Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
J Environ Manage ; 366: 121700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996599

RESUMEN

Co-digestion has been considered a promising method to improve methane yield. The effect of the proportion of dominant substrate on the performance and microbial community of anaerobic digestion of Pennisetum hybrid (PH) and livestock waste (LW) was investigated. An obvious synergistic effect was obtained with an increase of 15.20%-17.45% in specific methane yield compared to the predicted value. Meanwhile, the dominant substrate influenced the relational model between methane yield enhancement rate and mixture ratio. For the LW-dominant systems, a parabolic model between enhancement rate and mixture ratio was observed with a highest value of 392.16 mL/g VS achieved at a PH:LW ratio of 2:8. While a linear pattern appeared for PH-dominant systems with the highest methane yield of 307.59 mL/g VS. Co-digestion selectively enriched the relative abundance of Clostridium_sensu_stricto_1, Terrisporobacter, Syntrophomonas, Methanosarcina and Methanobacterium, which boosted the performance of hydrolysis, acidogenesis, acetogenesis and methanogenesis processes.


Asunto(s)
Ganado , Metano , Pennisetum , Pennisetum/metabolismo , Animales , Metano/metabolismo , Anaerobiosis
2.
Food Chem ; 457: 140170, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936130

RESUMEN

This study aimed to evaluate the effect of extrusion and of open-pan cooking on whole germinated and non-germinated grains of pearl millet (Pennisetum glaucum L. R. Br.), on its chemical-nutritional composition and in vitro iron bioavailability. The experimental design consisted of three flours: non-germination open-pan cooked millet flour (NGOPCMF), germination open-pan cooked millet flour (GOPCMF), and extrusion cooked millet flour (ECMF). The ECMF increased the carbohydrates, iron, manganese, diosmin, and cyanidin and decreased the total dietary fiber, resistant starch, lipids, and total vitamin E, in relation to NGOPCMF. The GOPCMF increased the lysine and vitamin C and decreased the phytate, lipids, total phenolic, total vitamin E, and riboflavin concentration, in relation to NGOPCMF. Furthermore, germinated cooked millet flour and extruded millet flour improved iron availability in vitro compared to non-germinated cooked millet flour. GOPCMF and ECMF generally preserved the chemical-nutritional composition of pearl millet and improved in vitro iron bioavailability; therefore, they are nutritionally equivalent and can be used to develop pearl millet-based products.


Asunto(s)
Disponibilidad Biológica , Culinaria , Harina , Germinación , Hierro , Pennisetum , Pennisetum/química , Pennisetum/metabolismo , Pennisetum/crecimiento & desarrollo , Hierro/análisis , Hierro/metabolismo , Harina/análisis , Valor Nutritivo , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Fibras de la Dieta/análisis , Fibras de la Dieta/metabolismo
3.
Transgenic Res ; 33(3): 131-147, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739244

RESUMEN

Δ1-pyrroline-5-carboxylate synthetase (P5CS) is one of the key regulatory enzymes involved in the proline biosynthetic pathway. Proline acts as an osmoprotectant, molecular chaperone, antioxidant, and regulator of redox homeostasis. The accumulation of proline during stress is believed to confer tolerance in plants. In this study, we cloned the complete CDS of the P5CS from pearl millet (Pennisetum glaucum (L.) R.Br. and transformed into tobacco. Three transgenic tobacco plants with single-copy insertion were analyzed for drought and heat stress tolerance. No difference was observed between transgenic and wild-type (WT) plants when both were grown in normal conditions. However, under heat and drought, transgenic plants have been found to have higher chlorophyll, relative water, and proline content, and lower malondialdehyde (MDA) levels than WT plants. The photosynthetic parameters (stomatal conductance, intracellular CO2 concentration, and transpiration rate) were also observed to be high in transgenic plants under abiotic stress conditions. qRT-PCR analysis revealed that the expression of the transgene in drought and heat conditions was 2-10 and 2-7.5 fold higher than in normal conditions, respectively. Surprisingly, only P5CS was increased under heat stress conditions, indicating the possibility of feedback inhibition. Our results demonstrate the positive role of PgP5CS in enhancing abiotic stress tolerance in tobacco, suggesting its possible use to increase abiotic stress-tolerance in crops for sustained yield under adverse climatic conditions.


Asunto(s)
Sequías , Nicotiana , Plantas Modificadas Genéticamente , Prolina , Estrés Fisiológico , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/metabolismo , Estrés Fisiológico/genética , Prolina/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo
4.
Int J Food Microbiol ; 417: 110696, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38615426

RESUMEN

The probiotic beverage was developed using germinated and ungerminated pearl millet flour and green gram milk. The germinated and ungerminated pearl millet flour was added to green gram milk at different concentrations (0.5-2.5 %) along with sugar and cardamom. The mixtures were then inoculated with probiotic bacteria Lactobacillus acidophilus incubated at 37 °C for 6 h. Characterization of probiotic beverages was carried out during storage at (4 ± 1)°C for 21 days. The germinated flour beverage had high acidity as compared to the ungerminated flour beverage. The probiotic count in germinated and ungerminated flour beverages ranged from 8.19 to 8.77 × 107 and 8.04 to 8.52 × 107 log CFU/mL, respectively. Antioxidant activity, polyphenol content increased with an increase in the concentration of flour in the beverage. The LC-MS analysis found the existence of vitexin and isovitexin as the main polyphenolic compounds in the probiotic beverage. Non-dairy probiotic beverage prepared with 0.5 % germinated millet flour gave the best taste, color, texture, and rheological properties.


Asunto(s)
Harina , Lactobacillus acidophilus , Pennisetum , Probióticos , Probióticos/análisis , Harina/análisis , Lactobacillus acidophilus/crecimiento & desarrollo , Bebidas/análisis , Bebidas/microbiología , Leche/química , Leche/microbiología , Antioxidantes/análisis , Animales , Polifenoles/análisis , Germinación , Microbiología de Alimentos , Gusto
5.
BMC Plant Biol ; 24(1): 197, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500040

RESUMEN

BACKGROUND: Plant microbiome confers versatile functional roles to enhance survival fitness as well as productivity. In the present study two pearl millet panicle microbiome member species Bacillus subtilis PBs 12 and Bacillus paralicheniformis PBl 36 found to have beneficial traits including plant growth promotion and broad-spectrum antifungal activity towards taxonomically diverse plant pathogens. Understanding the genomes will assist in devising a bioformulation for crop protection while exploiting their beneficial functional roles. RESULTS: Two potential firmicute species were isolated from pearl millet panicles. Morphological, biochemical, and molecular characterization revealed their identities as Bacillus subtilis PBs 12 and Bacillus paralicheniformis PBl 36. The seed priming assays revealed the ability of both species to enhance plant growth promotion and seedling vigour index. Invitro assays with PBs 12 and PBl 36 showed the antibiosis effect against taxonomically diverse plant pathogens (Magnaporthe grisea; Sclerotium rolfsii; Fusarium solani; Alternaria alternata; Ganoderma sp.) of crops and multipurpose tree species. The whole genome sequence analysis was performed to unveil the genetic potential of these bacteria for plant protection. The complete genomes of PBs 12 and PBl 36 consist of a single circular chromosome with a size of 4.02 and 4.33 Mb and 4,171 and 4,606 genes, with a G + C content of 43.68 and 45.83%, respectively. Comparative Average Nucleotide Identity (ANI) analysis revealed a close similarity of PBs 12 and PBl 36 with other beneficial strains of B. subtilis and B. paralicheniformis and found distant from B. altitudinis, B. amyloliquefaciens, and B. thuringiensis. Functional annotation revealed a majority of pathway classes of PBs 12 (30) and PBl 36 (29) involved in the biosynthesis of secondary metabolites, polyketides, and non-ribosomal peptides, followed by xenobiotic biodegradation and metabolism (21). Furthermore, 14 genomic regions of PBs 12 and 15 of PBl 36 associated with the synthesis of RiPP (Ribosomally synthesized and post-translationally modified peptides), terpenes, cyclic dipeptides (CDPs), type III polyketide synthases (T3PKSs), sactipeptides, lanthipeptides, siderophores, NRPS (Non-Ribosomal Peptide Synthetase), NRP-metallophone, etc. It was discovered that these areas contain between 25,458 and 33,000 secondary metabolite-coding MiBiG clusters which code for a wide range of products, such as antibiotics. The PCR-based screening for the presence of antimicrobial peptide (cyclic lipopeptide) genes in PBs 12 and 36 confirmed their broad-spectrum antifungal potential with the presence of spoVG, bacA, and srfAA AMP genes, which encode antimicrobial compounds such as subtilin, bacylisin, and surfactin. CONCLUSION: The combined in vitro studies and genome analysis highlighted the antifungal potential of pearl millet panicle-associated Bacillus subtilis PBs12 and Bacillus paralicheniformis PBl36. The genetic ability to synthesize several antimicrobial compounds indicated the industrial value of PBs 12 and PBl 36, which shed light on further studies to establish their action as a biostimulant for crop protection.


Asunto(s)
Antiinfecciosos , Bacillus , Pennisetum , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Antiinfecciosos/metabolismo , Genómica , Plantas/metabolismo , Péptidos/metabolismo
6.
J Agric Food Chem ; 71(51): 20701-20712, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38088361

RESUMEN

Purple Pennisetum (Pennisetum purpureum Schumach), a hybrid between Taihucao No. 2 and the local wild species of purple Pennisetum, has dark red stems and leaves due to its anthocyanin content. This study explores the potential of purple napiergrass extracts (PNE) in alleviating obesity and metabolic disorders induced by a high-fat diet in mice, where 50% of the caloric content is derived from fat. Mice were orally administered low-dose or high-dose PNE alongside a high-fat diet. Experimental findings indicate that PNE attenuated weight gain, reduced liver, and adipose tissue weight, and lowered blood cholesterol, triglyceride, low-density lipoprotein, and blood sugar levels. Stained sections showed that PNE inhibited lipid accumulation and fat hypertrophy in the liver. Immunoblotting analysis suggested that PNE improved the inflammatory response associated with obesity, dyslipidemia, and hyperglycemia induced by a high-fat diet. Furthermore, PNE potentially functions as a PPAR-γ agonist, increasing the adiponectin (ADIPOQ) concentration and suppressing inflammatory factors, while elevating the anti-inflammatory factor interleukin-10 (IL-10) in the liver. PNE-treated mice showed enhanced activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and AMP-activated protein kinase (AMPK) pathways and increased fatty acid oxidation and liver lipolysis. In conclusion, this study elucidated the mechanisms underlying the anti-inflammatory, PI3K/Akt, and AMPK pathways in a high-fat diet-induced obesity model. These findings highlight the potential of PNE in reducing weight, inhibiting inflammation, and improving blood sugar and lipid levels, showing the potential for addressing obesity-related metabolic disorders in humans.


Asunto(s)
Enfermedades Metabólicas , Pennisetum , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pennisetum/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Glucemia/metabolismo , Extractos Vegetales/farmacología , Obesidad/tratamiento farmacológico , Obesidad/etiología , Hígado/metabolismo , Triglicéridos/metabolismo , Agua/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Antiinflamatorios/metabolismo , Ratones Endogámicos C57BL
7.
Huan Jing Ke Xue ; 44(12): 6973-6981, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098420

RESUMEN

The combined pollution of microplastics and heavy metals can potentially interact. This may have an important impact on the growth and development of plants and the rhizosphere microbial community and function. In this study, the effects of heavy metal cadmium combined with different types of microplastics(PE and PS), different particle sizes(13 µm and 550 µm), and different concentrations(0.1% and 1%) on Pennisetum hydridum growth were studied under pot conditions. The results showed that the effects of the combined pollution of MPs and Cd on plant dry weight and Cd accumulation varied with different types, concentrations, and particle sizes of MPs, and the combined pollution stress increased, whereas the Cd content and Cd accumulation decreased. Metagenomic analysis showed that the combined contamination of MPs and Cd could change the composition of the bacterial community and reduce bacterial diversity, among which the ACE index and Chao1 index in the 550 µm 0.1% PE+Cd treatment group were the most significant. Metagenomic analysis of microbial species function showed that the main functional groups were metabolism, amino acid transport and metabolism, energy generation and conversion, and signal transduction mechanisms. Compared with that under single Cd pollution, the addition of MPs could change the gene abundance of functional groups such as metabolism, amino acid transport and metabolism, and energy generation and conversion, and the effects of different MPs types, concentrations, and particle sizes varied. In this study, metagenomics and amplification sequencing were used to analyze the effects of the combined pollution of MPs and Cd on the bacterial community and function in P. hydridum in order to provide basic data and scientific basis for the ecotoxicological effects of the combined heavy metal pollution of MPs and its biological remediation.


Asunto(s)
Metales Pesados , Microbiota , Pennisetum , Contaminantes del Suelo , Cadmio/análisis , Microplásticos/análisis , Suelo/química , Pennisetum/metabolismo , Plásticos , Rizosfera , Metales Pesados/análisis , Bacterias/metabolismo , Aminoácidos , Contaminantes del Suelo/análisis
8.
Plant Physiol Biochem ; 205: 108195, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995580

RESUMEN

Iron and zinc deficiencies are the most prevalent cause of global hidden hunger. Rice, being one of the most consumed crops worldwide, is suitable to target for Fe and Zn biofortification. In present study, we generated rice transgenic lines to meet the recommended dietary requirement of iron and zinc through endosperm specific expression of dicot (kidney bean) and monocot (pearl millet) Ferritins along with constitutive expression of rice nicotianamine synthase 2 (OsNAS2) gene. Visualization through perls' prussian staining and quantification by ICP-MS showed significant improvement in grain iron content in all the transgenic lines. The transgenic lines expressing any of the three selected gene combinations (PvFerrtin-OsNAS2, feedPgFerrtin-OsNAS2 and foodPgFerritin-OsNAS2), showed the potential to surpass the 30% of the estimated average requirement (13 µg/g Fe and 28 µg/g Zn) proposed for rice in HarvestPlus breeding program. Though the expression of PvFerritin along with OsNAS2 gene in IET10364 (indica) variety showed the best result, providing up to 4.2- and 3.5-fold increase in iron (30.56 µg/g) and zinc (60.1 µg/g) content, respectively; in polished grains compared to non-transgenic control. Thus, the lines developed in our study can be used for further breeding purpose to enhance the iron and zinc content in commercial rice varieties.


Asunto(s)
Oryza , Pennisetum , Phaseolus , Hierro/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Zinc/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Oryza/genética , Oryza/metabolismo , Biofortificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fitomejoramiento
9.
BMC Biol ; 21(1): 161, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480118

RESUMEN

BACKGROUND: Pennisetum giganteum (AABB, 2n = 4x = 28) is a C4 plant in the genus Pennisetum with origin in Africa but currently also grown in Asia and America. It is a crucial forage and potential energy grass with significant advantages in yield, stress resistance, and environmental adaptation. However, the mechanisms underlying these advantageous traits remain largely unexplored. Here, we present a high-quality genome assembly of the allotetraploid P. giganteum aiming at providing insights into biomass accumulation. RESULTS: Our assembly has a genome size 2.03 Gb and contig N50 of 88.47 Mb that was further divided into A and B subgenomes. Genome evolution analysis revealed the evolutionary relationships across the Panicoideae subfamily lineages and identified numerous genome rearrangements that had occurred in P. giganteum. Comparative genomic analysis showed functional differentiation between the subgenomes. Transcriptome analysis found no subgenome dominance at the overall gene expression level; however, differentially expressed homoeologous genes and homoeolog-specific expressed genes between the two subgenomes were identified, suggesting that complementary effects between the A and B subgenomes contributed to biomass accumulation of P. giganteum. Besides, C4 photosynthesis-related genes were significantly expanded in P. giganteum and their sequences and expression patterns were highly conserved between the two subgenomes, implying that both subgenomes contributed greatly and almost equally to the highly efficient C4 photosynthesis in P. giganteum. We also identified key candidate genes in the C4 photosynthesis pathway that showed sustained high expression across all developmental stages of P. giganteum. CONCLUSIONS: Our study provides important genomic resources for elucidating the genetic basis of advantageous traits in polyploid species, and facilitates further functional genomics research and genetic improvement of P. giganteum.


Asunto(s)
Pennisetum , Pennisetum/genética , Biomasa , Genoma de Planta , Poliploidía , Perfilación de la Expresión Génica
10.
Genetica ; 151(3): 251-265, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37266766

RESUMEN

In addition to their roles in developmental and metabolic processes, MYB transcription factors play crucial roles in plant defense mechanisms and stress responses. A comprehensive analysis of six pearl millet genomes revealed the presence of 1133 MYB genes, which can be classified into four phylogenetically distinct subgroups. The duplication pattern of MYB genes across the pearl millet genomes demonstrates their conserved and similar evolutionary history. Overall, MYB genes were observed to be involved in drought and heat stress responses, with stronger differential expressed observed in root tissues. Multiple analyses indicated that MYB genes mediate abiotic stress responses by modulating abscisic acid-related pathways, circadian rhythms, and histone modification processes. A substantial number of duplicated genes were determined to exhibit differential expression under abiotic stress. The consistent positive expression trend observed in duplicated gene pairs, such as PMA5G04432.1 and PMA2G00728.1, across various abiotic stresses suggests that duplicated MYB genes plays a key role in the evolution of adaptive responses of pearl millet to abiotic stresses.


Asunto(s)
Genoma de Planta , Pennisetum , Estrés Fisiológico , Pennisetum/genética , Proteínas Proto-Oncogénicas c-myb/genética , Filogenia , Regulación de la Expresión Génica de las Plantas , Cromosomas de las Plantas , Redes Reguladoras de Genes
11.
Environ Pollut ; 328: 121658, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37075919

RESUMEN

Cadmium (Cd) is among the toxic pollutants that harms the both animals and plants. The natural antioxidant, melatonin can improve Cd-stress tolerance but its potential role in reducing Cd stress and resilience mechanisms in pearl millet (Pennisetum glaucum L.) is remain unclear. The present study suggests that Cd causes severe oxidative damage by decreasing photosynthesis, and increasing reactive oxygen species (ROS), malondialdehyde content (MDA), and Cd content in different parts of pearl millet. However, exogenous melatonin (soil application and foliar treatment) mitigated the Cd toxicity and enhanced the growth, antioxidant defense system, and differentially regulated the expression of antioxidant-responsive genes i. e superoxide dismutase SOD-[Fe] 2, Fe-superoxide dismutase, Peroxiredoxin 2C, and L-ascorbate peroxidase-6. The results showed that foliar melatonin at F-200/50 significantly increased the plant height, chlorophyll a, b, a+b and carotenoids by 128%, 121%, 150%, 122%, and 69% over the Cd treatment, respectively. The soil and foliar melatonin at S-100/50 and F-100/50 reduced the ROS by 36%, and 44%, and MDA by 42% and 51% over the Cd treatment, respectively. Moreover, F200/50 significantly boosted the activities of antioxidant enzymes i. e SOD by 141%, CAT 298%, POD 117%, and APX 155% over the Cd treatment. Similarly, a significant reduction in Cd content in root, stem, and leaf was found on exposure to higher concentrations of exogenous melatonin. These findings suggest that exogenous melatonin may significantly and differentially improve the tolerance to Cd stress in crop plants. However, field applications, type of plant species, concentration of dose, and type of stress may vary with the degree of tolerance in crop plants.


Asunto(s)
Melatonina , Pennisetum , Contaminantes del Suelo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Melatonina/farmacología , Cadmio/toxicidad , Cadmio/metabolismo , Pennisetum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Clorofila A , Suelo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Contaminantes del Suelo/toxicidad
12.
Curr Microbiol ; 80(5): 164, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014446

RESUMEN

Mycological (mycotoxigenic Fusarium and aflatoxigenic Aspergillus spp.) and multiple mycotoxins [aflatoxin B1 (AFB1), fumonisin B (FB), deoxynivalenol and zearalenone] surveillance was conducted on raw whole grain sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum) produced on smallholder farms, and processed products sold at open markets in northern Namibia. Fungal contamination was determined with morphological methods as well as with quantitative Real-Time PCR (qPCR). The concentrations of multiple mycotoxins in samples were determined with liquid chromatography tandem mass spectrometry. The incidence of mycotoxigenic Fusarium spp., Aspergillus flavus and A. parasiticus, as well as the concentrations of AFB1 and FB were significantly (P < 0.001) higher in the malts as compared to the raw whole grains, with Aspergillus spp. and AFB1 exhibiting the highest contamination (P < 0.001). None of the analysed mycotoxins were detected in the raw whole grains. Aflatoxin B1 above the regulatory maximum level set by the European Commission was detected in sorghum (2 of 10 samples; 20%; 3-11 µg/kg) and pearl millet (6 of 11 samples; 55%; 4-14 µg/kg) malts. Low levels of FB1 (6 of 10 samples; 60%; 15-245 µg/kg) were detected in sorghum malts and no FB was detected in pearl millet malts. Contamination possibly occurred postharvest, during storage, and/or transportation and processing. By critically monitoring the complete production process, the sources of contamination and critical control points could be identified and managed. Mycotoxin awareness and sustainable education will contribute to reducing mycotoxin contamination. This could ultimately contribute to food safety and security in northern Namibia where communities are exposed to carcinogenic mycotoxins in their staple diet.


Asunto(s)
Fumonisinas , Micotoxinas , Pennisetum , Sorghum , Humanos , Sorghum/química , Sorghum/microbiología , Pennisetum/microbiología , Aflatoxina B1 , Agricultores , Namibia , Grano Comestible , Aspergillus , Contaminación de Alimentos/análisis
13.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768807

RESUMEN

The MYB gene family widely exists in the plant kingdom and participates in the regulation of plant development and stress response. Pearl millet (Pennisetum glaucum (L.) R. Br.), as one of the most important cereals, is not only considered a good source of protein and nutrients but also has excellent tolerances to various abiotic stresses (e.g., salinity, water deficit, etc.). Although the genome sequence of pearl millet was recently published, bioinformatics and expression pattern analysis of the MYB gene family are limited. Here, we identified 208 PgMYB genes in the pearl millet genome and employed 193 high-confidence candidates for downstream analysis. Phylogenetic and structural analysis classified these PgMYBs into four subgroups. Eighteen pairs of segmental duplications of the PgMYB gene were found using synteny analysis. Collinear analysis revealed pearl millet had the closest evolutionary relationship with foxtail millet. Nucleotide substitution analysis (Ka/Ks) revealed PgMYB genes were under purifying positive selection pressure. Reverse transcription-quantitative PCR analysis of eleven R2R3-type PgMYB genes revealed they were preferentially expressed in shoots and seeds and actively responded to various environment stimuli. Current results provide insightful information regarding the molecular features of the MYB family in pearl millet to support further functional characterizations.


Asunto(s)
Pennisetum , Pennisetum/genética , Genes myb , Filogenia , Sintenía , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas
14.
Plant Physiol Biochem ; 195: 206-213, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36641944

RESUMEN

Pennisetum glaucum is an important forage grass for livestock. However, the large accumulation of cadmium (Cd) in plant tissues increases the risk of heavy metals entering the food chain in Cd-contaminated soils. Silicon (Si) can inhibit cadmium (Cd) uptake and enhance tolerance of plant to Cd toxicity, but whether and how Si alleviates Cd toxicity in grass and the underlying mechanisms are unclear. The present study explored the differential mechanisms of silicon-induced Cd transport in apoplast and symplast, Cd distribution in root tissue and antioxidant defense system in P. glaucum under Cd stress through hydroponic and pot experiments. The present results showed that exogenous Si supply significantly reduced Cd concentrations in apoplast and symplast; Si treatment increased monosilicic acid concentration in apoplast and symplast of the roots and shoots under Cd stress. Elemental analysis of root microdomains showed that Si treatment increased the distribution of Cd and Si in the endodermis by 42.6% and 14.0%, respectively. Si alleviated the adverse influences of Cd on plant growth, which were manifested in root morphological traits and root activity. In addition, Si addition significantly increased the activities of catalase and superoxide dismutase by 37.0% and 72.7%, and improved the efficiency of the ascorbate-glutathione cycle in Cd-stress shoots. Furthermore, Si significantly reduced the contents of hydrogen peroxide and superoxide anion in Cd-stressed shoots by 16.6% and 48.7%, respectively. These findings demonstrate that Si enhances the resistance of P. glaucum to Cd stress through regulating Cd transport pathways and activating antioxidant defense systems.


Asunto(s)
Pennisetum , Contaminantes del Suelo , Antioxidantes/metabolismo , Silicio/farmacología , Silicio/metabolismo , Cadmio/metabolismo , Pennisetum/metabolismo , Superóxido Dismutasa/metabolismo , Plantas/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
15.
Nutr Rev ; 81(6): 684-704, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36219789

RESUMEN

Millet is consumed as a staple food, particularly in developing countries, is part of the traditional diet in a number of relatively affluent countries, and is gaining popularity throughout the world. It is a valuable dietary energy source. In addition to high caloric value, several health-promoting attributes have been reported for millet seeds. This review describes many nutritional characteristics of millet seeds and their derivatives that are important to human health: antioxidant, antihypertensive, immunomodulatory or anti-inflammatory, antibacterial or antimicrobial, hypocholesterolemic, hypoglycemic, and anti-carcinogenic potential, and their role as modulators of gut health. There are several varieties, but the main focus of this review is on pearl millet (Cenchrus americanus [synonym Pennisetum glaucum]), one of the most widely eaten millet crops grown in India, though other millet types are also covered. In this article, the health-promoting properties of the natural components (ie, proteins, peptides, polyphenols, polysaccharides, oil, isoflavones, etc.) present in millet seeds are discussed. Although many of these health benefits have been demonstrated using animal models in vitro studies, human intervention-feeding trials are required to confirm several of the potential health benefits of millet seeds. Based on the nutritional and health-promoting attributes known for pearl millet (discussed in this review), finger millet and foxtail millet are suggested as good candidates for use in future nutritional interventions for improved human health.


Asunto(s)
Mijos , Pennisetum , Animales , Humanos , Polifenoles , Productos Agrícolas , Pennisetum/química , Antioxidantes
16.
Food Chem ; 402: 134277, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36137379

RESUMEN

A controlled in-vitro experiment was conducted to determine the bioaccessibility of extrinsic soil iron in pearl millet contaminated with typical Malawian soils. Pearl millet was contaminated with soils at ratios typically encountered in real life. Iron concentrations of soil-contaminated flour increased such that soil-derived iron contributed 56, 83 and 91% of the total iron when the proportions of soil were 0.1, 0.5 and 1% (soil: grain w/w), respectively. When soils were digested alone, the concentration of bioaccessible iron differed depending on the type of soil. However, the concentration of bioaccessible iron in soil-contaminated flours did not exceed that of uncontaminated flour and there was no effect of soil type. This suggests that knowledge of the proportion of extrinsic soil iron in soil-contaminated grains would be useful for iron bioavailability estimations. Vanadium is a reliable indicator of the presence of extrinsic soil iron in grains and has potential applications in this regard.


Asunto(s)
Pennisetum , Contaminantes del Suelo , Harina/análisis , Hierro/análisis , Suelo , Vanadio , Contaminantes del Suelo/análisis
17.
Environ Sci Pollut Res Int ; 30(10): 26208-26217, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36355236

RESUMEN

Cadmium (Cd) contamination in soil is a global problem. Recently, phytoremediation with plants, possessing high biomass and moderate Cd enrichment ability, has received excessive attention as a cost-effective method for Cd remediation from the soil. In this study, the plant growth, physiological responses, Cd concentration, accumulation, and distribution of the C4 grass hybrid Pennisetum (HP) were studied in different levels of Cd-contaminated soil in a pot experiment. Furthermore, a field trial was also conducted to accurately assess its practical phytoremediation potential in natural Cd-contaminated fallow filed. The results showed that HP possessed effective antioxidant enzymes to scavenge ROS and strong physiological coordination in response to Cd stress. The HP had a considerable Cd enrichment ability, and the maximal Cd uptake of 1.08 mg plant-1 was achieved at 60 mg kg-1 Cd in the pot. The maximal concentration of Cd in the aboveground parts and roots of HP were 49.33 mg kg-1 and 103.33 mg kg-1, respectively, when soil Cd was 70 mg kg-1 in the pot. The bioconcentration factor (BCF) of Cd in the aboveground parts was less than 1, while the BCF in the root was greater than 1, and the translocation factor (TF) was less than 0.5 in all Cd treatment groups. A total of 46.89-65.46% absorbed Cd stored in the aboveground parts in the pot. The Cd concentration in roots of HP was significantly higher compared to those in leaves and stems, and all BCFs were greater than 1.5 in a lightly Cd-contaminated field (0.35 mg kg-1). Furthermore, HP had high aboveground dry biomass up to 54.63 t ha-1 and accumulated 16.13 g ha-1 Cd in its aboveground parts in the field, which was accounted for about 91.54% of the total Cd extracted by the plant. The soil Cd concentration was reduced by 60.00% after planting HP. Our results suggest that HP is a potential phytoextractor for Cd in lightly Cd-contaminated soil as well as a phytostabilizer under strong Cd stress in the pot.


Asunto(s)
Pennisetum , Contaminantes del Suelo , Cadmio/análisis , Biodegradación Ambiental , Suelo , Antioxidantes , Plantas , Biomasa , Contaminantes del Suelo/análisis , Raíces de Plantas/química
18.
Biosci. j. (Online) ; 39: e39016, 2023. tab
Artículo en Inglés | LILACS | ID: biblio-1415904

RESUMEN

Elephant grass is indicated for silage production but requires additives to increase dry matter content because it reduces the production of effluents, potentially improves the fermentation pattern, and preserves the nutrients of the silage. This study aimed to evaluate the effects of including macaúba cake in elephant grass ensilage on dry matter content, lactic acid bacteria population, lactic acid production, pH values, losses by gases and effluents, and dry matter recovery. The experimental design was completely randomized, in a 3x6 factorial scheme, with three levels of inclusion of macaúba cake (0, 10, and 20%) and six opening times (1, 5, 10, 20, 40, and 60 days after ensilage), with four repetitions. Macaúba cake was an effective moisture-absorbing additive, increasing dry matter content, lactic acid bacteria population, and lactic acid content and reducing the pH. The losses by effluents and gases decreased, and dry matter recovery increased with the addition of this biodiesel co-product. The 20% level of inclusion of macaúba cake in elephant grass ensilage allowed for better preserving the ensiled material.


Asunto(s)
Ensilaje , Pennisetum , Alimentación Animal
19.
Huan Jing Ke Xue ; 43(9): 4810-4819, 2022 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-36096621

RESUMEN

A pot experiment was conducted to investigate the effects of citric acid application and mowing frequency on the remediation of cadmium (Cd) contaminated soil by napier grass (Pennisetum purpureum Schum). Three levels of citric acid were divided into three applications of 1.25, 2.5, and 5 mmol·kg-1. The mowing frequency of the plants was divided into no mowing, one mowing, and two mowing treatments. The results showed that:① 1.25 mmol·kg-1 citric acid increased the biomass of the upper part of the plant by 39.11% with one mowing, and multiple mowing treatments and high citric acid application were not beneficial to the biomass increase. ② Both citric acid application and mowing had the effect of increasing the Cd content in stems and leaves, and Cd content in stems harvested in the last mown crop was larger and increased by approximately six times under the 5 mmol·kg-1 citric acid application. ③ Citric acid application and mowing reduced the rhizosphere soil pH and organic matter and also reduced the total soil Cd content and TCLP-Cd content by a maximum of 14.29% and 10.17%, respectively. ④ Under the 1.25 mmol·kg-1citric acid application and one mowing treatment (L1), the best Cd extraction by Napier grass was achieved with 6.95 mg·plant-1 of above-ground parts, accounting for 9.38% of the total Cd content in the potted test soil. Therefore, the L1 treatment can be considered to improve the remediation efficiency when using napier grass to remediate Cd-contaminated soil in the future.


Asunto(s)
Pennisetum , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Ácido Cítrico/química , Plantas , Suelo/química , Contaminantes del Suelo/análisis
20.
Nutrients ; 14(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35889889

RESUMEN

Diabetes mellitus has become a troublesome and increasingly widespread condition. Treatment strategies for diabetes prevention in high-risk as well as in affected individuals are largely attributed to improvements in lifestyle and dietary control. Therefore, it is important to understand the nutritional factors to be used in dietary intervention. A decreased risk of diabetes is associated with daily intake of millet-based foods. Pearl millet is a highly nutritious grain, nutritionally comparable and even superior in calories, protein, vitamins, and minerals to other large cereals, although its intake is confined to lower income segments of society. Pearl millet contains phenolic compounds which possess antidiabetic activity. Thus, it can be used to prepare a variety of food products for diabetes mellitus. Moreover, it also has many health benefits, including combating diabetes mellitus, cancer, cardiovascular conditions, decreasing tumour occurrence, lowering blood pressure, heart disease risk, cholesterol, and fat absorption rate. Therefore, the current review addresses the role of pearl millet in managing diabetes.


Asunto(s)
Diabetes Mellitus , Pennisetum , Digestión , Grano Comestible/química , Humanos , Pennisetum/metabolismo , Fenoles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA