Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.860
Filtrar
1.
Front Immunol ; 15: 1332933, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576624

RESUMEN

Introduction: Worldwide, breast cancer is the most important cancer in incidence and prevalence in women. Different risk factors interact to increase the probability of developing it. Biological agents such as helminth parasites, particularly their excretory/secretory antigens, may play a significant role in tumor development. Helminths and their antigens have been recognized as inducers or promoters of cancer due to their ability to regulate the host's immune response. Previously in our laboratory, we demonstrated that chronic infection by Toxocara canis increases the size of mammary tumors, affecting the systemic response to the parasite. However, the parasite does not invade the tumor, and we decided to study if the excretion/secretion of antigens from Toxocara canis (EST) can affect the progression of mammary tumors or the pathophysiology of cancer which is metastasis. Thus, this study aimed to determine whether excretion/secretion T. canis antigens, injected directly into the tumor, affect tumor growth and metastasis. Methods: We evaluated these parameters through the monitoring of the intra-tumoral immune response. Results: Mice injected intratumorally with EST did not show changes in the size and weight of the tumors; although the tumors showed an increased microvasculature, they did develop increased micro and macro-metastasis in the lung. The analysis of the immune tumor microenvironment revealed that EST antigens did not modulate the proportion of immune cells in the tumor, spleen, or peripheral lymph nodes. Macroscopic and microscopic analyses of the lungs showed increased metastasis in the EST-treated animals compared to controls, accompanied by an increase in VEGF systemic levels. Discussion: Thus, these findings showed that intra-tumoral injection of T. canis EST antigens promote lung metastasis through modulation of the tumor immune microenvironment.


Asunto(s)
Neoplasias de la Mama , Parásitos , Toxocara canis , Toxocariasis , Humanos , Femenino , Animales , Ratones , Antígenos Helmínticos , Inyecciones Intralesiones , Pulmón , Microambiente Tumoral
3.
Front Cell Infect Microbiol ; 14: 1304839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572319

RESUMEN

Background: Chemotherapies for malaria and babesiosis frequently succumb to the emergence of pathogen-related drug-resistance. Host-targeted therapies are thought to be less susceptible to resistance but are seldom considered for treatment of these diseases. Methods: Our overall objective was to systematically assess small molecules for host cell-targeting activity to restrict proliferation of intracellular parasites. We carried out a literature survey to identify small molecules annotated for host factors implicated in Plasmodium falciparum infection. Alongside P. falciparum, we implemented in vitro parasite susceptibility assays also in the zoonotic parasite Plasmodium knowlesi and the veterinary parasite Babesia divergens. We additionally carried out assays to test directly for action on RBCs apart from the parasites. To distinguish specific host-targeting antiparasitic activity from erythrotoxicity, we measured phosphatidylserine exposure and hemolysis stimulated by small molecules in uninfected RBCs. Results: We identified diverse RBC target-annotated inhibitors with Plasmodium-specific, Babesia-specific, and broad-spectrum antiparasitic activity. The anticancer MEK-targeting drug trametinib is shown here to act with submicromolar activity to block proliferation of Plasmodium spp. in RBCs. Some inhibitors exhibit antimalarial activity with transient exposure to RBCs prior to infection with parasites, providing evidence for host-targeting activity distinct from direct inhibition of the parasite. Conclusions: We report here characterization of small molecules for antiproliferative and host cell-targeting activity for malaria and babesiosis parasites. This resource is relevant for assessment of physiological RBC-parasite interactions and may inform drug development and repurposing efforts.


Asunto(s)
Antimaláricos , Babesia , Babesiosis , Malaria Falciparum , Malaria , Parásitos , Plasmodium , Animales , Humanos , Babesiosis/tratamiento farmacológico , Malaria/parasitología , Eritrocitos/parasitología , Antimaláricos/farmacología , Plasmodium falciparum
4.
BMC Vet Res ; 20(1): 126, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561770

RESUMEN

BACKGROUND: Ethno-veterinary practices could be used as a sustainable developmental tool by integrating traditional phytotherapy and husbandry. Phytotherapeutics are available and used worldwide. However, evidence of their antiparasitic efficacy is currently very limited. Parasitic diseases have a considerable effect on pig production, causing economic losses due to high morbidity and mortality. In this respect, especially smallholders and organic producers face severe challenges. Parasites, as disease causing agents, often outcompete other pathogens in such extensive production systems. A total of 720 faecal samples were collected in two farms from three age categories, i.e. weaners, fatteners, and sows. Flotation (Willis and McMaster method), modified Ziehl-Neelsen stained faecal smear, centrifugal sedimentation, modified Blagg technique, and faecal cultures were used to identify parasites and quantify the parasitic load. RESULTS: The examination confirmed the presence of infections with Eimeria spp., Cryptosporidium spp., Balantioides coli (syn. Balantidium coli), Ascaris suum, Oesophagostomum spp., Strongyloides ransomi, and Trichuris suis, distributed based on age category. A dose of 180 mg/kg bw/day of Allium sativum L. and 90 mg/kg bw/day of Artemisia absinthium L. powders, administered for 10 consecutive days, revealed a strong, taxonomy-based antiprotozoal and anthelmintic activity. CONCLUSIONS: The results highlighted the therapeutic potential of both A. sativum and A. absinthium against gastrointestinal parasites in pigs. Their therapeutic effectiveness may be attributed to the content in polyphenols, tocopherols, flavonoids, sterols, sesquiterpene lactones, and sulfoxide. Further research is required to establish the minimal effective dose of both plants against digestive parasites in pigs.


Asunto(s)
Antiinfecciosos , Artemisia absinthium , Criptosporidiosis , Cryptosporidium , Ajo , Parasitosis Intestinales , Parásitos , Enfermedades de los Porcinos , Animales , Porcinos , Femenino , Antiparasitarios/farmacología , Antiparasitarios/uso terapéutico , Granjas , Parasitosis Intestinales/tratamiento farmacológico , Parasitosis Intestinales/veterinaria , Parasitosis Intestinales/parasitología , Enfermedades de los Porcinos/tratamiento farmacológico , Enfermedades de los Porcinos/parasitología , Heces/parasitología , Prevalencia
5.
Environ Sci Pollut Res Int ; 31(23): 33360-33370, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676868

RESUMEN

The World Health Organization (WHO) has established as a criterion of parasitological quality for irrigation water, ≤ 1 helminth egg/liter, which guarantees the safety in agricultural products. In this study, the presence of parasites in surface water used for irrigation of crops (n = 96) and vegetables (celery and lettuce) (n = 120), from the Former La Ramada irrigation district, was evaluated using conventional and molecular parasitological methods. Our findings showed contamination of irrigation systems in the study area with domestic wastewater, demonstrated by the presence of Ancylostomatidae eggs, Ascaris spp., Hymenolepis spp., Trichuris spp., Capillaria spp., Giardia spp. cysts, and oocysts of Toxoplasma gondii and Cryptosporidium spp. A prevalence of 33% and 23.3% was calculated for helminths and protozoa, respectively in vegetables, representing a possible risk to human and animal health in relation to these parasites. These findings show the need for continuous monitoring of the water quality used for crop irrigation, as well as the safety of food, taking into account the values established in national and international regulations.


Asunto(s)
Riego Agrícola , Productos Agrícolas , Verduras , Verduras/parasitología , Colombia , Animales , Parásitos , Humanos
6.
Cells ; 13(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38607032

RESUMEN

Coevolution of hosts and their parasites has shaped heterogeneity of effector hemocyte types, providing immune defense reactions with variable effectiveness. In this work, we characterize hemocytes of Drosophila willistoni, a species that has evolved a cellular immune system with extensive variation and a high degree of plasticity. Monoclonal antibodies were raised and used in indirect immunofluorescence experiments to characterize hemocyte subpopulations, follow their functional features and differentiation. Pagocytosis and parasitization assays were used to determine the functional characteristics of hemocyte types. Samples were visualized using confocal and epifluorescence microscopy. We identified a new multinucleated giant hemocyte (MGH) type, which differentiates in the course of the cellular immune response to parasitoids. These cells differentiate in the circulation through nuclear division and cell fusion, and can also be derived from the central hematopoietic organ, the lymph gland. They have a binary function as they take up bacteria by phagocytosis and are involved in the encapsulation and elimination of the parasitoid. Here, we show that, in response to large foreign particles, such as parasitoids, MGHs differentiate, have a binary function and contribute to a highly effective cellular immune response, similar to the foreign body giant cells of vertebrates.


Asunto(s)
Drosophila , Parásitos , Animales , Diferenciación Celular , Fagocitosis , Inmunidad Celular
7.
EMBO Mol Med ; 16(4): 723-754, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514791

RESUMEN

Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2-/linup- or LARC2). We show that Plasmodium yoelii (Py) LARC2 sporozoites did not cause breakthrough blood stage infections and engendered durable sterilizing immunity against various infectious sporozoite challenges in diverse strains of mice. We next genetically engineered a PfLARC2 parasite strain that was devoid of extraneous DNA and produced cryopreserved PfSPZ-LARC2. PfSPZ-LARC2 liver stages replicated robustly in liver-humanized mice but displayed severe defects in late liver stage differentiation and did not form liver stage merozoites. This resulted in complete abrogation of parasite transition to viable blood stage infection. Therefore, PfSPZ-LARC2 is the next-generation vaccine strain expected to unite the safety profile of radiation-attenuated PfSPZ with the superior protective efficacy of PfSPZ-CVac.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Parásitos , Animales , Ratones , Plasmodium falciparum/genética , Malaria Falciparum/prevención & control , Eliminación de Gen , Vacunas contra la Malaria/genética , Vacunas Atenuadas/genética , Esporozoítos/genética
8.
Environ Sci Pollut Res Int ; 31(17): 25559-25566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480625

RESUMEN

The objective of this study is to assess the occurrence of intestinal parasites in Mediterranean pond turtle Mauremys leprosa leprosa collected from three contrasting environments in Morocco. Stool samples from 92 turtles were examined for parasite detection and enumeration. The identified intestinal parasites belong to helminths (oxyurids and ascarid) and protozoa (Entamoebidae). A total of 25 turtles (27.17%) were found to be infected by helminths and/or protozoan parasites. No adult form of these parasites was detected. Eggs of oxyurid and ascarid were detected in individuals of populations studied from Oued Ksob (23.07% and 30.76% of n = 13 turtles) and Oued Zat (34.14% and 24.39% of n = 41 turtles), respectively. For protozoa, Entamoeba cysts were present in turtles in Oued Ksob (15.38% of n = 13 turtles), Oued Zat (12.19% of n = 41 turtles), and Oued Tensift (5.26% of n = 38 turtles) localities. Oxyurid eggs showed the highest intensity at Oued Zat reaching 29.30 ± 59.59 eggs per gram (EPG), versus 12 ± 0.38 EPG for ascaris eggs in Oued Ksob. Entamoeba cysts were detected in lower levels with a maximum of 1.66 ± 1.50 cysts per gram (CPG), in Oued Zat. The prevalence of turtles eliminating eggs was statistically significant between localities for different parasite groups. This study reports for the first time a parasitological characterization of gastrointestinal parasites in wild populations of M. leprosa leprosa from contrasting environments, suggesting a relationship between turtles' infestation and the quality of their habitat.


Asunto(s)
Quistes , Helmintos , Parásitos , Tortugas , Humanos , Animales , Marruecos , Ecosistema
9.
Parasitol Res ; 123(3): 160, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38480554

RESUMEN

Dog faecal samples examined from January 2019 to December 2019 were retrospectively analysed for frequency of endoparasites. The examinations were performed with several different methods: 29,219 samples were examined by flotation method and sodium acetate-acetic acid-formalin concentration (SAFC) technique, 1,330 samples by Baermann-Wetzel migration technique, 12,221 samples using a Giardia coproantigen enzyme-linked-immunosorbent assay (ELISA), 1,180 samples using a Cryptosporidium coproantigen ELISA, 1,671 samples by polymerase chain reaction (PCR) testing for Giardia duodenalis and 447 samples by PCR testing for Cryptosporidium spp.. A total of 7.1% of the samples were positive for parasites in the microscopical examination using the flotation method and SAFC technique. The parasites found included Cystoisospora spp. (2.8%), Giardia duodenalis (2.3%), Ancylostomatidae (1.8%), Toxocara canis (1.6%), Trichuris vulpis (0.7%), Toxascaris leonina (0.5%), Capillaria spp. (0.2%), Angiostrongylus vasorum (0.2%), Crenosoma vulpis (0.1%), Taeniidae (0.1%), Sarcocystis spp. (0.03%), Dipylidium caninum (0.01%), Diphyllobothrium latum (< 0.01%), Spirurida (< 0.01%) and Opisthorchiidae (< 0.01%). Using the Baermann-Wetzel migration technique, Angiostrongylus vasorum was found in 0.75% and Crenosoma vulpis in 0.3% of the samples. ELISAs for Giardia duodenalis and Cryptosporidium spp. revealed 13.9% and 1.0% positive faecal samples, and Giardia duodenalis and Cryptosporidium spp. PCRs 19.4% and 2.0%, respectively. Dogs in the first year of life were more frequently infected with parasites than older animals. In the microscopic examination using flotation method and SAFC technique, the significantly highest detection rates were found in dogs up to six months of age (p < 0.001).


Asunto(s)
Angiostrongylus , Criptosporidiosis , Cryptosporidium , Enfermedades de los Perros , Giardia lamblia , Parasitosis Intestinales , Parásitos , Perros , Animales , Parasitosis Intestinales/parasitología , Estudios Retrospectivos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/parasitología , Prevalencia , Alemania/epidemiología , Heces/parasitología
10.
Magn Reson Imaging Clin N Am ; 32(2): 347-361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555145

RESUMEN

Atypical infections of the brain and spine caused by parasites occur in immunocompetent and immunosuppressed hosts, related to exposure and more prevalently in endemic regions. In the United States, the most common parasitic infections that lead to central nervous system manifestations include cysticercosis, echinococcosis, and toxoplasmosis, with toxoplasmosis being the most common opportunistic infection affecting patients with advanced HIV/AIDS. Another rare but devastating transmittable disease is prion disease, which causes rapidly progressive spongiform encephalopathies. Familiarity and understanding of various infectious agents are a crucial aspect of diagnostic neuroradiology, and recognition of unique features can aid timely diagnosis and treatment.


Asunto(s)
Enfermedades Transmisibles , Encefalopatía Espongiforme Bovina , Parásitos , Enfermedades por Prión , Toxoplasmosis , Animales , Bovinos , Humanos , Encefalopatía Espongiforme Bovina/diagnóstico , Imagen por Resonancia Magnética/métodos , Enfermedades por Prión/diagnóstico , Encéfalo/diagnóstico por imagen
11.
Eur J Med Chem ; 269: 116308, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38503166

RESUMEN

Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 µM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 µM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Animales , Subtilisina/metabolismo , Secuencia de Aminoácidos , Plasmodium falciparum/metabolismo , Péptidos , Malaria Falciparum/parasitología , Serina Proteasas/metabolismo , Relación Estructura-Actividad , Antimaláricos/farmacología , Antimaláricos/química , Proteínas Protozoarias , Mamíferos/metabolismo
12.
Virulence ; 15(1): 2329566, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38509723

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite responsible for a pathology called toxoplasmosis, which primarily affects immunocompromised individuals and developing foetuses. The parasite can scavenge essential nutrients from its host to support its growth and survival. Among them, iron is one of the most important elements needed to sustain basic cellular functions as it is involved in a number of key metabolic processes, including oxygen transport, redox balance, and electron transport. We evaluated the effects of an iron chelator on the development of several parasite strains and found that they differed in their ability to tolerate iron depletion. The growth of parasites usually associated with a model of acute toxoplasmosis was strongly affected by iron depletion, whereas cystogenic strains were less sensitive as they were able to convert into persisting developmental forms that are associated with the chronic form of the disease. Ultrastructural and biochemical characterization of the impact of iron depletion on parasites also highlighted striking changes in both their metabolism and that of the host, with a marked accumulation of lipid droplets and perturbation of lipid homoeostasis. Overall, our study demonstrates that although acute iron depletion has an important effect on the growth of T. gondii, it has a more profound impact on actively dividing parasites, whereas less metabolically active parasite forms may be able to avoid some of the most detrimental consequences.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Animales , Humanos
13.
Redox Biol ; 71: 103122, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490068

RESUMEN

Typical two-cysteine peroxiredoxins (2-Cys-PRXs) are H2O2-metabolizing enzymes whose activity relies on two cysteine residues. Protists of the family Trypanosomatidae invariably express one cytosolic 2-Cys-PRX (cPRX1). However, the Leishmaniinae sub-family features an additional isoform (cPRX2), almost identical to cPRX1, except for the lack of an elongated C-terminus with a Tyr-Phe (YF) motif. Previously, cytosolic PRXs were considered vital components of the trypanosomatid antioxidant machinery. Here, we shed new light on the properties, functions and relevance of cPRXs from the human pathogen Leishmania infantum. We show first that LicPRX1 is sensitive to inactivation by hyperoxidation, mirroring other YF-containing PRXs participating in redox signaling. Using genetic fusion constructs with roGFP2, we establish that LicPRX1 and LicPRX2 can act as sensors for H2O2 and oxidize protein thiols with implications for signal transduction. Third, we show that while disrupting the LicPRX-encoding genes increases susceptibility of L. infantum promastigotes to external H2O2in vitro, both enzymes are dispensable for the parasites to endure the macrophage respiratory burst, differentiate into amastigotes and initiate in vivo infections. This study introduces a novel perspective on the functions of trypanosomatid cPRXs, exposing their dual roles as both peroxidases and redox sensors. Furthermore, the discovery that Leishmania can adapt to the absence of both enzymes has significant implications for our understanding of Leishmania infections and their treatment. Importantly, it questions the conventional notion that the oxidative response of macrophages during phagocytosis is a major barrier to infection and the suitability of cPRXs as drug targets for leishmaniasis.


Asunto(s)
Leishmania , Leishmaniasis , Parásitos , Animales , Humanos , Peroxirredoxinas/metabolismo , Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Parásitos/metabolismo , Oxidación-Reducción
14.
PLoS One ; 19(3): e0298400, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478489

RESUMEN

Facultative parasites can alternate between a free-living and a parasitic existence to complete their life cycle. Yet, it remains uncertain which lifestyle they prefer. The optimal foraging theory suggests that food preferences align with fitness benefits. To test this hypothesis, we investigated the facultative parasite nematode Rhabditis regina, assessing its host preference and the associated benefits. Two experiments were conducted using wild nematode populations collected from Phyllophaga polyphylla, their natural host. In the first experiment, we used a behavioral arena to assess host preference between the natural host and two experimental hosts: Spodoptera frugiperda which is an alternative host and dead Tenebrio molitor, which simulates a saprophytic environment. In the second experiment, we subjected wild nematodes to "experimental evolution" lasting 50 generations in S. frugiperda and 53 generations in T. molitor carcass. We then compared life history traits (the size, survival, number of larvae, and glycogen and triglycerides as energy reserves) of dauer larvae with those nematodes from P. polyphylla (control group). We found a significant preference for P. polyphylla, which correlated with higher values in the nematode's life history traits. In contrast, the preference for S. frugiperda and the saprophytic environment was lower, resulting in less efficient life history traits. These findings align with the optimal foraging theory, as the nematode's parasitic preferences are in line with maximizing fitness. This also indicates that R. regina exhibits specificity to P. polyphylla and is better adapted to a parasitic lifestyle than a free-living one, suggesting an evolutionary pathway towards parasitism.


Asunto(s)
Escarabajos , Nematodos , Parásitos , Rhabditoidea , Animales , Larva/parasitología , Interacciones Huésped-Parásitos
15.
Nat Commun ; 15(1): 2235, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472173

RESUMEN

Intracellular pathogens develop elaborate mechanisms to survive within the hostile environments of host cells. Theileria parasites infect bovine leukocytes and cause devastating diseases in cattle in developing countries. Theileria spp. have evolved sophisticated strategies to hijack host leukocytes, inducing proliferative and invasive phenotypes characteristic of cell transformation. Intracellular Theileria parasites secrete proteins into the host cell and recruit host proteins to induce oncogenic signaling for parasite survival. It is unknown how Theileria parasites evade host cell defense mechanisms, such as autophagy, to survive within host cells. Here, we show that Theileria annulata parasites sequester the host eIF5A protein to their surface to escape elimination by autophagic processes. We identified a small-molecule compound that reduces parasite load by inducing autophagic flux in host leukocytes, thereby uncoupling Theileria parasite survival from host cell survival. We took a chemical genetics approach to show that this compound induced host autophagy mechanisms and the formation of autophagic structures via AMPK activation and the release of the host protein eIF5A which is sequestered at the parasite surface. The sequestration of host eIF5A to the parasite surface offers a strategy to escape elimination by autophagic mechanisms. These results show how intracellular pathogens can avoid host defense mechanisms and identify a new anti-Theileria drug that induces autophagy to target parasite removal.


Asunto(s)
Parásitos , Theileria , Theileriosis , Animales , Bovinos , Theileria/genética , Theileriosis/parasitología , Interacciones Huésped-Parásitos/fisiología , Transducción de Señal
16.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473741

RESUMEN

Iron is an indispensable nutrient for the survival of Toxoplasma gondii; however, excessive amounts can lead to toxicity. The parasite must overcome the host's "nutritional immunity" barrier and compete with the host for iron. Since T. gondii can infect most nucleated cells, it encounters increased iron stress during parasitism. This study assessed the impact of iron stress, encompassing both iron depletion and iron accumulation, on the growth of T. gondii. Iron accumulation disrupted the redox balance of T. gondii while enhancing the parasite's ability to adhere in high-iron environments. Conversely, iron depletion promoted the differentiation of tachyzoites into bradyzoites. Proteomic analysis further revealed proteins affected by iron depletion and identified the involvement of phosphotyrosyl phosphatase activator proteins in bradyzoite formation.


Asunto(s)
Parásitos , Toxoplasma , Animales , Toxoplasma/metabolismo , Proteómica , Diferenciación Celular
17.
Parasit Vectors ; 17(1): 105, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439083

RESUMEN

BACKGROUND: The human sortilin protein is an important drug target and detection marker for cancer research. The sortilin from Toxoplasma gondii transports proteins associated with the apical organelles of the parasite. In this study, we aimed to determine the intracellular localization and structural domains of T. gondii sortilin, which may mediate protein transportation. Approaches to the functional inhibition of sortilin to establish novel treatments for T. gondii infections were explored. METHODS: A gene encoding the sortilin protein was identified in the T. gondii genome. Immunoprecipitation and mass spectrometry were performed to identify the protein species transported by T. gondii sortilin. The interaction of each structural domain of sortilin with the transported proteins was investigated using bio-layer interferometry. The binding regions of the transported proteins in sortilin were identified. The effect of the sortilin inhibitor AF38469 on the infectivity of T. gondii was investigated. The binding site of AF38469 on sortilin was determined. RESULTS: The subdomains Vps10, sortilin-C, and sortilin-M of the sortilin were identified as the binding regions for intracellular transportation of the target proteins. The sortilin inhibitor AF38469 bound to the Vps10 structural domain of T. gondii sortilin, which inhibited parasite invasion, replication, and intracellular growth in vitro and was therapeutic in mice infected with T. gondii. CONCLUSION: The Vps10, sortilin-C, and sortilin-M subdomains of T. gondii sortilin were identified as functional regions for intracellular protein transport. The binding region for the sortilin inhibitor AF38469 was also identified as the Vps10 subdomain. This study establishes sortilin as a promising drug target against T. gondii and provides a valuable reference for the development of anti-T. gondii drug-target studies.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Hidrocarburos Fluorados , Parásitos , Piridinas , Toxoplasma , Humanos , Animales , Ratones , Toxoplasma/genética , Proliferación Celular
18.
Front Cell Infect Microbiol ; 14: 1335946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333034

RESUMEN

The lethal zoonosis alveolar echinococcosis is caused by tumour-like growth of the metacestode stage of the tapeworm Echinococcus multilocularis within host organs. We previously demonstrated that metacestode proliferation is exclusively driven by somatic stem cells (germinative cells), which are the only mitotically active parasite cells that give rise to all differentiated cell types. The Echinococcus gene repertoire required for germinative cell maintenance and differentiation has not been characterised so far. We herein carried out Illumina sequencing on cDNA from Echinococcus metacestode vesicles, from metacestode tissue depleted of germinative cells, and from Echinococcus primary cell cultures. We identified a set of ~1,180 genes associated with germinative cells, which contained numerous known stem cell markers alongside genes involved in replication, cell cycle regulation, mitosis, meiosis, epigenetic modification, and nucleotide metabolism. Interestingly, we also identified 44 stem cell associated transcription factors that are likely involved in regulating germinative cell differentiation and/or pluripotency. By in situ hybridization and pulse-chase experiments, we also found a new general Echinococcus stem cell marker, EmCIP2Ah, and we provide evidence implying the presence of a slow cycling stem cell sub-population expressing the extracellular matrix factor Emkal1. RNA-Seq analyses on primary cell cultures revealed that metacestode-derived Echinococcus stem cells display an expanded differentiation capability and do not only form differentiated cell types of the metacestode, but also cells expressing genes specific for protoscoleces, adult worms, and oncospheres, including an ortholog of the schistosome praziquantel target, EmTRPMPZQ. Finally, we show that primary cell cultures contain a cell population expressing an ortholog of the tumour necrosis factor α receptor family and that mammalian TNFα accelerates the development of metacestode vesicles from germinative cells. Taken together, our analyses provide a robust and comprehensive characterization of the Echinococcus germinative cell transcriptome, demonstrate expanded differentiation capability of metacestode derived stem cells, and underscore the potential of primary germinative cell cultures to investigate developmental processes of the parasite. These data are relevant for studies into the role of Echinococcus stem cells in parasite development and will facilitate the design of anti-parasitic drugs that specifically act on the parasite germinative cell compartment.


Asunto(s)
Echinococcus multilocularis , Parásitos , Animales , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Parásitos/genética , Larva , Perfilación de la Expresión Génica , Técnicas de Cultivo de Célula , Células Madre , Mamíferos/genética
19.
Mol Biol Cell ; 35(4): ar57, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416592

RESUMEN

Intracellular cargo transport is a ubiquitous cellular process in all eukaryotes. In many cell types, membrane bound cargo is associated with molecular motors which transport cargo along microtubule and actin tracks. In Toxoplasma gondii (T. gondii), an obligate intracellular parasite in the phylum Apicomplexa, organization of the endomembrane pathway depends on actin and an unconventional myosin motor, myosin F (MyoF). Loss of MyoF and actin disrupts vesicle transport, organelle positioning, and division of the apicoplast, a nonphotosynthetic plastid organelle. How this actomyosin system contributes to these cellular functions is still unclear. Using live-cell imaging, we observed that MyoF-EmeraldFP (MyoF-EmFP) displayed a dynamic and filamentous-like organization in the parasite cytosol, reminiscent of cytosolic actin filament dynamics. MyoF was not associated with the Golgi, apicoplast or dense granule surfaces, suggesting that it does not function using the canonical cargo transport mechanism. Instead, we found that loss of MyoF resulted in a dramatic rearrangement of the actin cytoskeleton in interphase parasites accompanied by significantly reduced actin dynamics. However, actin organization during parasite replication and motility was unaffected by the loss of MyoF. These findings revealed that MyoF is an actin organizing protein in Toxoplasma and facilitates cargo movement using an unconventional transport mechanism.


Asunto(s)
Parásitos , Toxoplasma , Animales , Actinas/metabolismo , Toxoplasma/metabolismo , Miosinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Parásitos/metabolismo
20.
Antimicrob Agents Chemother ; 68(3): e0120223, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38349157

RESUMEN

Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by larvae of the Echinococcus granulosus sensu lato (s.l.) cluster. There is an urgent need to develop new drug targets and drug molecules to treat CE. Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a serine/threonine protein kinase consisting of α, ß, and γ subunits, plays a key role in the regulation of energy metabolism. However, the role of AMPK in regulating glucose metabolism in E. granulosus s.l. and its effects on parasite viability is unknown. In this study, we found that targeted knockdown of EgAMPKα or a small-molecule AMPK inhibitor inhibited the viability of E. granulosus sensu stricto (s.s.) and disrupted the ultrastructure. The results of in vivo experiments showed that the AMPK inhibitor had a significant therapeutic effect on E. granulosus s.s.-infected mice and resulted in the loss of cellular structures of the germinal layer. In addition, the inhibition of the EgAMPK/EgGLUT1 pathway limited glucose uptake and glucose metabolism functions in E. granulosus s.s.. Overall, our results suggest that EgAMPK can be a potential drug target for CE and that inhibition of EgAMPK activation is an effective strategy for the treatment of disease.


Asunto(s)
Equinococosis , Echinococcus granulosus , Parásitos , Animales , Ratones , Proteínas Quinasas Activadas por AMP , Equinococosis/tratamiento farmacológico , Equinococosis/parasitología , Zoonosis/parasitología , Glucosa , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA