómica/métodos , Proteínas de Microfilamentos/genética , PPAR delta/genética , Neoplasias Gástricas/patología , Regulación hacia Arriba , Adenosina Monofosfato/análisis , Animales , Cromatografía Liquida , Ácidos Grasos/análisis , Femenino , Ingeniería Genética , Imagen por Resonancia Magnética , Masculino , Espectrometría de Masas , Ratones , Neoplasias Experimentales , Oxipurinol/análisis , Regiones Promotoras Genéticas , Estudios Prospectivos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Uridina Difosfato Glucosa/análisis
18.
Aging (Albany NY) ; 13(18): 22040-22058, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34544906

RESUMEN

N-retinylidene-N-retinylethanolamine (A2E) plays a central role in age-related macular degeneration (AMD) by inducing angiogenesis and inflammation. A2E effects are mediated at least partly via the retinoic acid receptor (RAR)-α. Here we show that A2E binds and transactivates also peroxisome proliferator-activated receptors (PPAR) and retinoid X receptors (RXR). 9'-cis-norbixin, a di-apocarotenoid is also a ligand of these nuclear receptors (NR). Norbixin inhibits PPAR and RXR transactivation induced by A2E. Moreover, norbixin reduces protein kinase B (AKT) phosphorylation, NF-κB and AP-1 transactivation and mRNA expression of the inflammatory interleukins (IL) -6 and -8 and of vascular endothelial growth factor (VEGF) enhanced by A2E. By contrast, norbixin increases matrix metalloproteinase 9 (MMP9) and C-C motif chemokine ligand 2 (CCL2) mRNA expression in response to A2E. Selective PPAR-α, -ß/δ and -γ antagonists inhibit the expression of IL-6 and IL-8 while only the antagonist of PPAR-γ inhibits the transactivation of NF-κB following A2E exposure. In addition, a cocktail of all three PPARs antagonists and also HX531, an antagonist of RXR reproduce norbixin effects on inflammation. Altogether, A2E's deleterious biological effects could be inhibited through PPAR and RXR regulation. Moreover, the modulation of these NR by norbixin may open new avenues for the treatment of AMD.


Asunto(s)
Carotenoides/administración & dosificación , Degeneración Macular/tratamiento farmacológico , PPAR alfa/inmunología , PPAR delta/inmunología , PPAR gamma/inmunología , PPAR-beta/inmunología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Retinoides/inmunología , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Humanos , Degeneración Macular/inducido químicamente , Degeneración Macular/genética , Degeneración Macular/inmunología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/etiología , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , PPAR alfa/genética , PPAR delta/genética , PPAR gamma/genética , PPAR-beta/genética , Epitelio Pigmentado de la Retina/inmunología , Receptores X Retinoide/agonistas , Receptores X Retinoide/genética , Receptores X Retinoide/inmunología , Retinoides/efectos adversos , Porcinos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/inmunología
19.
Haematologica ; 106(6): 1671-1683, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33538151

RESUMEN

The mobilization efficiency of hematopoietic stem/progenitor cells from bone marrow (BM) to circulation by granulocyte colony-stimulating factor (G-CSF) is dramatically dispersed in humans and mice with no mechanistic lead for poor mobilizers. The regulatory mechanism for mobilization efficiency by dietary fat was assessed in mice. Fat-free diet (FFD) for 2 weeks greatly increased mobilization compared to normal diet (ND). The BM mRNA level of peroxisome proliferator-activated receptor δ (PPARδ), a receptor for lipid mediators, was markedly up-regulated by G-CSF in mice fed with ND and displayed strong positive correlation with widely scattered mobilization efficiency. It was hypothesized that BM fat ligand for PPARδ might inhibit mobilization. The PPARδ agonist inhibited mobilization in mice fed with ND and enhanced mobilization by FFD. Treatment with the PPARδ antagonist and chimeric mice with PPARδ+/- BM showed enhanced mobilization. Immunohistochemical staining and flow cytometry revealed that BM PPARδ expression was enhanced by G-CSF mainly in mature/immature neutrophils. BM lipid mediator analysis revealed that G-CSF treatment and FFD resulted in the exhaustion of ω3-polyunsaturated fatty acids such as eicosapentaenoic acid (EPA). EPA induced the up-regulation of genes downstream of PPARδ, such as carnitine palmitoyltransferase-1α and angiopoietin-like protein 4 (Angptl4), in mature/immature neutrophils in vitro and inhibited enhanced mobilization in mice fed with FFD in vivo. Treatment of wild-type mice with the anti-Angptl4 antibody enhanced mobilization together with BM vascular permeability. Collectively, PPARδ signaling in BM mature/immature neutrophils induced by dietary fatty acids negatively regulates mobilization, at least partially, via Angptl4 production.


Asunto(s)
Médula Ósea , PPAR delta , Animales , Células de la Médula Ósea , Factor Estimulante de Colonias de Granulocitos , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas , Ratones , PPAR delta/genética
20.
Cell Death Dis ; 12(2): 214, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637678

RESUMEN

Cancer-associated fibroblasts (CAFs) contribute to tumour epithelial-mesenchymal transition (EMT) via interaction with cancer cells. However, the molecular mechanisms underlying tumour-promoting EMT of CAFs in lung adenocarcinoma (ADC) remain unclear. Here, we observed that CAFs isolated from lung ADC promoted EMT via production of stromal cell-derived factor-1 (SDF-1) in conditioned medium (CM). CAF-derived SDF-1 enhanced invasiveness and EMT by upregulating CXCR4, ß-catenin, and PPARδ, while downregulating these proteins reversed the effect. Furthermore, RNAi-mediated CXCR4 knockdown suppressed ß-catenin and PPARδ expression, while ß-catenin inhibition effectively downregulated PPARδ without affecting CXCR4; however, treatment with a PPARδ inhibitor did not inhibit CXCR4 or ß-catenin expression. Additionally, pairwise analysis revealed that high expression of CXCR4, ß-catenin, and PPARδ correlated positively with 75 human lung adenocarcinoma tissues, which was predictive of poor prognosis. Thus, targeting the CAF-derived, SDF-1-mediated CXCR4 ß-catenin/ PPARδ cascade may serve as an effective targeted approach for lung cancer treatment.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Quimiocina CXCL12/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/metabolismo , PPAR delta/metabolismo , Comunicación Paracrina , Receptores CXCR4/metabolismo , beta Catenina/metabolismo , Células A549 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adulto , Anciano , Anciano de 80 o más Años , Fibroblastos Asociados al Cáncer/patología , Técnicas de Cocultivo , Medios de Cultivo Condicionados/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , PPAR delta/genética , Pronóstico , Receptores CXCR4/genética , Transducción de Señal , Células Tumorales Cultivadas , Regulación hacia Arriba , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA