Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nat Commun ; 12(1): 5959, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645844

RESUMEN

The directed evolution of antibodies has yielded important research tools and human therapeutics. The dependence of many antibodies on disulfide bonds for stability has limited the application of continuous evolution technologies to antibodies and other disulfide-containing proteins. Here we describe periplasmic phage-assisted continuous evolution (pPACE), a system for continuous evolution of protein-protein interactions in the disulfide-compatible environment of the E. coli periplasm. We first apply pPACE to rapidly evolve novel noncovalent and covalent interactions between subunits of homodimeric YibK protein and to correct a binding-defective mutant of the anti-GCN4 Ω-graft antibody. We develop an intein-mediated system to select for soluble periplasmic expression in pPACE, leading to an eight-fold increase in soluble expression of the Ω-graft antibody. Finally, we evolve disulfide-containing trastuzumab antibody variants with improved binding to a Her2-like peptide and improved soluble expression. Together, these results demonstrate that pPACE can rapidly optimize proteins containing disulfide bonds, broadening the applicability of continuous evolution.


Asunto(s)
Evolución Molecular Dirigida/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferasas/genética , Periplasma/genética , Proteína Disulfuro Isomerasas/genética , Trastuzumab/genética , Sitios de Unión , Clonación Molecular , Colifagos/genética , Colifagos/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virología , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Inteínas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Periplasma/virología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteína Disulfuro Isomerasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Empalme de Proteína , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trastuzumab/química , Trastuzumab/metabolismo
2.
Mol Cell ; 81(15): 3145-3159.e7, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34214465

RESUMEN

Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.


Asunto(s)
Bacteriófago T7/genética , ADN Viral/química , Periplasma/química , Proteínas del Núcleo Viral/química , Biología Computacional , Microscopía por Crioelectrón , Citoplasma/química , ADN Viral/metabolismo , Membrana Dobles de Lípidos/metabolismo , Periplasma/genética , Periplasma/metabolismo , Podoviridae/química , Podoviridae/genética , Proteínas del Núcleo Viral/metabolismo
3.
Proteins ; 89(11): 1473-1488, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34196044

RESUMEN

In Gram-negative bacteria, the maintenance of lipid asymmetry (Mla) system is involved in the transport of phospholipids between the inner (IM) and outer membrane. The Mla system utilizes a unique IM-associated periplasmic solute-binding protein, MlaD, which possesses a conserved domain, MlaD domain. While proteins carrying the MlaD domain are known to be primarily involved in the trafficking of hydrophobic molecules, not much is known about this domain itself. Thus, in this study, the characterization of the MlaD domain employing bioinformatics analysis is reported. The profiling of the MlaD domain of different architectures reveals the abundance of glycine and hydrophobic residues and the lack of cysteine residues. The domain possesses a conserved N-terminal region and a well-preserved glycine residue that constitutes a consensus motif across different architectures. Phylogenetic analysis shows that the MlaD domain archetypes are evolutionarily closer and marked by the conservation of a functionally crucial pore loop located at the C-terminal region. The study also establishes the critical role of the domain-associated permeases and the driving forces governing the transport of hydrophobic molecules. This sheds sufficient light on the structure-function-evolutionary relationship of MlaD domain. The hexameric interface analysis reveals that the MlaD domain itself is not a sole player in the oligomerization of the proteins. Further, an operonic and interactome map analysis reveals that the Mla and the Mce systems are dependent on the structural homologs of the nuclear transport factor 2 superfamily.


Asunto(s)
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de la Membrana/química , Mycobacterium tuberculosis/metabolismo , Periplasma/metabolismo , Secuencias de Aminoácidos , Arabidopsis/clasificación , Arabidopsis/genética , Sitios de Unión , Transporte Biológico , Membrana Celular/genética , Biología Computacional/métodos , Secuencia Conservada , Escherichia coli/clasificación , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Periplasma/genética , Fosfolípidos/química , Fosfolípidos/metabolismo , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33472976

RESUMEN

The monotopic phosphoglycosyl transferase (monoPGT) superfamily comprises over 38,000 nonredundant sequences represented in bacterial and archaeal domains of life. Members of the superfamily catalyze the first membrane-committed step in en bloc oligosaccharide biosynthetic pathways, transferring a phosphosugar from a soluble nucleoside diphosphosugar to a membrane-resident polyprenol phosphate. The singularity of the monoPGT fold and its employment in the pivotal first membrane-committed step allows confident assignment of both protein and corresponding pathway. The diversity of the family is revealed by the generation and analysis of a sequence similarity network for the superfamily, with fusion of monoPGTs with other pathway members being the most frequent and extensive elaboration. Three common fusions were identified: sugar-modifying enzymes, glycosyl transferases, and regulatory domains. Additionally, unexpected fusions of the monoPGT with members of the polytopic PGT superfamily were discovered, implying a possible evolutionary link through the shared polyprenol phosphate substrate. Notably, a phylogenetic reconstruction of the monoPGT superfamily shows a radial burst of functionalization, with a minority of members comprising only the minimal PGT catalytic domain. The commonality and identity of the fusion partners in the monoPGT superfamily is consistent with advantageous colocalization of pathway members at membrane interfaces.


Asunto(s)
Proteínas Bacterianas/química , Glicoconjugados/química , Glicosiltransferasas/química , Bacterias Gramnegativas/enzimología , Bacterias Grampositivas/enzimología , Polisacáridos/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Citoplasma/enzimología , Citoplasma/genética , Evolución Molecular , Expresión Génica , Redes Reguladoras de Genes , Glicoconjugados/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/genética , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/genética , Redes y Vías Metabólicas/genética , Modelos Moleculares , Periplasma/enzimología , Periplasma/genética , Filogenia , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
5.
Biochim Biophys Acta Gen Subj ; 1865(3): 129810, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33309686

RESUMEN

BACKGROUND: Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. METHODS: The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system. RESULTS: We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution. CONCLUSION: Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system. GENERAL SIGNIFICANCE: We bring new input on the so far poorly described Zra system and notably on ZraS.


Asunto(s)
Arabinosa/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Transactivadores/química , Zinc/química , Secuencia de Aminoácidos , Arabinosa/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Periplasma/genética , Periplasma/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Transactivadores/genética , Transactivadores/metabolismo , Zinc/metabolismo
6.
Protein Sci ; 29(10): 2028-2037, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32790204

RESUMEN

Cotranslational protein folding studies using Force Profile Analysis, a method where the SecM translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide, have so far been limited mainly to small domains of cytosolic proteins that fold in close proximity to the translating ribosome. In this study, we investigate the cotranslational folding of the periplasmic, disulfide bond-containing Escherichia coli protein alkaline phosphatase (PhoA) in a wild-type strain background and a strain background devoid of the periplasmic thiol: disulfide interchange protein DsbA. We find that folding-induced forces can be transmitted via the nascent chain from the periplasm to the polypeptide transferase center in the ribosome, a distance of ~160 Å, and that PhoA appears to fold cotranslationally via at least two disulfide-stabilized folding intermediates. Thus, Force Profile Analysis can be used to study cotranslational folding of proteins in an extra-cytosolic compartment, like the periplasm.


Asunto(s)
Fosfatasa Alcalina/biosíntesis , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/enzimología , Periplasma/enzimología , Biosíntesis de Proteínas , Pliegue de Proteína , Fosfatasa Alcalina/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Periplasma/genética
7.
J Biomol NMR ; 74(6-7): 311-319, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32415582

RESUMEN

Monoclonal antibody (mAb) drugs are clinically important for the treatment of various diseases. TTAC-0001 is under development as a new anti-cancer antibody drug targeting VEGFR-2. As the less severe toxicity of TTAC-0001 compared to Bevacizumab, likely due to the decreased in vivo half-life, seems to be related to its structural flexibility, it is important to map the exact flexible regions. Although the 13C/15N-labeled protein is required for NMR analyses, it is difficult to obtain antibody fragments (Fab and scFv) containing disulfide bonds through general cytosolic expression in Escherichia coli (E. coli). Here, we notably increased the periplasmic expression of the 13C/15N-labeled TTAC-0001-Fab (13C/15N-TTAC-Fab) through simple isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction at an increased optical density (1.5 OD600nm). Through NMR triple resonance experiments, two loop insertions (LI-1 between the VH and CH1; LI-2 between the VL and CL) were confirmed to be highly flexible. The additional LIs could be another way to engineer the antibody by changing the pharmacokinetic properties.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Anticuerpos Monoclonales Humanizados/genética , Isótopos de Carbono , Disulfuros/química , Escherichia coli/genética , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Isopropil Tiogalactósido , Marcaje Isotópico , Isótopos de Nitrógeno , Periplasma/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
8.
J Bacteriol ; 202(8)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32041800

RESUMEN

The Gram-negative pathogen Neisseria gonorrhoeae (gonococcus [Gc]) colonizes lysozyme-rich mucosal surfaces. Lysozyme hydrolyzes peptidoglycan, leading to bacterial lysis. Gc expresses two proteins, SliC and NgACP, that bind and inhibit the enzymatic activity of lysozyme. SliC is a surface-exposed lipoprotein, while NgACP is found in the periplasm and also released extracellularly. Purified SliC and NgACP similarly inhibit lysozyme. However, whereas mutation of ngACP increases Gc susceptibility to lysozyme, the sliC mutant is only susceptible to lysozyme when ngACP is inactivated. In this work, we examined how lipidation contributes to SliC expression, cellular localization, and resistance of Gc to killing by lysozyme. To do so, we mutated the conserved cysteine residue (C18) in the N-terminal lipobox motif of SliC, the site for lipid anchor attachment, to alanine. SliC(C18A) localized to soluble rather than membrane fractions in Gc and was not displayed on the bacterial surface. Less SliC(C18A) was detected in Gc lysates compared to the wild-type protein. This was due in part to some release of the C18A mutant, but not wild-type, protein into the extracellular space. Surprisingly, Gc expressing SliC(C18A) survived better than SliC (wild type)-expressing Gc after exposure to lysozyme. We conclude that lipidation is not required for the ability of SliC to inhibit lysozyme, even though the lipidated cysteine is 100% conserved in Gc SliC alleles. These findings shed light on how members of the growing family of lysozyme inhibitors with distinct subcellular localizations contribute to bacterial defense against lysozyme.IMPORTANCENeisseria gonorrhoeae is one of many bacterial species that express multiple lysozyme inhibitors. It is unclear how inhibitors that differ in their subcellular localization contribute to defense from lysozyme. We investigated how lipidation of SliC, an MliC (membrane-bound lysozyme inhibitor of c-type lysozyme)-type inhibitor, contributes to its localization and lysozyme inhibitory activity. We found that lipidation was required for surface exposure of SliC and yet was dispensable for protecting the gonococcus from killing by lysozyme. To our knowledge, this is the first time the role of lipid anchoring of a lysozyme inhibitor has been investigated. These results help us understand how different lysozyme inhibitors are localized in bacteria and how this impacts resistance to lysozyme.


Asunto(s)
Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/metabolismo , Gonorrea/microbiología , Lipoproteínas/metabolismo , Muramidasa/antagonistas & inhibidores , Neisseria gonorrhoeae/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Inhibidores Enzimáticos/química , Gonorrea/enzimología , Interacciones Huésped-Patógeno , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Muramidasa/metabolismo , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/genética , Periplasma/genética , Periplasma/metabolismo , Transporte de Proteínas
9.
FEBS Lett ; 594(2): 317-326, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31486526

RESUMEN

The periplasmic lipoprotein BB0365 of the Lyme disease agent Borrelia burgdorferi is expressed throughout mammalian infection and is essential for all phases of Lyme disease infection; its function, however, remains unknown. In the current study, our structural analysis of BB0365 revealed the same structural fold as that found in the NqrC and RnfG subunits of the NADH:quinone and ferredoxin:NAD+ sodium-translocating oxidoreductase complexes, which points to a potential role for BB0365 as a component of the sodium pump. Additionally, BB0365 coordinated Zn2+ by the His51, His55, His140 residues, and the Zn2+ -binding site indicates that BB0365 could act as a potential metalloenzyme; therefore, this structure narrows down the potential functions of BB0365, an essential protein for B. burgdorferi to cause Lyme disease.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Borrelia burgdorferi/química , Lipoproteínas/ultraestructura , Enfermedad de Lyme/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/efectos de los fármacos , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidad , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Enfermedad de Lyme/microbiología , Periplasma/enzimología , Periplasma/genética , Conformación Proteica , Pliegue de Proteína , ATPasa Intercambiadora de Sodio-Potasio/química , Zinc/química
10.
Proc Natl Acad Sci U S A ; 116(33): 16314-16319, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31363054

RESUMEN

Critical for diverse biological processes, proteases represent one of the largest families of pharmaceutical targets. To inhibit pathogenic proteases with desired selectivity, monoclonal antibodies (mAbs) hold great promise as research tools and therapeutic agents. However, identification of mAbs with inhibitory functions is challenging because current antibody discovery methods rely on binding rather than inhibition. This study developed a highly efficient selection method for protease inhibitory mAbs by coexpressing 3 recombinant proteins in the periplasmic space of Escherichia coli-an antibody clone, a protease of interest, and a ß-lactamase modified by insertion of a protease cleavable peptide sequence. During functional selection, inhibitory antibodies prevent the protease from cleaving the modified ß-lactamase, thereby allowing the cell to survive in the presence of ampicillin. Using this method to select from synthetic human antibody libraries, we isolated panels of mAbs inhibiting 5 targets of 4 main protease classes: matrix metalloproteinases (MMP-14, a predominant target in metastasis; MMP-9, in neuropathic pain), ß-secretase 1 (BACE-1, an aspartic protease in Alzheimer's disease), cathepsin B (a cysteine protease in cancer), and Alp2 (a serine protease in aspergillosis). Notably, 37 of 41 identified binders were inhibitory. Isolated mAb inhibitors exhibited nanomolar potency, exclusive selectivity, excellent proteolytic stability, and desired biological functions. Particularly, anti-Alp2 Fab A4A1 had a binding affinity of 11 nM and inhibition potency of 14 nM, anti-BACE1 IgG B2B2 reduced amyloid beta (Aß40) production by 80% in cellular assays, and IgG L13 inhibited MMP-9 but not MMP-2/-12/-14 and significantly relieved neuropathic pain development in mice.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Péptido Hidrolasas/genética , Inhibidores de Proteasas/inmunología , Proteínas Recombinantes/inmunología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/terapia , Secuencia de Aminoácidos/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/inmunología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/farmacología , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/inmunología , Aspergilosis/inmunología , Aspergilosis/terapia , Catepsina B/genética , Catepsina B/inmunología , Escherichia coli/genética , Humanos , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/inmunología , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/inmunología , Inhibidores de la Metaloproteinasa de la Matriz/inmunología , Inhibidores de la Metaloproteinasa de la Matriz/metabolismo , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Péptido Hidrolasas/química , Péptido Hidrolasas/inmunología , Periplasma/genética , Inhibidores de Proteasas/farmacología , Proteolisis/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Serina Proteasas/genética , Serina Proteasas/inmunología
11.
Proc Natl Acad Sci U S A ; 115(29): E6855-E6862, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967164

RESUMEN

Cell division requires the assembly of a protein complex called the divisome. The divisome assembles in a hierarchical manner, with FtsA functioning as a hub to connect the Z-ring with the rest of the divisome and FtsN arriving last to activate the machine to synthesize peptidoglycan. FtsEX arrives as the Z-ring forms and acts on FtsA to initiate recruitment of the other divisome components. In the absence of FtsEX, recruitment is blocked; however, a multitude of conditions allow FtsEX to be bypassed. Here, we find that all such FtsEX bypass conditions, as well as the bypass of FtsK, depend upon the interaction of FtsN with FtsA, which promotes the back-recruitment of the late components of the divisome. Furthermore, our results suggest that these bypass conditions enhance the weak interaction of FtsN with FtsA and its periplasmic partners so that the divisome proteins are brought to the Z-ring when the normal hierarchical pathway is disrupted.


Asunto(s)
División Celular/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Periplasma/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/genética , Periplasma/genética
12.
FEMS Microbiol Lett ; 365(16)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29931366

RESUMEN

Campylobacter jejuni, a human gastrointestinal pathogen, uses nitrate for growth under microaerophilic conditions using periplasmic nitrate reductase (Nap). The catalytic subunit, NapA, contains two prosthetic groups, an iron sulfur cluster and a molybdenum cofactor. Here we describe the cloning, expression, purification, and Michaelis-Menten kinetics (kcat of 5.91 ± 0.18 s-1 and a KM (nitrate) of 3.40 ± 0.44 µM) in solution using methyl viologen as an electron donor. The data suggest that the high affinity of NapA for nitrate could support growth of C. jejuni on nitrate in the gastrointestinal tract. Site-directed mutagenesis was used and the codon for the molybdenum coordinating cysteine residue has been exchanged for serine. The resulting variant NapA is 4-fold less active than the native enzyme confirming the importance of this residue. The properties of the C. jejuni enzyme reported here represent the first isolation and characterization of an epsilonproteobacterial NapA. Therefore, the fundamental knowledge of Nap has been expanded.


Asunto(s)
Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Campylobacter jejuni/enzimología , Clonación Molecular , Nitrato-Reductasa/química , Nitrato-Reductasa/genética , Periplasma/enzimología , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/química , Campylobacter jejuni/genética , Campylobacter jejuni/crecimiento & desarrollo , Estabilidad de Enzimas , Cinética , Modelos Moleculares , Nitrato-Reductasa/metabolismo , Nitratos/química , Nitratos/metabolismo , Periplasma/química , Periplasma/genética
13.
Proc Natl Acad Sci U S A ; 115(26): 6840-6845, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891657

RESUMEN

Iron is an essential micronutrient for most bacteria and is obtained from iron-chelating siderophores or directly from iron-containing host proteins. For Gram-negative bacteria, classical iron transport systems consist of an outer membrane receptor, a periplasmic binding protein, and an inner membrane ABC transporter, which work in concert to deliver iron from the cell surface to the cytoplasm. We recently showed that Pectobacterium spp. are able to acquire iron from ferredoxin, a small and stable 2Fe-2S iron sulfur cluster containing protein and identified the ferredoxin receptor, FusA, a TonB-dependent receptor that binds ferredoxin on the cell surface. The genetic context of fusA suggests an atypical iron acquisition system, lacking a periplasmic binding protein, although the mechanism through which iron is extracted from the captured ferredoxin has remained unknown. Here we show that FusC, an M16 family protease, displays a highly targeted proteolytic activity against plant ferredoxin, and that growth enhancement of Pectobacterium due to iron acquisition from ferredoxin is FusC-dependent. The periplasmic location of FusC indicates a mechanism in which ferredoxin is imported into the periplasm via FusA before cleavage by FusC, as confirmed by the uptake and accumulation of ferredoxin in the periplasm in a strain lacking fusC The existence of homologous uptake systems in a range of pathogenic bacteria suggests that protein uptake for nutrient acquisition may be widespread in bacteria and shows that, similar to their endosymbiotic descendants mitochondria and chloroplasts, bacteria produce dedicated protein import systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Pectobacterium/metabolismo , Factor G de Elongación Peptídica/metabolismo , Proteolisis , Proteínas Bacterianas/genética , Membrana Celular/genética , Proteínas de la Membrana/genética , Pectobacterium/genética , Factor G de Elongación Peptídica/genética , Periplasma/genética , Periplasma/metabolismo
14.
J Biol Chem ; 293(7): 2330-2341, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29208656

RESUMEN

Pyoverdines are important siderophores that guarantee iron supply to important pathogenic and non-pathogenic pseudomonads in host habitats. A key characteristic of all pyoverdines is the fluorescent dihydroxyquinoline group that contributes two ligands to the iron complexes. Pyoverdines are derived from the non-ribosomally synthesized peptide ferribactin, and their fluorophore is generated by periplasmic oxidation and cyclization reactions of d-tyrosine and l-diaminobutyric acid. The formation of the fluorophore is known to be driven by the periplasmic tyrosinase PvdP. Here we report that the putative periplasmic oxidoreductase PvdO of Pseudomonas fluorescens A506 is required for the final oxidation of dihydropyoverdine to pyoverdine, which completes the fluorophore. The pvdO deletion mutant accumulates dihydropyoverdine, and this phenotype is fully complemented by recombinant PvdO. The autoxidation of dihydropyoverdine at alkaline pH and the presence of high copper concentrations can mask this phenotype. Mutagenesis of conserved residues with potential catalytic function identified Glu-260 as an essential residue whose mutation abolished function without affecting stability or transport. Glu-260 of PvdO is at the exact position of the active-site cysteine in the structurally related formylglycine-generating enzyme. Evolution thus used the same protein fold for two distinct functionalities. As purified PvdO was inactive, additional factors are required for catalysis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oligopéptidos/metabolismo , Oxidorreductasas/metabolismo , Pseudomonas fluorescens/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Oligopéptidos/química , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Periplasma/química , Periplasma/enzimología , Periplasma/genética , Pseudomonas fluorescens/química , Pseudomonas fluorescens/genética
15.
Microbiology (Reading) ; 163(12): 1864-1879, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29139344

RESUMEN

Disulfide bonds confer stability and activity to proteins. Bioinformatic approaches allow predictions of which organisms make protein disulfide bonds and in which subcellular compartments disulfide bond formation takes place. Such an analysis, along with biochemical and protein structural data, suggests that many of the extremophile Crenarachaea make protein disulfide bonds in both the cytoplasm and the cell envelope. We have sought to determine the oxidative folding pathways in the sequenced genomes of the Crenarchaea, by seeking homologues of the enzymes known to be involved in disulfide bond formation in bacteria. Some Crenarchaea have two homologues of the cytoplasmic membrane protein VKOR, a protein required in many bacteria for the oxidation of bacterial DsbAs. We show that the two VKORs of Aeropyrum pernix assume opposite orientations in the cytoplasmic membrane, when expressed in E. coli. One has its active cysteines oriented toward the E. coli periplasm (ApVKORo) and the other toward the cytoplasm (ApVKORi). Furthermore, the ApVKORo promotes disulfide bond formation in the E. coli cell envelope, while the ApVKORi promotes disulfide bond formation in the E. coli cytoplasm via a co-expressed archaeal protein ApPDO. Amongst the VKORs from different archaeal species, the pairs of VKORs in each species are much more closely related to each other than to the VKORs of the other species. The results suggest two independent occurrences of the evolution of the two topologically inverted VKORs in archaea. Our results suggest a mechanistic basis for the formation of disulfide bonds in the cytoplasm of Crenarchaea.


Asunto(s)
Aeropyrum/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Disulfuros/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Aeropyrum/química , Aeropyrum/genética , Proteínas Arqueales/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cisteína/química , Cisteína/metabolismo , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Disulfuros/metabolismo , Proteínas de la Membrana/genética , Periplasma/genética , Periplasma/metabolismo , Pliegue de Proteína
16.
FEMS Microbiol Lett ; 364(19)2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28957456

RESUMEN

Organophosphate hydrolase (OPH) is a membrane-associated lipoprotein. It translocates across the inner membrane via the twin-arginine transport pathway and remains anchored to the periplasmic face of the inner membrane through a diacylglycerol moiety linked to the invariant cysteine residue found at the junction of a SpaseII cleavage site. Due to the existence of a transmembrane helix at the C-terminus of the mature OPH, an inner-membrane topology was predicted suggesting the C-terminus of OPH is cytoplasmic. The predicted topology was validated by generating OPH variants either fused in-frame with ß-lactamase or with unique cysteine residues. Sphingopyxis wildii cells expressing OPH variants with Bla fused at the N-terminal, C-terminal or central regions all grew in the presence of ampicillin. Supporting the ß-lactamase reporter assay, the OPH variants having unique cysteine residues at different strategic locations were accessible to the otherwise membrane-impermeant PEG-Mal (methoxypolyethylene glycol maleimide) revealing that, with the exception of the lipoprotein anchor, the entire OPH is in the periplasmic space.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Lipoproteínas/metabolismo , Periplasma/enzimología , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Sphingomonadaceae/enzimología , Proteínas Bacterianas/genética , Periplasma/química , Periplasma/genética , Monoéster Fosfórico Hidrolasas/genética , Dominios Proteicos , Transporte de Proteínas , Sphingomonadaceae/química , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo
17.
Methods Mol Biol ; 1586: 155-180, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28470604

RESUMEN

Recombinant expression of disulfide-reticulated peptides and proteins is often challenging. We describe a method that exploits the periplasmic disulfide-bond forming machinery of Escherichia coli and combines this with a cleavable, solubility-enhancing fusion tag to obtain higher yields of correctly folded target protein than is achievable via cytoplasmic expression. The protocols provided herein cover all aspects of this approach, from vector construction and transformation to purification of the cleaved target protein and subsequent quality control.


Asunto(s)
Disulfuros/química , Escherichia coli/genética , Péptidos/química , Péptidos/genética , Periplasma/genética , Cromatografía de Afinidad/métodos , Cromatografía Líquida de Alta Presión/métodos , Disulfuros/aislamiento & purificación , Disulfuros/metabolismo , Electroforesis en Gel de Poliacrilamida/métodos , Péptidos/aislamiento & purificación , Plásmidos/genética , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Solubilidad , Transformación Genética
18.
Protein Expr Purif ; 131: 91-100, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28013084

RESUMEN

The human growth hormone receptor antagonist G120R-hGH precludes dimerization of GH and prolactin receptors and consequently JAK/STAT signaling. Some modifications in this antagonist resulted in a drug specific for the GH receptor, called Pegvisomant (Somavert®). However, the original G120R-hGH is usually synthesized in bacterial cytoplasm as inclusion bodies, not being a commercial product. The present work describes the synthesis and characterization of G120R-hGH secreted into bacterial periplasm and obtained with a vector based on a constitutive lambda-PL promoter. This antagonist can be useful for studies aiming at investigating the effects of a simultaneous inhibition of GH and prolactin signaling, as a potential anti-tumoral or anti-diabetic compound. G120R-hGH, synthesized using the W3110 E. coli strain, showed a yield of 1.34 ± 0.24 µg/ml/A600 (∼0.79 mg G120R-hGH/g of wet weight cells) after cultivation at 30 °C up to 3 A600 units and induction at 37 °C, for 6 h, with final 4.3 ± 0.3 A600. A laboratory scale purification was carried out using three chromatographic steps with a total yield of 32%, reaching 98% purity. The obtained protein was characterized by SDS-PAGE, Western Blotting, Mass spectrometry, RP-HPLC, HPSEC and in vitro proliferation bioassay. The proliferation assay, based on Ba/F3-LLP cells, shows that G120R-hGH (100 ng/ml) significantly inhibited (64%) the proliferative action of hGH (1 ng/ml). This is the first time that G120R-hGH is synthesized in bacterial periplasmic space and therefore correctly folded, without the initial methionine. The reasons for a divergent efficacy for antagonizing hGH versus hPRL is currently unknown and deserves further investigation.


Asunto(s)
Sustitución de Aminoácidos , Escherichia coli/metabolismo , Hormona de Crecimiento Humana , Proteínas de la Membrana/antagonistas & inhibidores , Periplasma/metabolismo , Animales , Línea Celular , Escherichia coli/química , Escherichia coli/genética , Hormona de Crecimiento Humana/biosíntesis , Hormona de Crecimiento Humana/química , Hormona de Crecimiento Humana/genética , Hormona de Crecimiento Humana/aislamiento & purificación , Humanos , Ratones , Mutación Missense , Periplasma/química , Periplasma/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
19.
Curr Microbiol ; 72(5): 511-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26750120

RESUMEN

The Cj1169c-encoded putative protein of Campylobacter was expressed and purified from E. coli after sequence optimization. The purified protein allowed the production of a specific rabbit antiserum that was used to study the protein expression in vitro and its subcellular localization in the bacterial cell and putative interactions with other proteins. This protein is produced in Campylobacter and it clearly localizes into the periplasmic space. The level of protein production depends on factors, including pH, temperature, osmolarity, and growth phase suggesting a role in the Campylobacter environmental adaptation. The cysteine residues present in the sequence are probably involved in disulfide bridges, which may promote covalent interactions with other proteins of the Campylobacter envelope.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Regulación Bacteriana de la Expresión Génica , Secuencias de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Campylobacter jejuni/química , Campylobacter jejuni/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Periplasma/química , Periplasma/genética , Periplasma/metabolismo , Transporte de Proteínas , Conejos
20.
Mol Microbiol ; 99(5): 925-44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26568477

RESUMEN

HtrA proteases and chaperones exhibit important roles in periplasmic protein quality control and stress responses. The genetic inactivation of htrA has been described for many bacterial pathogens. However, in some cases such as the gastric pathogen Helicobacter pylori, HtrA is secreted where it cleaves the tumour-suppressor E-cadherin interfering with gastric disease development, but the generation of htrA mutants is still lacking. Here, we show that the htrA gene locus is highly conserved in worldwide strains. HtrA presence was confirmed in 992 H. pylori isolates in gastric biopsy material from infected patients. Differential RNA-sequencing (dRNA-seq) indicated that htrA is encoded in an operon with two subsequent genes, HP1020 and HP1021. Genetic mutagenesis and complementation studies revealed that HP1020 and HP1021, but not htrA, can be mutated. In addition, we demonstrate that suppression of HtrA proteolytic activity with a newly developed inhibitor is sufficient to effectively kill H. pylori, but not other bacteria. We show that Helicobacter htrA is an essential bifunctional gene with crucial intracellular and extracellular functions. Thus, we describe here the first microbe in which htrA is an indispensable gene, a situation unique in the bacterial kingdom. HtrA can therefore be considered a promising new target for anti-bacterial therapy.


Asunto(s)
Helicobacter pylori/enzimología , Helicobacter pylori/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cadherinas/genética , Cadherinas/metabolismo , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Bacterianos , Genes Esenciales , Variación Genética , Humanos , Datos de Secuencia Molecular , Operón , Periplasma/genética , Periplasma/metabolismo , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA