Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Pestic Biochem Physiol ; 201: 105901, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685232

RESUMEN

Plant diseases caused by Pseudomonas syringae are essentially controlled in the field with the use of copper-based products and antibiotics, raising environmental and safety concerns. Antimicrobial peptides (AMPs) derived from fungi may represent a sustainable alternative to those chemicals. Trichogin GA IV, a non-ribosomal, 11-residue long AMP naturally produced by the fungus Trichoderma longibrachiatum has the ability to insert into phospholipidic membranes and form water-filled pores, thereby perturbing membrane integrity and permeability. In previous studies, peptide analogs modified at the level of specific residues were designed to be water-soluble and active against plant pathogens. Here, we studied the role of glycine-to-lysine substitutions and of the presence of a C-terminal leucine amide on bioactivity against Pseudomonas syringae bacteria. P. syringae diseases affect a wide range of crops worldwide, including tomato and kiwifruit. Our results show that trichogin GA IV analogs containing two or three Gly-to-Lys substitutions are highly effective in vitro against P. syringae pv. tomato (Pst), displaying minimal inhibitory and minimal bactericidal concentrations in the low micromolar range. The same analogs are also able to inhibit in vitro the kiwifruit pathogen P. syringae pv. actinidiae (Psa) biovar 3. When sprayed on tomato plants 24 h before Pst inoculation, only tri-lysine containing analogs were able to significantly reduce bacterial titers and symptom development in infected plants. Our results point to a positive correlation between the number of lysine substitutions and the antibacterial activity. This correlation was supported by microscopy analyses performed with mono-, di- and tri-Lys containing analogs that showed a different degree of interaction with Pst cells and ultrastructural changes that culminated in cell lysis.


Asunto(s)
Antibacterianos , Lisina , Pseudomonas syringae , Pseudomonas syringae/efectos de los fármacos , Lisina/química , Lisina/farmacología , Antibacterianos/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Peptaiboles/farmacología , Peptaiboles/química , Pruebas de Sensibilidad Microbiana , Oligopéptidos/farmacología , Oligopéptidos/química , Solanum lycopersicum/microbiología
2.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686199

RESUMEN

Peptaibols are proteolysis-resistant, membrane-active peptides. Their remarkably stable helical 3D-structures are key for their bioactivity. They can insert themselves into the lipid bilayer as barrel staves, or lay on its surface like carpets, depending on both their length and the thickness of the lipid bilayer. Medium-length peptaibols are of particular interest for studying the peptide-membrane interaction because their length allows them to adopt either orientation as a function of the membrane thickness, which, in turn, might even result in an enhanced selectivity. Electron paramagnetic resonance (EPR) is the election technique used to this aim, but it requires the synthesis of spin-labeled medium-length peptaibols, which, in turn, is hampered by the poor reactivity of the Cα-tetrasubstituted residues featured in their sequences. After several years of trial and error, we are now able to give state-of-the-art advice for a successful synthesis of nitroxide-containing peptaibols, avoiding deleted sequences, side reactions and difficult purification steps. Herein, we describe our strategy and itsapplication to the synthesis of spin-labeled analogs of the recently discovered, natural, medium-length peptaibol pentadecaibin. We studied the antitumor activity of pentadecaibin and its analogs, finding potent cytotoxicity against human triple-negative breast cancer and ovarian cancer. Finally, our analysis of the peptide conformational preferences and membrane interaction proved that pentadecaibinspin-labeling does not alter the biological features of the native sequence and is suitable for further EPR studies. The nitroxide-containing pentadecaibins, and their synthetic strategy described herein, will help to shed light on the mechanism of the peptide-membrane interaction of medium-length peptaibols.


Asunto(s)
Antiinfecciosos , Peptaiboles , Humanos , Peptaiboles/farmacología , Marcadores de Spin , Membrana Dobles de Lípidos , Antiinfecciosos/farmacología
3.
J Nat Prod ; 86(4): 994-1002, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36947873

RESUMEN

Seven new 18-residue peptaibols, trichorzins A-G (1-7), were isolated from the sponge-derived fungus Trichoderma sp. GXIMD 01001. Their structures and configurations were characterized by a comprehensive interpretation of the NMR spectroscopic data, MS/MS fragmentation, Marfey's method, and ECD analysis. The general sequences of trichorzins A-G are as follows: Ac-Aib1-Ala/Ser2-Ala3-Aib/Iva4-Iva5-Gln6-Aib/Iva7-Val/allo-Ile8-Aib9-Gly10-Leu11-Aib12-Pro13-Leu14-Aib15-Aib16-Gln17-Trpol/Pheol18. The obtained compounds were assessed for their potential antiproliferative and antimicrobial activities. All obtained compounds did not show potent antibacterial activity but exhibited significant cytotoxicity, with the lowest IC50 values at 0.46-4.7 µM against four human carcinoma cell lines.


Asunto(s)
Peptaiboles , Trichoderma , Humanos , Peptaiboles/química , Trichoderma/química , Espectrometría de Masas en Tándem , Antibacterianos/química
4.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982610

RESUMEN

In the large field of bioactive peptides, peptaibols represent a unique class of compounds. They are membrane-active peptides, produced by fungi of the genus Trichoderma and known to elicit plant defenses. Among the short-length peptaibols, trichogin GA IV is nonhemolytic, proteolysis-resistant, antibacterial, and cytotoxic. Several trichogin analogs are endowed with potent activity against phytopathogens, thus representing a sustainable alternative to copper for plant protection. In this work, we tested the activity of trichogin analogs against a breast cancer cell line and a normal cell line of the same derivation. Lys-containing trichogins showed an IC50 below 12 µM, a peptide concentration not significantly affecting the viability of normal cells. Two analogs were found to be membrane-active but noncytotoxic. They were anchored to gold nanoparticles (GNPs) and further investigated for their ability to act as targeting agents. GNP uptake by cancer cells increased with peptide decoration, while it decreased in the corresponding normal epithelial cells. This work highlights the promising biological properties of peptaibol analogs in the field of cancer therapy either as cytotoxic molecules or as active targeting agents in drug delivery.


Asunto(s)
Hypocreales , Nanopartículas del Metal , Trichoderma , Oro/farmacología , Oro/metabolismo , Peptaiboles/farmacología , Peptaiboles/metabolismo , Hypocreales/metabolismo , Trichoderma/metabolismo
5.
J Phys Chem B ; 126(50): 10712-10720, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36440848

RESUMEN

We report total internal reflection (TIR)-Raman spectroscopy to study intermolecular interactions between membrane-binding peptides and lipid bilayer membranes. The method was applied to alamethicin (ALM), a model peptide for channel proteins, interacting with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer membranes at a silica/water interface. After a dimethyl sulfoxide (DMSO) solution of ALM was added into the water subphase of the DPPC/DPPC bilayer, Raman signals in the CH stretching region increased in intensity reflecting the appearance of the Raman bands due to ALM and DMSO. To identify ALM-dependent spectral changes, we removed DPPC and DMSO contributions from the Raman spectra. We first subtracted the spectrum of the DPPC bilayer from those after the addition of the ALM solution. The contribution of DMSO was then removed by subtracting a DMSO spectrum from the resultant spectra. The DMSO spectrum was obtained in a similar way from a control experiment where DMSO alone was added into the subphase. With the use of this double difference approach, the ALM-dependent changes were successfully obtained. Experiments with DPPC bilayers with deuterated acyl chains revealed that most of the spectral change observed after the addition of ALM was due to the vibrational bands of ALM, not originated from ALM-induced conformational changes of the lipid bilayers.


Asunto(s)
Membrana Dobles de Lípidos , Agua , Membrana Dobles de Lípidos/química , Agua/química , Dimetilsulfóxido , Péptidos , Peptaiboles , 1,2-Dipalmitoilfosfatidilcolina/química , Alameticina
6.
Chem Biodivers ; 19(9): e202200627, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35921066

RESUMEN

Total 23 eleven-residue peptaibols, including five reported ones (1-5) in our previous work, were isolated from the fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, which was obtained from the mushroom Clitocybe nebularis (Batsch) P. Kumm. The structures of the 13 new peptaibols (6-10 and 12-19) were determined by their NMR and MALDI-MS/MS data, their absolute structures were further determined by Marfey's analyses and their ECD data. Careful comparison of the structures of 1-23 showed that only seven residues varied including the 2nd (Gln2 /Asn2 ), 3rd (Ile3 /Val3 ), 4th (Ile4 /Val4 ), 6th (Pro6 /Hyp6 ), 8th (Leu8 /Val8 ), 10th (Pro10 /Hyp10 ) and 11th (Leuol11 /Ileol11 /Valol11 ) residues. Comparison of the IC50 s against the three tested cell lines of 1-23 indicated that 2nd, 3rd and 4th amino acid residues affected their cytotoxicities powerfully. Compounds 2, 5, 9, 11, 21 and 22 showed moderate antibacterial activities against Staphylococcus aureus MRSA T144, which also showed stronger cytotoxicities against BV2 and MCF-7 cells.


Asunto(s)
Peptaiboles , Trichoderma , Aminoácidos/metabolismo , Antibacterianos/química , Hypocreales , Peptaiboles/química , Peptaiboles/farmacología , Relación Estructura-Actividad , Espectrometría de Masas en Tándem , Trichoderma/química
7.
J Nat Prod ; 85(6): 1603-1616, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35696348

RESUMEN

Seven new peptaibols named tolypocladamides A-G have been isolated from an extract of the fungus Tolypocladium inflatum, which inhibits the interaction between Raf and oncogenic Ras in a cell-based high-throughput screening assay. Each peptaibol contains 11 amino acid residues, an octanoyl or decanoyl fatty acid chain at the N-terminus, and a leucinol moiety at the C-terminus. The peptaibol sequences were elucidated on the basis of 2D NMR and mass spectral fragmentation analyses. Amino acid configurations were determined by advanced Marfey's analyses. Tolypocladamides A-G caused significant inhibition of Ras/Raf interactions with IC50 values ranging from 0.5 to 5.0 µM in a nanobioluminescence resonance energy transfer (NanoBRET) assay; however, no interactions were observed in a surface plasmon resonance assay for binding of the compounds to wild type or G12D mutant Ras constructs or to the Ras binding domain of Raf. NCI 60 cell line testing was also conducted, and little panel selectivity was observed.


Asunto(s)
Antineoplásicos , Hypocreales , Aminoácidos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Hypocreales/química , Peptaiboles/farmacología
8.
Chem Biodivers ; 19(6): e202200286, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35502602

RESUMEN

Longibrachiamide A (1), a new 20-residue peptaibol, along with three known ones (2-4), were isolated from the fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, isolated from a mushroom Clitocybe nebularis (Batsch) P. Kumm, which was collected from coniferous forest of northeast China in our previous work. The structure of longibrachiamide A (1) was determined by its NMR and ESI-MS/MS data, the absolute configuration of 1 was further determined by Marfey's analyses. And the complete NMR data of 2-4 were also reported for the first time. The similar CD spectra of 1-4 showed that they all had mixed 310 -/α-helical conformations. Compounds 1-4 showed strong cytotoxicities against BV2, A549 and MCF-7 cells, and also showed moderate inhibitory effects against the tested Gram-positive bacteria, including MRSA T144 and VRE-10.


Asunto(s)
Hypocreales , Trichoderma , Peptaiboles/química , Peptaiboles/farmacología , Espectrometría de Masas en Tándem , Trichoderma/química
9.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884518

RESUMEN

Fungal species of genus Sepedonium are rich sources of diverse secondary metabolites (e.g., alkaloids, peptaibols), which exhibit variable biological activities. Herein, two new peptaibols, named ampullosporin F (1) and ampullosporin G (2), together with five known compounds, ampullosporin A (3), peptaibolin (4), chrysosporide (5), c(Trp-Ser) (6) and c(Trp-Ala) (7), have been isolated from the culture of Sepedonium ampullosporum Damon strain KSH534. The structures of 1 and 2 were elucidated based on ESI-HRMSn experiments and intense 1D and 2D NMR analyses. The sequence of ampullosporin F (1) was determined to be Ac-Trp1-Ala2-Aib3-Aib4-Leu5-Aib6-Gln7-Aib8-Aib9-Aib10-GluOMe11-Leu12-Aib13-Gln14-Leuol15, while ampullosporin G (2) differs from 1 by exchanging the position of Gln7 with GluOMe11. Furthermore, the total synthesis of 1 and 2 was carried out on solid-phase to confirm the absolute configuration of all chiral amino acids as L. In addition, ampullosporin F (1) and G (2) showed significant antifungal activity against B. cinerea and P. infestans, but were inactive against S. tritici. Cell viability assays using human prostate (PC-3) and colorectal (HT-29) cancer cells confirmed potent anticancer activities of 1 and 2. Furthermore, a molecular docking study was performed in silico as an attempt to explain the structure-activity correlation of the characteristic ampullosporins (1-3).


Asunto(s)
Antifúngicos/farmacología , Antineoplásicos/farmacología , Ésteres/química , Ácido Glutámico/química , Hypocreales/fisiología , Neoplasias/tratamiento farmacológico , Peptaiboles/farmacología , Ascomicetos/efectos de los fármacos , Botrytis/efectos de los fármacos , Humanos , Neoplasias/patología , Peptaiboles/química , Phytophthora infestans/efectos de los fármacos , Células Tumorales Cultivadas
10.
J Nat Prod ; 84(11): 2990-3000, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34781681

RESUMEN

Six new 16-residue peptaibols, acremopeptaibols A-F (1-6), along with five known compounds, were isolated from the cultures of the sponge-associated fungus Acremonium sp. IMB18-086 grown in the presence of the autoclaved bacterium Pseudomonas aeruginosa on solid rice medium. The peptaibol sequences were established based on comprehensive analysis of 1D and 2D NMR spectroscopic data in conjunction with HRESIMS/MS experiments. The configurations of the amino acid residues were determined by advanced Marfey's analysis. Compounds 1-6 feature the lack of the highly conserved Thr6 and Hyp10 residues in comparison with other members of the SF3 subfamily peptaibols. A plausible biosynthetic pathway of compounds 1-6 was proposed on the basis of genomic analysis. Compounds 1, 5, 7, and 10 exhibited significant antimicrobial activity against Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, and Candida albicans. Compounds 7-10 showed potent cytotoxicities against the A549 and/or HepG2 cancer cell lines.


Asunto(s)
Acremonium/metabolismo , Peptaiboles/aislamiento & purificación , Poríferos/microbiología , Pseudomonas aeruginosa/metabolismo , Células A549 , Animales , Vías Biosintéticas , Células Hep G2 , Humanos , Peptaiboles/química , Peptaiboles/farmacología
11.
Molecules ; 26(19)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34641569

RESUMEN

Fighting resistance to antibiotics and chemotherapeutics has brought bioactive peptides to the fore. Peptaibols are short α-aminoisobutyric acid-containing peptides produced by Trichoderma species. Here, we studied the production of peptaibols by Trichoderma atroviride O1 and evaluated their antibacterial and anticancer activity against drug-sensitive and multidrug-resistant bacterium and cancer cell lines. This was substantiated by an analysis of the activity of the peptaibol synthetase-encoding gene. Atroviridins, 20-residue peptaibols were detected using MALDI-TOF mass spectrometry. Gram-positive bacteria were susceptible to peptaibol-containing extracts of T. atroviride O1. A synergic effect of extract constituents was possible, and the biolo-gical activity of extracts was pronounced in/after the peak of peptaibol synthetase activity. The growth of methicillin-resistant Staphylococcus aureus was reduced to just under 10% compared to the control. The effect of peptaibol-containing extracts was strongly modulated by the lipoteichoic acid and only slightly by the horse blood serum present in the cultivation medium. Peptaibol-containing extracts affected the proliferation of human breast cancer and human ovarian cancer cell lines in a 2D model, including the multidrug-resistant sublines. The peptaibols influenced the size and compactness of the cell lines in a 3D model. Our findings indicate the molecular basis of peptaibol production in T. atroviride O1 and the potential of its peptaibol-containing extracts as antimicrobial/anticancer agents.


Asunto(s)
Farmacorresistencia Bacteriana , Hypocreales/metabolismo , Ligasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Peptaiboles/farmacología , Animales , Antibacterianos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Femenino , Proteínas Fúngicas/metabolismo , Caballos , Humanos , Hypocreales/enzimología , Células MCF-7 , Peptaiboles/análisis , Peptaiboles/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34445069

RESUMEN

Peptaibols, by disturbing the permeability of phospholipid membranes, can overcome anticancer drug resistance, but their natural hydrophobicity hampers their administration. By a green peptide synthesis protocol, we produced two water-soluble analogs of the peptaibol trichogin GA IV, termed K6-Lol and K6-NH2. To reduce production costs, we successfully explored the possibility of changing the naturally occurring 1,2-aminoalcohol leucinol to a C-terminal amide. Peptaibol activity was evaluated in ovarian cancer (OvCa) and Hodgkin lymphoma (HL) cell lines. Peptaibols exerted comparable cytotoxic effects in cancer cell lines that were sensitive-and had acquired resistance-to cisplatin and doxorubicin, as well as in the extrinsic-drug-resistant OvCa 3-dimensional spheroids. Peptaibols, rapidly taken up by tumor cells, deeply penetrated and killed OvCa-spheroids. They led to cell membrane permeabilization and phosphatidylserine exposure and were taken up faster by cancer cells than normal cells. They were resistant to proteolysis and maintained a stable helical structure in the presence of cancer cells. In conclusion, these promising results strongly point out the need for further preclinical evaluation of our peptaibols as new anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Doxorrubicina/farmacología , Enfermedad de Hodgkin/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Peptaiboles/farmacología , Antineoplásicos/química , Resistencia a Antineoplásicos , Femenino , Enfermedad de Hodgkin/patología , Humanos , Neoplasias Ováricas/patología , Peptaiboles/química , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Células Tumorales Cultivadas
13.
Molecules ; 26(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208349

RESUMEN

A new 11 amino acid linear peptide named roseabol A (1) and the known compound 13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid (2) were isolated from the fungus Clonostachys rosea. Combined NMR and MS analysis revealed that roseabol A (1) contained amino acid residues characteristic of the peptaibol family of peptides such as isovaline, α-aminoisobutyric acid, hydroxyproline, leucinol, and an N-terminal isovaleric acid moiety. The amino acid sequence was established by a combination of NMR studies and tandem MS fragmentation analyses, and the absolute configurations of the constituent amino acids of 1 were determined by the advanced Marfey's method. Compound 2 showed inhibitory activity against Merkel cell carcinoma, a rare and difficult-to-treat type of skin cancer, with an IC50 value of 16.5 µM.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células de Merkel/tratamiento farmacológico , Hypocreales/química , Peptaiboles/química , Peptaiboles/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Secuencia de Aminoácidos , Antineoplásicos/química , Carcinoma de Células de Merkel/química , Carcinoma de Células de Merkel/metabolismo , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Neoplasias Cutáneas/química , Neoplasias Cutáneas/metabolismo
14.
Chem Biodivers ; 18(5): e2100128, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33709565

RESUMEN

Five new peptaibols, longibramides A-E (1-5) with 11 amino acid residues, were isolated from a fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, which was isolated from a mushroom Clitocybe nebularis (Batsch) P. Kumm collected from coniferous forest in the subboreal area of northeast China. The structures of longibramides A-E were determined by their spectroscopic data (NMR and MS-MS spectra), their absolute configurations were determined by X-ray diffractions and Marfey's analyses. The X-ray diffractions of longibramides A, B, and the similar CD spectra of A-E showed that they all had α-helix conformations. Longibramides B and E showed moderate cytotoxicities against BV2 and MCF-7 cells and also showed some inhibitory effects against methicillin-resistant Staphylococcus aureus MRSA T144. L-trans-Hyp was not commonly found in natural peptaibols, which was the 6th or 10th amino acid residue in longibramides C-E. The X-ray diffractions of longibramides A and B afforded the accuracy conformations of their secondary structures, which maybe help to interpret the structure-activity relationships of the family of peptaibols in the future.


Asunto(s)
Agaricales/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Peptaiboles/farmacología , Trichoderma/química , Antibacterianos , Antineoplásicos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Peptaiboles/química , Peptaiboles/aislamiento & purificación
15.
J Nat Prod ; 84(4): 1271-1282, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33600182

RESUMEN

In the course of investigations on peptaibol chemodiversity from marine-derived Trichoderma spp., five new 15-residue peptaibols named pentadecaibins I-V (1-5) were isolated from the solid culture of the strain Trichoderma sp. MMS1255 belonging to the T. harzianum species complex. Phylogenetic analyses allowed precise positioning of the strain close to T. lentiforme lineage inside the Harzianum clade. Peptaibol sequences were elucidated on the basis of their MS/MS fragmentation and extensive 2D NMR experiments. Amino acid configurations were determined by Marfey's analyses. The pentadecaibins are based on the sequences Ac-Aib1-Gly2-Ala3-Leu4-Aib/Iva5-Gln6-Aib/Iva7-Val/Leu8-Aib9-Ala10-Aib11-Aib12-Aib13-Gln14-Pheol15. Characteristic of the pentadecaibin sequences is the lack of the Aib-Pro motif commonly present in peptaibols produced by Trichoderma spp. Genome sequencing of Trichoderma sp. MMS1255 allowed the detection of a 15-module NRPS-encoding gene closely associated with pentadecaibin biosynthesis. Pentadecaibins were assessed for their potential antiproliferative and antimicrobial activities.


Asunto(s)
Peptaiboles/química , Trichoderma/química , Secuencia de Aminoácidos , Organismos Acuáticos/química , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana , Filogenia , Trichoderma/clasificación
16.
J Nat Prod ; 84(2): 503-517, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33565879

RESUMEN

Malaria remains a worldwide threat, afflicting over 200 million people each year. The emergence of drug resistance against existing therapeutics threatens to destabilize global efforts aimed at controlling Plasmodium spp. parasites, which is expected to leave vast portions of humanity unprotected against the disease. To address this need, systematic testing of a fungal natural product extract library assembled through the University of Oklahoma Citizen Science Soil Collection Program has generated an initial set of bioactive extracts that exhibit potent antiplasmodial activity (EC50 < 0.30 µg/mL) and low levels of toxicity against human cells (less than 50% reduction in HepG2 growth at 25 µg/mL). Analysis of the two top-performing extracts from Trichoderma sp. and Hypocrea sp. isolates revealed both contained chemically diverse assemblages of putative peptaibol-like compounds that were responsible for their antiplasmodial actions. Purification and structure determination efforts yielded 30 new peptaibols and lipopeptaibols (1-14 and 28-43), along with 22 known metabolites (15-27 and 44-52). While several compounds displayed promising activity profiles, one of the new metabolites, harzianin NPDG I (14), stood out from the others due to its noteworthy potency (EC50 = 0.10 µM against multi-drug-resistant P. falciparum line Dd2) and absence of gross toxicity toward HepG2 at the highest concentrations tested (HepG2 EC50 > 25 µM, selectivity index > 250). The unique chemodiversity afforded by these fungal isolates serves to unlock new opportunities for translating peptaibols into a bioactive scaffold worthy of further development.


Asunto(s)
Antimaláricos/farmacología , Hypocrea/química , Peptaiboles/biosíntesis , Trichoderma/química , Productos Biológicos/farmacología , Resistencia a Medicamentos , Células Hep G2 , Humanos , Estructura Molecular , Pennsylvania , Peptaiboles/farmacología , Plasmodium falciparum/efectos de los fármacos , Microbiología del Suelo , Texas
17.
Biosci Biotechnol Biochem ; 85(1): 69-76, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577647

RESUMEN

A new peptaibol, RK-026A (1) was isolated from a fungus, Trichoderma sp. RK10-F026, along with atroviridin B (2), alamethicin II (3), and polysporin B (4) as a cytotoxic compound, which was selected by principal component analysis of the MS data from 5 different culture conditions. The structure of 1 was determined as a new atroviridin B derivative containing Glu at the 18th residue instead of Gln by NMR and HR-MS analyses including the investigation of detailed MS/MS fragmentations. 1 showed cytotoxicity toward K562 leukemia cells at an IC50 value of 4.1 µm.


Asunto(s)
Técnicas de Cultivo , Peptaiboles/aislamiento & purificación , Microbiología del Suelo , Trichoderma/química , Humanos , Células K562 , Peso Molecular , Peptaiboles/química , Peptaiboles/toxicidad , Trichoderma/crecimiento & desarrollo
18.
Bioorg Med Chem Lett ; 30(16): 127331, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631536

RESUMEN

Culicinin D (1), a 10 amino acid peptaibol containing several unusual residues, has been shown to exhibit potent anticancer activity. Previous work in our group towards developing a structure-activity relationship (SAR) for this peptaibol has concentrated on replacement of the synthetically challenging AHMOD (3) and AMD (4) residues, resulting in the discovery of analogues with equivalent or better potency and simplified synthesis. The SAR of this peptaibol is extended in this work by investigating the effect of the N-terminal lipid tail and C-terminal amino alcohol, revealing the key contribution of each of these moieties on antiproliferative activity in a panel of breast and lung cancer cell lines.


Asunto(s)
Antineoplásicos/farmacología , Oligopéptidos/farmacología , Peptaiboles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Peptaiboles/síntesis química , Peptaiboles/química , Relación Estructura-Actividad
19.
Chem Biol Drug Des ; 96(2): 731-744, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32356312

RESUMEN

Amoebiasis is a parasitic infectious disease caused by the enteric protozoan Entamoeba histolytica, a leading basis of deaths accounted to parasites, succeeding malaria and schistosomiasis. Conventional treatment methodologies used to deal with amoebiasis mainly rely on the administration of anti-amoebic compounds and vaccines but are often linked with substantial side-effects on the patient. Besides, cases of development of drug resistance in protozoans have been recorded, contributing further to the reduction in the efficiency of the treatment. Loopholes in the efficacious management of the disease call for the development of novel methodologies to manage amoebiasis. A way to achieve this is by targeting the essential metabolic processes of 'encystation' and 'excystation', and the associated biomolecules, thus interrupting the biphasic life cycle of the parasite. Technologies like the CRISPR-Cas9 system can efficiently be exploited to discover novel and essential molecules that regulate the protozoan's metabolism, while efficiently manipulating and managing the known drug targets, leading to an effective halt and forestall to the enteric infection. This review presents a perspective on these essential metabolic processes and the associated molecules that can be targeted efficaciously to prevent the transmission of amoebiasis, thus managing the disease and proving to be a fruitful endeavour.


Asunto(s)
Amebiasis/tratamiento farmacológico , Entamoeba histolytica/efectos de los fármacos , Entamebiasis/tratamiento farmacológico , Peptaiboles/química , Animales , Quitinasas/metabolismo , Humanos , Lectinas/metabolismo , Modelos Biológicos , Conformación Molecular , Terapia Molecular Dirigida , Peptaiboles/farmacología , Transducción de Señal
20.
Braz J Microbiol ; 51(3): 989-997, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32333271

RESUMEN

Fungi in the genus Trichoderma are notorious producers of secondary metabolites with diverse applications, such as antibacterial, antifungal, and plant growth-promoting properties. Peptaibols are linear peptides produced by such fungi, with more than 440 compounds described to date, including tricholongins, longibrachins, trichobrachins, and trichovirins. Peptaibols are synthesized by non-ribosomal peptide synthetases and they have several biological activities. Our research group isolated four peptaibols (6DP2, 6DP3, 6DP4, and 6DP5) with antifungal activity against the plant pathogen Colletotrichum gloeosporioides and the proteasome (a cancer chemotherapy target) from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa. The ethyl acetate extract of this endophyte showed activity of 6.01% and 75% against C. gloeosporioides and the proteasome, respectively. The isolated compounds were identified by MS/MS and compared to literature data, suggesting the presence of trilongins BI, BII, BIII, and BIV, which are peptaibols containing 20 amino acid residues. The minimum inhibitory concentration against C. gloeosporioides was 40 µM for trilongin BI, 320 µM for trilongin BII, 160 µM for trilongin BIII, and 310 µM for trilongin BIV. BI-BIV trilongins inhibited proteasome ChTL activity, with IC50 values of 6.5 ± 2.7; 4.7 ± 1.8; 6.3 ± 2.2; and 2.7 ± 0.5 µM, respectively. The compounds were tested ex vivo against the intracellular amastigotes of Leishmania (L.) infantum but showed no selectivity. It is the first report of trilongins BI-BIV with antifungal activity against C. gloeosporioides and the proteasome target.


Asunto(s)
Antifúngicos/farmacología , Antineoplásicos/farmacología , Begoniaceae/microbiología , Peptaiboles/farmacología , Trichoderma/química , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Colletotrichum/efectos de los fármacos , Endófitos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Peptaiboles/química , Peptaiboles/aislamiento & purificación , Filogenia , Inhibidores de Proteasoma/farmacología , Trichoderma/clasificación , Trichoderma/genética , Trichoderma/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA