Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.456
Filtrar
1.
Mikrochim Acta ; 191(6): 298, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709403

RESUMEN

As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN , Técnicas Electroquímicas , Oro , Límite de Detección , Nanopartículas del Metal , Células Neoplásicas Circulantes , Paladio , Células Neoplásicas Circulantes/patología , Humanos , Células MCF-7 , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Aptámeros de Nucleótidos/química , Oro/química , ADN/química , Técnicas Biosensibles/métodos , Paladio/química
2.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791348

RESUMEN

Hybrid nanomaterials have attracted considerable interest in biomedicine because of their fascinating characteristics and wide range of applications in targeted drug delivery, antibacterial activity, and cancer treatment. This study developed a gelatin-coated Titanium oxide/palladium (TiO2/Pd) hybrid nanomaterial to enhance the antibacterial and anticancer capabilities. Morphological and structural analyses were conducted to characterize the synthesized hybrid nanomaterial. The surface texture of the hybrid nanomaterials was examined by high-resolution transmission electron microscopy (HR-TEM) and field-emission scanning electron microscopy (FE-SEM). The FE-SEM image revealed the bulk of the spherically shaped particles and the aggregated tiny granules. Energy dispersive X-ray spectroscopy (EDS) revealed Ti, Pd, C, and O. X-ray diffraction (XRD) revealed the gelatin-coated TiO2/Pd to be in the anatase form. Fourier transform infrared spectroscopy examined the interactions among the gelatin-coated TiO2/Pd nanoparticles. The gelatin-coated TiO2/Pd nanomaterials exhibited high antibacterial activity against Escherichia coli (22 mm) and Bacillus subtilis (17 mm) compared to individual nanoparticles, confirming the synergistic effect. More importantly, the gelatin-coated TiO2/Pd hybrid nanomaterial exhibited remarkable cytotoxic effects on A549 lung cancer cells which shows a linear increase with the concentration of the nanomaterial. The hybrid nanomaterials displayed higher toxicity to cancer cells than the nanoparticles alone. Furthermore, the cytotoxic activity against human cancer cells was verified by the generation of reactive oxygen species and nuclear damage. Therefore, gelatin-coated TiO2/Pd nanomaterials have potential uses in treating cancer and bacterial infections.


Asunto(s)
Antibacterianos , Antineoplásicos , Escherichia coli , Gelatina , Nanoestructuras , Paladio , Titanio , Titanio/química , Titanio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Gelatina/química , Paladio/química , Paladio/farmacología , Escherichia coli/efectos de los fármacos , Nanoestructuras/química , Células A549 , Bacillus subtilis/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Difracción de Rayos X , Nanopartículas del Metal/química
3.
Chemistry ; 30(28): e202401199, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38695718

RESUMEN

Invited for the cover of this issue are Tatiyana Serebryanskaya, Mikhail Kinzhalov and co-workers at St. Petersburg State University, the Research Institute for Physical Chemical Problems, Belarusian State University, Togliatti State University and Blokhin National Medical Research Center of Oncology. The image depicts the shield of Pallas Athena with the structure of a palladium carbene complex that protects against triple-negative breast cancer. Read the full text of the article at 10.1002/chem.202400101.


Asunto(s)
Antineoplásicos , Proliferación Celular , Complejos de Coordinación , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Humanos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Femenino , Línea Celular Tumoral , Paladio/química , Metano/análogos & derivados , Metano/química , Metano/farmacología
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731956

RESUMEN

X-ray fluorescence imaging (XFI) can localize diagnostic or theranostic entities utilizing nanoparticle (NP)-based probes at high resolution in vivo, in vitro, and ex vivo. However, small-animal benchtop XFI systems demonstrating high spatial resolution (variable from sub-millimeter to millimeter range) in vivo are still limited to lighter elements (i.e., atomic number Z≤45). This study investigates the feasibility of focusing hard X-rays from solid-target tubes using ellipsoidal lens systems composed of mosaic graphite crystals with the aim of enabling high-resolution in vivo XFI applications with mid-Z (42≤Z≤64) elements. Monte Carlo simulations are performed to characterize the proposed focusing-optics concept and provide quantitative predictions of the XFI sensitivity, in silico tumor-bearing mice models loaded with palladium (Pd) and barium (Ba) NPs. Based on simulation results, the minimum detectable total mass of PdNPs per scan position is expected to be on the order of a few hundred nanograms under in vivo conform conditions. PdNP masses as low as 150 ng to 50 ng could be detectable with a resolution of 600 µm when imaging abdominal tumor lesions across a range of low-dose (0.8 µGy) to high-dose (8 µGy) exposure scenarios. The proposed focusing-optics concept presents a potential step toward realizing XFI with conventional X-ray tubes for high-resolution applications involving interesting NP formulations.


Asunto(s)
Grafito , Grafito/química , Animales , Ratones , Imagen Óptica/métodos , Método de Montecarlo , Nanopartículas/química , Paladio/química , Simulación por Computador , Espectrometría por Rayos X/métodos
5.
Chemosphere ; 358: 142198, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697566

RESUMEN

In the electrical industry, there are many hazardous gases that pollute the environment and even jeopardize human health, so timely detection and effective control of these hazardous gases is of great significance. In this work, the gas-sensitive properties of Pd-modified g-C3N4 interface for each hazardous gas molecule were investigated from a microscopic viewpoint, taking the hazardous gases (CO, NOx) that may be generated in the power industry as the detection target. Then, the performance of Pd-modifiedg-C3N4 was evaluated for practical applications as a gas sensor material. Novelly, an unconventional means was designed to briefly predict the effect of humidity on the adsorption properties of this sensor material. The final results found that Pd-modified g-C3N4 is most suitable as a potential gas-sensitizing material for NO2 gas sensors, followed by CO. Interestingly, Pd-modified g-C3N4 is less suitable as a potential gas-sensitizing material for NO gas sensors, but has the potential to be used as a NO cleaner (adsorbent). Unconventional simulation explorations of humidity effects show that in practical applications Pd-modified g-C3N4 remains a promising material for gas sensing in specific humidity environments. This work reveals the origin of the excellent properties of Pd-modified g-C3N4 as a gas sensor material and provides new ideas for the detection and treatment of these three hazardous gases.


Asunto(s)
Contaminantes Atmosféricos , Paladio , Contaminantes Atmosféricos/análisis , Paladio/química , Adsorción , Agua/química , Monitoreo del Ambiente/métodos , Gases/análisis , Humedad , Monóxido de Carbono/análisis , Nitrilos/química , Nitrilos/análisis
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124408, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723464

RESUMEN

To investigate the structure and bioactivity relationship, six Pd(II)/Pt(II) complexes with N-isobutylglycine (L1) and cyclohexylglycine (L2) as N^O amino acid bidentate ligands, 1,10'-phenanthroline (phen) and 2,2'-bipyridine (bipy) as N^N donor ligands, and [Pd(L1)(bipy)]NO3 (1), [Pd(L2)(bipy)]NO3 (2), [Pd(L1)(phen)]NO3 (3), [Pd(L2)(phen)]NO3·2H2O (4), [Pt(L1)(phen)]NO3 (5), along with [Pt(L2)(phen)]NO3 (6) were prepared and then characterized. The geometry of each compound was validated by doing a DFT calculation. Furthermore, tests were conducted on the complexes' water solubilities and lipophilicity. All bipy complexes had superior aqueous solubility and less lipophilicity in comparison with phen complexes, as well as complexes containing cyclohexyl-glycine compared to isobutyl-glycine complexes, probably because of the steric effects and polarity of cyclohexylglycine. The in-vitro anticancer activities of these compounds were examined against HCT116, A549, and MCF7 cancerous cell lines. Data revealed that all Pd/Pt complexes demonstrate higher anticancer activity than carboplatin, and complexes 3 and 4 are more cytotoxic than cisplatin against the HCT116 cell line, particularly against MCF7 cancerous cells. In addition, among all compounds, complex 4 has more anticancer ability than oxaliplatin. Due to different solubility and lipophilicity behavior, the accumulation of Pt complexes and clinical Pt drugs in each cancerous cell was investigated. The binding capabilities of these complexes to DNA, as the main target in chemotherapy, occur through minor grooves and intercalate into DNA, which was done using absorption, fluorescence, and circular dichroism spectroscopy. Finally, the docking simulation study showed the mode of DNA bindings is in good agreement with the spectral binding data.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Glicina , Paladio , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Glicina/química , Glicina/análogos & derivados , Glicina/farmacología , Paladio/química , Paladio/farmacología , Ligandos , Relación Estructura-Actividad , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Platino (Metal)/química , Platino (Metal)/farmacología , ADN/metabolismo , ADN/química , Solubilidad
7.
Mikrochim Acta ; 191(6): 340, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787447

RESUMEN

A new sandwich-type electrochemical biosensing platform was developed by gold @polyphthalenediamine nanohybrids (AuNP@PoPD) as the sensing platform and phosphorus doped reduced graphene oxide-hemin-palladium nanoparticles (PrGO-Hemin-PdNP) as the signal amplifier for phosphatidylinositol proteoglycan 3 (GPC3). AuNP@PoPD, co-electrodeposited into the screen printed electrode with high conductivity and stability, is dedicated to assembling the primary GPC3 aptamer (GPC3Apt). The second GPC3Apt immobilized on the high conductivity and large surface area of PrGO-Hemin-PdNP was utilized as an electrochemical signal reporter by hemin oxidation (PrGO-Hemin-PdNP-GPC3Apt). In the range 0.001-10.0 ng/mL, the hemin oxidation current signal of the electrochemical aptasensor increased log-linearly with the concentration of GPC3, the lowest detection limit was 0.13 pg/mL, and the sensitivity was 2.073 µA/µM/cm2. The aptasensor exhibited good sensing performance in a human serum sample with the relative error of 4.31-8.07%. The sandwich sensor showed good selectivity and stability for detection GPC3 in human serum samples, providing a new efficient and sensitive method for detecting HCC markers.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Glipicanos , Oro , Grafito , Hemina , Límite de Detección , Nanopartículas del Metal , Paladio , Glipicanos/sangre , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Aptámeros de Nucleótidos/química , Hemina/química , Grafito/química , Paladio/química , Oro/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Electrodos
8.
Environ Sci Pollut Res Int ; 31(23): 34661-34674, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713350

RESUMEN

Rapid passivation and aggregation of nanoscale zero-valent iron (nZVI) seriously limit its performance in the remediation of different contaminants from wastewater. To overcome such issues, in the present study, nano-palladium/iron (nPd/Fe) was simultaneously improved by biochar (BC) prepared from discarded peanut shells and green complexing agent sodium citrate (SC). For this purpose, a composite (SC-nPd/Fe@BC) was successfully synthesized to remove 2,4-dichlorophenol (2,4-DCP) from wastewater. In the SC-nPd/Fe@BC, BC acts as a carrier with dispersed nPd/Fe particles to effectively prevent its agglomeration, and increased the specific surface area of the composite, thereby improving the reactivity and stability of nPd/Fe. Characterization results demonstrated that the SC-nPd/Fe@BC composites were well dispersed, and the agglomeration was weakened. The formation of the passivation layer on the surface of the particles was inhibited, and the mechanism of SC and BC improving the reactivity of nPd/Fe was clarified. Different factors were found to influence the reductive dichlorination of 2,4-DCP, including Pd loading, Fe:C, SC addition, temperature, initial pH, and initial pollutant concentration. The dechlorination results revealed that the synergistic effect of the BC and SC made the removal efficiency and dechlorination rate of 2,4-DCP by SC-nPd/Fe@BC reached to 96.0 and 95.6%, respectively, which was better than that of nPd/Fe (removal: 46.2%, dechlorination: 45.3%). Kinetic studies explained that the dechlorination reaction of 2,4-DCP and the data were better represented by the pseudo-first-order kinetic model. The reaction rate constants followed the order of SC-nPd/Fe@BC (0.0264 min-1) > nPd/Fe@BC (0.0089 min-1) > SC-nPd/Fe (0.0081 min-1) > nPd/Fe (0.0043 min-1). Thus, SC-nPd/Fe@BC was capable of efficiently reducing 2,4-DCP and the dechlorination efficiency of BC and SC synergistically assisted composite on 2,4-DCP was much better than that of SC-nPd/Fe, nPd/Fe@BC and nPd/Fe. Findings suggested that SC-nPd/Fe@BC can be promising for efficient treatment of chlorinated pollutants.


Asunto(s)
Carbón Orgánico , Clorofenoles , Hierro , Paladio , Clorofenoles/química , Paladio/química , Hierro/química , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Ácido Cítrico/química , Aguas Residuales/química
9.
Cells ; 13(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667306

RESUMEN

Several studies have reported the successful use of bio-orthogonal catalyst nanoparticles (NPs) for cancer therapy. However, the delivery of the catalysts to the target tissues in vivo remains an unsolved challenge. The combination of catalytic NPs with extracellular vesicles (EVs) has been proposed as a promising approach to improve the delivery of therapeutic nanomaterials to the desired organs. In this study, we have developed a nanoscale bio-hybrid vector using a CO-mediated reduction at low temperature to generate ultrathin catalytic Pd nanosheets (PdNSs) as catalysts directly inside cancer-derived EVs. We have also compared their biodistribution with that of PEGylated PdNSs delivered by the EPR effect. Our results indicate that the accumulation of PdNSs in the tumour tissue was significantly higher when they were administered within the EVs compared to the PEGylated PdNSs. Conversely, the amount of Pd found in non-target organs (i.e., liver) was lowered. Once the Pd-based catalytic EVs were accumulated in the tumours, they enabled the activation of a paclitaxel prodrug demonstrating their ability to carry out bio-orthogonal uncaging chemistries in vivo for cancer therapy.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Animales , Catálisis , Ratones , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Paladio/química , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Línea Celular Tumoral , Distribución Tisular , Polietilenglicoles/química , Nanopartículas/química , Profármacos , Ratones Desnudos
10.
Anal Chim Acta ; 1305: 342582, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38677838

RESUMEN

BACKGROUND: Detecting and neutralizing Pd2+ ions are a significant challenge due to their cytotoxicity, even at low concentrations. To address this issue, various chemosensors have been designed for advanced detection systems, offering simplicity and the potential to differentiate signals from different analytes. Nonetheless, these chemosensors often suffer from limited emission response and complex synthesis procedures. As a result, the tracking and quantification of residual palladium in biological systems and environments remain challenging tasks, with only a few chemosensing probes available for commercial use. RESULTS: In this paper, a straightforward approach for the selective detection of Pd2+ ions is proposed, which involves the design, synthesis, and utilization of a propargylated naphthalene-derived probe (E)-N'-((2-(prop-2-yn-1-yloxy)naphthalen-1-yl)methylene)benzohydrazide (NHP). The NHP probe exhibits sensitive dual-channel colorimetry and fluorescence Pd2+ detection over other tested metal ions. The detection process is performed through a catalytic depropargylation reaction, followed by an excited state intramolecular proton transfer (ESIPT) process, the detection limit is as low as 11.58 × 10-7 M under mild conditions. Interestingly, the resultant chemodosimeter adduct (E)-N'-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide (NHH) was employed for the consecutive detection of CN- ions, exhibiting an impressive detection limit of 31.79 × 10-8 M. Validation of both detection processes was achieved through 1H nuclear magnetic resonance and density functional theory calculations. For real-time applications of the NHP and NHH probes, smartphone-assisted detection, and intracellular detection of Pd2+ and CN- ions within HeLa cells were studied. SIGNIFICANCE: This research presents a novel naphthalene derivative for visually detecting environmentally toxic Pd2+ and CN- ions. The synthesized probe selectively binds to Pd2+, forming a chemodosimeter. It successfully detects CN- ions through colorimetry and fluorimetry, offering a low detection limit and quick response. Notably, it's the first naphthalene-based small molecule to serve as a dual probe for toxic analytes - palladium and cyanide. Moreover, it effectively detects Pd2+ and CN- intracellularly in cancer cells.


Asunto(s)
Colorantes Fluorescentes , Paladio , Paladio/química , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Cianuros/análisis , Naftalenos/química , Naftalenos/toxicidad , Células HeLa , Imagen Óptica , Límite de Detección , Colorimetría/métodos , Estructura Molecular , Espectrometría de Fluorescencia
11.
Biomater Adv ; 160: 213855, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643692

RESUMEN

This research introduces a novel method that leverages Spirulina extract (S.E) as a bio-surfactant in the ultrasound-assisted synthesis (UAS) of Pd3+ (0.25-10 mol%) doped tin oxide (SnO2) self-assembled superstructures. Nanotechnology has witnessed significant advancements in recent years, driven by the exploration of novel synthesis methods and the development of advanced nanomaterials tailored for specific applications. Metal oxide nanoparticles, particularly SnO2, have garnered considerable attention due to their versatile properties and potential applications in various fields, including gas sensing, catalysis, and biomedical engineering. The study explores how varying influential parameters like S.E concentration, sonication time, pH, and sonication power can influence the resulting superstructures' morphology, size, and shape. A theoretical model for forming different hierarchical superstructures (HS) is proposed. X-ray diffraction (XRD) analysis confirms the crystalline tetragonal rutile phase of the SnO2:Pd HS. Raman spectroscopy reveals a red shift in the A1g mode, indicating phonon confinement due to various defects in the SnO2 structure. Further characterization using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) provides insights into particle size, surface morphology, elemental composition, and binding energy. The study also demonstrates the application of optimized SnO2:3Pd HS in developing latent fingerprints (LFPs) on different surfaces using a simple powder dusting (PD) method, with the fingerprints (FPs) visualized under normal light. A mathematical model developed in Python-based software is used to analyze various features of the developed FPs, including pore properties such as number, position, inter-spacing, area, and shape. Additionally, an in vitro MTT assay shows concentration-dependent anticancer activity of SnO2:3Pd nanoparticles (NPs) on MCF7 cell lines, highlighting their potential as a promising cancer treatment option. Overall, the study suggests that the optimized HS can serve as multifunctional platforms for biomedical and dermatoglyphics applications, demonstrating the versatility and potential of the synthesized materials.


Asunto(s)
Antineoplásicos , Paladio , Compuestos de Estaño , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Humanos , Paladio/química , Paladio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas del Metal/química , Células MCF-7
12.
J Med Chem ; 67(8): 6839-6853, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38590144

RESUMEN

Cisplatin (cDDP) resistance is a matter of concern in triple-negative breast cancer therapeutics. We measured the metabolic response of cDDP-sensitive (S) and -resistant (R) MDA-MB-231 cells to Pd2Spermine(Spm) (a possible alternative to cDDP) compared to cDDP to investigate (i) intrinsic response/resistance mechanisms and (ii) the potential cytotoxic role of Pd2Spm. Cell extracts were analyzed by untargeted nuclear magnetic resonance metabolomics, and cell media were analyzed for particular metabolites. CDDP-exposed S cells experienced enhanced antioxidant protection and small deviations in the tricarboxylic acid cycle (TCA), pyrimidine metabolism, and lipid oxidation (proposed cytotoxicity signature). R cells responded more strongly to cDDP, suggesting a resistance signature of activated TCA cycle, altered AMP/ADP/ATP and adenine/uracil fingerprints, and phospholipid biosynthesis (without significant antioxidant protection). Pd2Spm impacted more markedly on R/S cell metabolisms, inducing similarities to cDDP/S cells (probably reflecting high cytotoxicity) and strong additional effects indicative of amino acid depletion, membrane degradation, energy/nucleotide adaptations, and a possible beneficial intracellular γ-aminobutyrate/glutathione-mediated antioxidant mechanism.


Asunto(s)
Antineoplásicos , Cisplatino , Resistencia a Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Femenino , Espermina/farmacología , Espermina/metabolismo , Paladio/química , Paladio/farmacología
13.
Dalton Trans ; 53(19): 8275-8288, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38659318

RESUMEN

This aimed to develop a comprehensive theoretical protocol for examining substitution reaction processes. The researchers used a theoretical quantum-mechanical protocol based on the QM-ORSA approach, which estimates the kinetic parameters of thermodynamically favourable reaction pathways. This theoretical protocol was validated by experimentally investigating substitution mechanisms in two previously synthesised Pd(II) complexes: chlorido-[(3-(1-(2-hydroxypropylamino)ethylidene)chroman-2,4-dione)]palladium(II) (C1) and chlorido-[(3-(1-(2-mercaptoethylamino)-ethylidene)-chroman-2,4dione)]palladium(II) (C2), along with biologically relevant nucleophiles, namely L-cysteine (l-Cys), L-methionine (l-Met), and guanosine-5'-monophosphate (5'-GMP). Reactions were investigated under pseudo-first-order conditions, monitoring nucleophile concentration and temperature changes using stopped-flow UV-vis spectrophotometry. All reactions were conducted under physiological conditions (pH = 7.2) at 37 °C. The reactivity of the studied nucleophiles follows the order: l-Cys > l-Met > 5'-GMP, and the reaction mechanism is associative based on the activation parameters. The experimental and theoretical data showed that C2 is more reactive than C1, confirming that the complexes' structural and electronic properties greatly affect their reactivity with selected nucleophiles. The study's findings have confirmed that the primary interaction occurs with the acid-base species L-Cys, mostly through the involvement of the partially negative sulfur atom (87.2%). On the other hand, C2 has a higher propensity for reacting with L-Cys-, primarily through the partially negative oxygen atom (92.6%). The implementation of this theoretical framework will significantly restrict the utilization of chemical substances, hence facilitating cost reduction and environmental protection.


Asunto(s)
Complejos de Coordinación , Cumarinas , Cisteína , Paladio , Paladio/química , Cinética , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Cumarinas/química , Cisteína/química , Metionina/química , Guanosina Monofosfato/química , Termodinámica , Teoría Cuántica , Concentración de Iones de Hidrógeno , Estructura Molecular
14.
Dalton Trans ; 53(19): 8463-8477, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38686752

RESUMEN

In continuation of our previous works on the cytotoxic properties of organopalladium compounds, in this contribution we describe the first systematic study of the anticancer activity of Pd(II)-aryl complexes. To this end, we have prepared and thoroughly characterized a wide range of palladium derivatives bearing different diphosphine, aryl and halide ligands, developing, when necessary, specific synthetic protocols. Most of the synthesized compounds showed remarkable cytotoxicity towards ovarian and breast cancer cell lines, with IC50 values often comparable to or lower than that of cisplatin. The most promising complexes ([PdI(Ph)(dppe)] and [PdI(p-CH3-Ph)(dppe)]), characterized by a diphosphine ligand with a low bite angle, exhibited, in addition to excellent cytotoxicity towards cancer cells, low activity on normal cells (MRC5 human lung fibroblasts). Specific immunofluorescence tests (cytochrome c and H2AX assays), performed to clarify the possible mechanism of action of this class of organopalladium derivatives, seemed to indicate DNA as the primary cellular target, whereas caspase 3/7 assays proved that the complex [PdI(Ph)(dppe)] was able to promote intrinsic apoptotic cell death. A detailed molecular docking analysis confirmed the importance of a diphosphine ligand with a reduced bite angle to ensure a strong DNA-complex interaction. Finally, one of the most promising complexes was tested towards patient-derived organoids, showing promising ex vivo cytotoxicity.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Simulación del Acoplamiento Molecular , Paladio , Fosfinas , Humanos , Paladio/química , Paladio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Fosfinas/química , Fosfinas/farmacología , Ligandos , Relación Estructura-Actividad , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estructura Molecular
15.
Dalton Trans ; 53(18): 7922-7938, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38644680

RESUMEN

The four new ligands, dialkyl esters of (S,S)-propylenediamine-N,N'-di-(2,2'-di-(4-hydroxy-benzil))acetic acid (R2-S,S-pddtyr·2HCl) (R = ethyl (L1), propyl (L2), butyl (L3), and pentyl (L4)) and corresponding palladium(II) complexes have been synthesized and characterized by microanalysis, infrared, 1H NMR and 13C NMR spectroscopy. In vitro cytotoxicity was evaluated using the MTT assay on four tumor cell lines, including mouse mammary (4T1) and colon (CT26), and human mammary (MDA-MD-468) and colon (HCT116), as well as non-tumor mouse mesenchymal stem cells. Using fluorescence spectroscopy were investigated the interactions of new palladium(II) complexes [PdCl2(R2-S,S-pddtyr)]; (R = ethyl (C1), propyl (C2), butyl (C3), and pentyl (C4)) with calf thymus human serum albumin (HSA) and DNA (CT-DNA). The high values of the binding constants, Kb, and the Stern-Volmer quenching constant, KSV, show the good binding of all complexes for HSA and CT-DNA. The mentioned ligands and complexes were also tested on in vitro antimicrobial activity against 11 microorganisms. Testing was performed by the microdilution method, where the minimum inhibitory concentration (MMC) and the minimum microbicidal concentration (MMC) were determined.


Asunto(s)
Complejos de Coordinación , ADN , Ésteres , Paladio , Albúmina Sérica Humana , Animales , Humanos , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , ADN/metabolismo , Ésteres/química , Ésteres/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Paladio/química , Paladio/farmacología , Unión Proteica , Albúmina Sérica Humana/metabolismo
16.
Talanta ; 275: 126125, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663066

RESUMEN

The establishment of rapid target analysis methods for cytokeratin fragment antigen 21-1 (CYFRA 21-1) is urgently needed. [Ir(pbi)2(acac)] (pbi = 2-(4-bromophenyl)-1-hydrogen -benzimidazole, acac = acetylacetonate) as traditional electrochemiluminescence (ECL) luminophores has been confined due to its non-negligible dark toxicity and poor water solubility leading to poor biocompatibility and electrical conductivity as an organic molecule. Hence, to overcome this limitation, [Ir(pbi)2(acac)] can be effectively loaded on the polyvinyl alcohol hydrogel modified Ti3C2Tx MXene surface (Ir@Ti3C2Tx-PVA) as sensing platform which can emit high ECL signals. Then, a quenching strategy was proposed to fabricate an ECL sandwich immunosensor using H2O2 as quencher molecules which can generated by Pd@Au0.85Pd0.15. Especially, the generation of O2 to H2O2 can be achieved through a two-electron (2e-) reaction pathway by Pd@Au0.85Pd0.15, to overcome the restriction that the H2O2 was virtually impossible to label or immobilize on the non-enzyme nanomaterials. The proposed ECL assay achieves a response to CYFRA 21-1 within the range of 0.1 pg/mL-100 ng/mL, with a detection limit of 8.9 fg/mL (S/N = 3). This work provided a feasible tactic to seek superior-performance ECL luminophore and quencher consequently set up a novel means to makeup ultrasensitive ECL biosensor, which extended the utilization potential of Ir(pbi)2(acac) in ECL assays.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Peróxido de Hidrógeno , Queratina-19 , Mediciones Luminiscentes , Paladio , Alcohol Polivinílico , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Técnicas Electroquímicas/métodos , Paladio/química , Catálisis , Técnicas Biosensibles/métodos , Alcohol Polivinílico/química , Oro/química , Humanos , Mediciones Luminiscentes/métodos , Queratina-19/análisis , Inmunoensayo/métodos , Antígenos de Neoplasias/análisis , Antígenos de Neoplasias/inmunología , Titanio/química , Límite de Detección , Iridio/química , Nanopartículas del Metal/química
17.
Talanta ; 274: 125934, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574533

RESUMEN

Nowadays, novel and efficient signal amplification strategy in electrochemiluminescence (ECL) platform is urgently needed to enhance the sensitivity of biosensor. In this work, the dual ECL signal enhancement strategy was constructed by the interactions of Pd nanoparticles attached covalent organic frameworks (Pd NPs@COFs) with tris (bipyridine) ruthenium (RuP) and Exonuclease III (Exo.III) cycle reaction. Within this strategy, the COFs composite was generated from the covalent reaction between 2-nitro-1,4-phenylenediamine (NPD) and trialdehyde phloroglucinol (Tp), and then animated by glutamate (Glu) to attach the Pd NPs. Next, the "signal on" ECL biosensor was constructed by the coordination assembly of thiolation capture DNA (cDNA) onto the Pd NPs@COFs modified electrode. After the aptamer recognition of progesterone (P4) with hairpin DNA 1 (HP1), the Exo. III cycle reaction was initiated with HP2 to generate free DNA, which hybridized with cDNA to form double-stranded DNA (dsDNA). For that, the RuP was embedded into the groove of dsDNA and achieved the ultrasensitive detection of P4 with a lower limit of detection (LOD) down to 0.45 pM, as well as the excellent selectivity and stability. This work expands the COFs-based materials application in ECL signal amplification and valuable DNA cyclic reaction in biochemical testing field.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Exodesoxirribonucleasas , Nanopartículas del Metal , Estructuras Metalorgánicas , Paladio , Progesterona , Nanopartículas del Metal/química , Estructuras Metalorgánicas/química , Paladio/química , Progesterona/análisis , Progesterona/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Límite de Detección , Mediciones Luminiscentes/métodos , Humanos , ADN/química
18.
J Environ Manage ; 356: 120719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520863

RESUMEN

Nitrate pollution in surface water and ground water has drawn wide attention, which has brought challenges to human health and natural ecology. Electroreduction of nitrate to NH3 in waste water was a way to turn waste into wealth, which has attracted interest of many researchers. Using Nickel foam as substrate, we prepared Pd/In bimetallic electrode (NF-Pd/In) according to a two-step electrodeposition method. There are many irregularly shaped particles in the size range of 10 nm-100 nm accumulated on the surface of prepared NF-Pd/In electrode, which could supply high specific area and more active sites for nitrate electroreduction. FESEM-EDS, XRD and XPS analysis confirmed the uniform distribution of Pd and In on the surface of prepared NF-Pd/In electrode, with a mass ratio of 4.5/1. Above 96% of 100 mg/L NO3--N was removed and 95% of NH3 selectivity was reached after 5 h of reaction under -1.6 V vs. Ag/AgCl sat. KCl when using 0.05 mol/L of Na2SO4 as electrolyte. High concentration of NaCl (0.05 mol/L) in the test solution dramatically decreased the NH3 selectivity because the produced NH3 could be further oxidized to N2 by the formed HClO from Cl-. EIS tests indicated that the prepared NF-Pd/In electrode showed much lower electrode resistance than NF due to the adsorptive property and electrocatalytic ability for nitrate removal. Density functional theory (DFT) calculations indicated that the presence of In could promote the conversion of NO3- to *NO3 during the process of nitrate electroreduction to NH3. Circulating tests demonstrated the stability of prepared NF-Pd/In electrode.


Asunto(s)
Níquel , Nitratos , Humanos , Nitratos/química , Níquel/química , Amoníaco , Paladio/química , Electrodos
19.
Chem Biodivers ; 21(5): e202400363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38470083

RESUMEN

Reactions between sodium tetrachloropalladate and 2- (or 4-) substituted 4-phenyl-3-thiosemicarbazone ligands (HLR), with various electron-donating and electron-withdrawing substituents (R = OCH3, NO2, and Cl), afford square-planar complexes of the general formula [Pd(LR)2]. Ground-state geometry optimization and the vibrational analysis of cis- and trans-isomers of the complexes were carried out to get an insight into the stereochemistry of the complexes. Natural bond orbital analysis was used to analyze how the nature of the substituent affects the natural charge of the metal center, the type of hybridization, and the strength of the M-N and M-S bonds. Using spectrophotometry, the stability of the complexes, and their DNA binding abilities were assessed. The Pd(II) complexes showed moderate cytotoxicity against MCF-7 and Caco-2 cell lines, two of the assessed malignant cell lines, resulting in all known cell death types, including early apoptotic bodies and late apoptotic vacuoles as well as evident necrotic bodies.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Paladio , Tiosemicarbazonas , Humanos , Paladio/química , Paladio/farmacología , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Ligandos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Células MCF-7 , Estructura Molecular , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Relación Estructura-Actividad , ADN/química , ADN/metabolismo , ADN/efectos de los fármacos
20.
Sci Rep ; 14(1): 5798, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461314

RESUMEN

In this research, palladium (II) and platinum (II), as well as their bimetallic nanoparticles were synthesized using medicinal plants in an eco-friendly manner. Rosemary and Ginseng extracts were chosen due to their promising anticancer potential. The synthesized nanoparticles underwent characterization through FT-IR spectroscopy, DLS, XRD, EDX, SEM, and TEM techniques. Once the expected structures were confirmed, the performance of these nanoparticles, which exhibited an optimal size, was evaluated as potential anticancer agents through in vitro method on colon cancer cell lines (Ls180, SW480). MTT assay studies showed that the synthesized nanoparticles induced cell death. Moreover, real-time PCR was employed to investigate autophagy markers and the effect of nanoparticles on the apoptosis process, demonstrating a significant effect of the synthesized compounds in this regard.


Asunto(s)
Nanopartículas del Metal , Panax , Rosmarinus , Paladio/química , Platino (Metal)/farmacología , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA