Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cancer Lett ; 589: 216796, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537775

RESUMEN

Nucleosome assembly during DNA replication is dependent on histone chaperones. Recent studies suggest that dysregulated histone chaperones contribute to cancer progression, including gastric cancer (GC). Further studies are required to explore the prognostic and therapeutic implications of histone chaperones and their mechanisms of action in GC progression. Here we identified histone chaperone ASF1B as a potential biomarker for GC proliferation and prognosis. ASF1B was significantly upregulated in GC, which was associated with poor prognosis. In vitro and in vivo experiments demonstrated that the inhibition of ASF1B suppressed the malignant characteristics of GC, while overexpression of ASF1B had the opposite effect. Mechanistically, transcription factor FOXM1 directly bound to the ASF1B-promoter region, thereby regulating its transcription. Treatment with thiostrepton, a FOXM1 inhibitor, not only suppressed ASF1B expression, but also inhibited GC progression. Furthermore, ASF1B regulated the mitochondrial protein peroxiredoxin 3 (PRDX3) transcription in a FOXM1-dependent manner. The crucial role of ASF1B-regulated PRDX3 in GC cell proliferation and oxidative stress balance was also elucidated. In summary, our study suggests that the FOXM1-ASF1B-PRDX3 axis is a potential therapeutic target for treating GC.


Asunto(s)
Peroxiredoxina III , Neoplasias Gástricas , Humanos , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Neoplasias Gástricas/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Chaperonas de Histonas/metabolismo , Estrés Oxidativo , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
2.
Respir Res ; 25(1): 110, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431661

RESUMEN

Acute lung injury (ALI) is one of the life-threatening complications of sepsis, and macrophage polarization plays a crucial role in the sepsis-associated ALI. However, the regulatory mechanisms of macrophage polarization in ALI and in the development of inflammation are largely unknown. In this study, we demonstrated that macrophage polarization occurs in sepsis-associated ALI and is accompanied by mitochondrial dysfunction and inflammation, and a decrease of PRDX3 promotes the initiation of macrophage polarization and mitochondrial dysfunction. Mechanistically, PRDX3 overexpression promotes M1 macrophages to differentiate into M2 macrophages, and enhances mitochondrial functional recovery after injury by reducing the level of glycolysis and increasing TCA cycle activity. In conclusion, we identified PRDX3 as a critical hub integrating oxidative stress, inflammation, and metabolic reprogramming in macrophage polarization. The findings illustrate an adaptive mechanism underlying the link between macrophage polarization and sepsis-associated ALI.


Asunto(s)
Lesión Pulmonar Aguda , Macrófagos , Peroxiredoxina III , Humanos , Lesión Pulmonar Aguda/metabolismo , Inflamación/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/metabolismo , Peroxiredoxina III/metabolismo , Sepsis/metabolismo , Animales , Ratones
3.
Environ Toxicol ; 38(12): 2836-2844, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37584494

RESUMEN

BACKGROUND: Formaldehyde (FA) is associated with the occurrence of leukemia, and oxidative stress is considered to be a major reason. As an endogenous biomarker of oxidative stress, few studies focus on the relationship between peroxiredoxin III (PrxIII) and FA toxicity. Our previous research observed high expression of PrxIII occurred in the process of apoptosis of bone marrow cells (BMCs) induced by FA, however the exact mechanism is unclear. Therefore, this paper aimed to explore the possible association between FA toxicity and PrxIII gene. METHODS: We first, used a Cell Counting Kit-8 (CCK-8) to detect the viability of BMCs after they were exposed to different doses of FA (50, 100, 200 µmol/L) for different exposure time (12, 24, 48 h), then chose 24 h as an exposure time to detect the expression of PrxIII for exposing different doses of FA by Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analysis. Based on our preliminary experimental results, we chose 100 µmol/L FA as an exposure dose to expose for 24 h, and used a small interfering RNA (siRNA) to silenced PrxIII to examine the cell viability by CCK-8, reactive oxygen species (ROS) level by DCFH-DA, apoptosis by Annexin V/PI double staining and cell cycle by flow cytometry (FCM) so as to explore the possible regulatory effect of PrxIII silencing on FA-induced bone marrow toxicity. RESULTS: High expression of PrxIII occurred in the process of FA-induced oxidative stress. Silencing of PrxIII prevented FA from inducing oxidative stress, thus increasing cell viability, decreasing ROS level, rescuing G0 -G1 and G2 -M arrest, and reducing cell apoptosis. CONCLUSION: PrxIII silencing might be a potential target for alleviating FA-induced oxidative damage.


Asunto(s)
Estrés Oxidativo , Peroxiredoxina III , Animales , Ratones , Peroxiredoxina III/metabolismo , Peroxiredoxina III/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos BALB C , Estrés Oxidativo/genética , Formaldehído/toxicidad , Apoptosis/genética , Células de la Médula Ósea
4.
Redox Biol ; 56: 102423, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029648

RESUMEN

Mitochondrial dysfunction is a key contributor to necroptosis. We have investigated the contribution of p53, sulfiredoxin, and mitochondrial peroxiredoxin 3 to necroptosis in acute pancreatitis. Late during the course of pancreatitis, p53 was localized in mitochondria of pancreatic cells undergoing necroptosis. In mice lacking p53, necroptosis was absent, and levels of PGC-1α, peroxiredoxin 3 and sulfiredoxin were upregulated. During the early stage of pancreatitis, prior to necroptosis, sulfiredoxin was upregulated and localized into mitochondria. In mice lacking sulfiredoxin with pancreatitis, peroxiredoxin 3 was hyperoxidized, p53 localized in mitochondria, and necroptosis occurred faster; which was prevented by Mito-TEMPO. In obese mice, necroptosis occurred in pancreas and adipose tissue. The lack of p53 up-regulated sulfiredoxin and abrogated necroptosis in pancreas and adipose tissue from obese mice. We describe here a positive feedback between mitochondrial H2O2 and p53 that downregulates sulfiredoxin and peroxiredoxin 3 leading to necroptosis in inflammation and obesity.


Asunto(s)
Pancreatitis , Peroxiredoxina III , Enfermedad Aguda , Animales , Regulación hacia Abajo , Peróxido de Hidrógeno/metabolismo , Ratones , Ratones Obesos , Necroptosis , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Proteína p53 Supresora de Tumor/genética
5.
Redox Biol ; 54: 102378, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35779442

RESUMEN

Peroxiredoxin 3 (PRDX3) acts as a master regulator of mitochondrial oxidative stress and exerts hepatoprotective effects, but the role of PRDX3 in liver fibrosis is not well understood. N6-methyladenosine (m6A) is considered the most prevalent posttranscriptional modification of mRNA. This study aimed to elucidate the effect of PRDX3 on liver fibrosis and the potential mechanism through which the m6A modification regulates PRDX3. PRDX3 expression was found to be negatively correlated with liver fibrosis in both animal models and clinical specimens from patients. We performed adeno-associated virus 9 (AAV9)-PRDX3 knockdown and AAV9-PRDX3 HSC-specific overexpression in mice to clarify the role of PRDX3 in liver fibrosis. PRDX3 silencing exacerbated hepatic fibrogenesis and hepatic stellate cell (HSC) activation, whereas HSC-specific PRDX3 overexpression attenuated liver fibrosis. Mechanistically, PRDX3 suppressed HSC activation at least partially via the mitochondrial reactive oxygen species (ROS)/TGF-ß1/Smad2/3 pathway. Furthermore, PRDX3 mRNA was modified by m6A and interacted with the m6A readers YTH domain family proteins 1-3 (YTHDF1-3), as evidenced by RNA pull-down/mass spectrometry. More importantly, PRDX3 expression was suppressed when YTHDF3, but not YTHDF1/2, was knocked down. Moreover, PRDX3 translation was directly regulated by YTHDF3 in an m6A-dependent manner and thereby affected its function in liver fibrosis. Collectively, the results indicate that PRDX3 is a crucial regulator of liver fibrosis and that targeting the YTHDF3/PRDX3 axis in HSCs may be a promising therapeutic approach for liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Peroxiredoxina III , Proteínas de Unión al ARN , Animales , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/patología , Ratones , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Peroxirredoxinas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
Neoplasma ; 69(4): 940-947, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35723197

RESUMEN

Breast cancer (BC) is the most common malignancy in women worldwide, accounting for 15.5% of total cancer deaths. B7-H4 belongs to the B7 family members and plays an important role in the development of a variety of cancers, while Peroxiredoxin III (PRDX3) is an antioxidant protein found in mitochondria. Aberrant expression of B7-H4 or PRDX3 has been implicated in the tumorigenesis of various cancers. However, the functional roles of B7-H4 and PRDX3 in BC and the underlying mechanisms remain unclear. In this research, we found that silencing of B7-H4 by siRNA could lead to not only cell viability inhibition but also the downregulation of PRDX3 in MCF-7 and T47D cells. In order to reveal the roles of PRDX3 in the B7-H4 pathway, we firstly transfected siRNA specifically targeting PRDX3 into MCF-7 and T47D cells, and the results showed that silencing of PRDX3 also inhibited the viability of MCF-7 and T47D cells significantly, accompanied by the increase of reactive oxygen species (ROS) levels. Then we overexpressed the expression of PRDX3 by transfecting PRDX3 expression plasmids into B7-H4 knocking-down cells of MCF-7 and T47D. The results showed that compared with the control groups (MCF-7 or T47D/siNC+pcDNA3.1 vector), cell viabilities were significantly inhibited in RNAi groups (MCF-7 or T47D/siB7-H4+pcDNA3.1 vector), and mildly inhibited in revertant groups (MCF-7 or T47D/siB7-H4+pcDNA3.1 PRDX3), meanwhile, ROS levels significantly elevated in RNAi groups and had no significant changes in revertant groups. All these results indicate that silencing of B7-H4 increases intracellular ROS levels and affects cell viability by modulating the expression of PRDX3 in BC cells, which may provide a potential strategy and therapeutic target for the treatment of BC.


Asunto(s)
Neoplasias de la Mama , Inhibidor 1 de la Activación de Células T con Dominio V-Set , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Supervivencia Celular/genética , Femenino , Humanos , Estrés Oxidativo , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno , Inhibidor 1 de la Activación de Células T con Dominio V-Set/genética , Inhibidor 1 de la Activación de Células T con Dominio V-Set/metabolismo
7.
Biochem Biophys Res Commun ; 604: 144-150, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35303681

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles accompanied by progressive neurite loss. Mitochondria play pivotal roles in AD development. PRDX3 is a mitochondrial peroxide reductase critical for H2O2 scavenging and signal transduction. In this study, we found that PRDX3 knockdown (KD) in the N2a-APPswe cell line promoted retinoic acid (RA)-induced neurite outgrowth but did not reduce the viability of cells damaged by tert-butyl hydroperoxide (TBHP). We found that knocking down PRDX3 expression induced dysregulation of more than one hundred proteins, as determined by tandem mass tag (TMT)-labeled proteomics. A Gene Ontology (GO) analysis revealed that the dysregulated proteins were enriched in protein localization to the plasma membrane, the lipid catabolic process, and intermediate filament cytoskeleton organization. A STRING analysis showed close protein-protein interactions among dysregulated proteins. The expression of Annexin A1 (ANXA1), serine (Ser)-/threonine (Thr)-protein phosphatase 2A catalytic subunit alpha isoform (PP2A) and glutathione S-transferase Mu 2 (GSTM2) was significantly upregulated in PRDX3-KD N2a-APPswe cell lines, as verified by western blotting. Our study revealed, for the first time, that PRDX3 may play important roles in neurite outgrowth and AD development.


Asunto(s)
Enfermedad de Alzheimer , Proyección Neuronal , Peroxiredoxina III , Enfermedad de Alzheimer/metabolismo , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/metabolismo , Neuritas/metabolismo , Proyección Neuronal/genética , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Proteómica
8.
J Cancer Res Ther ; 18(7): 1994-2000, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36647961

RESUMEN

Objective: This study aims to investigate peroxiredoxin 3 (PRDX3) expression in gastric cancer tissue and its effects on cisplatin resistance in gastric cancer cells and its possible mechanism. Methods: PRDX3 expression in human gastric cancer tissue microarrays was detected via immunohistochemistry. The PRDX3 small interfering RNA (siPRDX3 group) and the negative control siNC (siNC group) were transfected into AGS and MKN-74 cell lines, respectively, whereas a blank control group was set up. Each group was treated with different cisplatin concentrations (0, 5, 10, 15, 20, 25, and 30 µg/ml), and the half-inhibitory concentration (IC50) of each group of the two cell lines was calculated using the CCK8 assay. The corresponding IC50 concentration of the siPRDX3 group in the two cell lines was used to treat cells of each group. Flow cytometry was used to detect cell apoptosis, and Western blotting was used to detect the expression levels of cleaved caspase-3 and Bax in each group. Results: PRDX3 was overexpressed in gastric adenocarcinoma tissue compared with adjacent noncancer tissue (P = 0.0053). After cisplatin treatment, the IC50 in the siPRDX3 group of AGS cells (5.91 ± 0.18 µg/ml) and the siPRDX3 group of MKN-74 cells (3.48 ± 0.30 µg/ml) was significantly lower than in the corresponding siNC groups (10.01 ± 0.99 and 6.39 ± 0.70 µg/ml; P = 0.0022 and 0.0027, respectively). AGS cells (38.81% ± 1.69%) and MKN-74 cells (25.03% ± 2.80%) in the siPRDX3 group showed significantly higher apoptosis rates than in the corresponding siNC groups (23.17% ± 1.43% and 16.7% ± 1.39%; P = 0.0003 and 0.0099, respectively). The expression levels of cleaved caspase-3 and Bax were significantly higher in the siPRDX3 group of both cell lines than in the siNC group (P < 0.0001). Conclusion: PRDX3 increases the gastric cancer cell resistance to cisplatin by reducing apoptosis and thus may serve as a target to overcome cisplatin resistance.


Asunto(s)
Cisplatino , Neoplasias Gástricas , Humanos , Cisplatino/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Caspasa 3/genética , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Peroxiredoxina III/farmacología , Proteína X Asociada a bcl-2/genética , Apoptosis , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Proliferación Celular
9.
Toxicol Appl Pharmacol ; 432: 115758, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678374

RESUMEN

Mitochondrial dysfunction is a major factor in nonalcoholic fatty liver disease (NAFLD), preceding insulin resistance and hepatic steatosis. Carnosol (CAR) is a kind of diterpenoid with antioxidant, anti-inflammatory and antitumor activities. Peroxiredoxin 3 (PRDX3), a mitochondrial H2O2-eliminating enzyme, undergoes overoxidation and subsequent inactivation under oxidative stress. The purpose of this study was to investigate the protective effect of the natural phenolic compound CAR on NAFLD via PRDX3. Mice fed a high-fat diet (HFD) and AML-12 cells treated with palmitic acid (PA) were used to detect the molecular mechanism of CAR in NAFLD. We found that pharmacological treatment with CAR notably moderated HFD- and PA- induced steatosis and liver injury, as shown by biochemical assays, Oil Red O and Nile Red staining. Further mechanistic investigations revealed that CAR exerted anti-NAFLD effects by inhibiting mitochondrial oxidative stress, perturbation of mitochondrial dynamics, and apoptosis in vivo and in vitro. The decreased protein and mRNA levels of PRDX3 were accompanied by intense oxidative stress after PA intervention. Interestingly, CAR specifically bound PRDX3, as shown by molecular docking assays, and increased the expression of PRDX3. However, the hepatoprotection of CAR in NAFLD was largely abolished by specific PRDX3 siRNA, which increased mitochondrial dysfunction and exacerbated apoptosis in vitro. In conclusion, CAR suppressed lipid accumulation, mitochondrial dysfunction and hepatocyte apoptosis by activating PRDX3, mitigating the progression of NAFLD, and thus, CAR may represent a promising candidate for clinical treatment of steatosis.


Asunto(s)
Abietanos/farmacología , Apoptosis/efectos de los fármacos , Activadores de Enzimas/farmacología , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Peroxiredoxina III/metabolismo , Animales , Antioxidantes/farmacología , Línea Celular , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Activación Enzimática , Hepatocitos/enzimología , Hepatocitos/patología , Hígado/enzimología , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/patología , Dinámicas Mitocondriales/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Ácido Palmítico/toxicidad , Peroxiredoxina III/genética
10.
Mol Neurobiol ; 58(9): 4745-4757, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34173170

RESUMEN

Owing to its lipophilic nature, cypermethrin makes entry into the brain through the blood-brain barrier and causes severe damage to the nigrostriatal dopaminergic neurons after prolonged exposure. Following substantial accrual in the brain, cypermethrin induces the abnormal expression and accumulation of α-synuclein. Besides, cytochrome P450 2E1 (CYP2E1) causes free radical generation leading to lipid peroxidation in toxicant-induced parkinsonism. Conversely, 4-hydroxynonenal (4-HNE), a byproduct of lipid peroxidation, is known to contribute to neuronal damage. The current investigation aimed to explicate the participation of endogenous redox-sensitive proteins in cypermethrin-induced cellular and animal models of parkinsonism. The qualitative and quantitative expressions of selected redox-sensitive proteins were evaluated employing the standard procedures. Cypermethrin reduced the expression of peroxiredoxin 3 (Prx3), thioredoxin 2 (Trx2), and protein deglycase-1 (DJ-1). Knocking down of Prx3, Trx2, or DJ-1 further reduced the level of expression in the cypermethrin-treated group. Reduction in the expression of Prx3, Trx2, or DJ-1 was found to be associated with overexpression of α-synuclein and 4-HNE modification of proteins. Besides, cypermethrin increased the expression of CYP2E1, which was not altered after Prx3 or Trx2 knockdown. However, knocking down the DJ-1 augmented the level of CYP2E1 both in the cypermethrin-treated group and its respective control. The outcomes of the study demonstrate that cypermethrin reduces the level of Prx3, Trx2, and DJ-1 proteins. While the reduction in the expression of selected redox-sensitive proteins leads to α-synuclein overexpression and 4-HNE modification of proteins, DJ-1 attenuation is also linked with increased CYP2E1 expression, which in turn could lead to oxidative stress-mediated neuronal damage.


Asunto(s)
Enfermedad de Parkinson Secundaria/metabolismo , Peroxiredoxina III/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Piretrinas , Tiorredoxinas/metabolismo , Animales , Línea Celular Tumoral , Humanos , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Ratas Wistar
11.
Free Radic Biol Med ; 162: 141-148, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33249138

RESUMEN

Hepatic steatosis and subsequent fatty liver disease are developed in response to alcohol consumption. Reactive oxygen species (ROS) are thought to play an important role in the alcoholic fatty liver disease (AFLD). However, the molecular targets of ROS and the underlying cellular mechanisms are unknown. Here, we investigate roles of peroxiredoxin III and redox regulation of phosphatase and tension homolog deleted on chromosome 10 (PTEN) in the alcoholic fatty liver. Alcohol-induced mitochondrial oxidative stress was found to contribute to reversible oxidation of PTEN, which results in Akt and MAPK hyperactivation with elevated levels of the lipogenesis regulators SREBP1c and PPARγ. Moreover, mitochondrial peroxiredoxin III was found to have antagonistic effects on lipogenesis via the redox regulation of PTEN by removing ROS, upon alcohol exposure. This study demonstrated that redox regulation of PTEN and peroxiredoxin III play crucial roles in the development of AFLD.


Asunto(s)
Hígado Graso Alcohólico , Hígado Graso Alcohólico/genética , Hígado Graso Alcohólico/metabolismo , Humanos , Lipogénesis , Hígado/metabolismo , Oxidación-Reducción , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Peroxiredoxina III/metabolismo
12.
Mol Cells ; 43(9): 813-820, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32975211

RESUMEN

NB4 cell, the human acute promyelocytic leukemia (APL) cell line, was treated with various concentrations of arsenic trioxide (ATO) to induce apoptosis, measured by staining with 7-amino-actinomycin D (7-AAD) by flow cytometry. 2', 7'-dichlorodihydro-fluorescein-diacetate (DCF-DA) and MitoSOXTM Red mitochondrial superoxide indicator were used to detect intracellular and mitochondrial reactive oxygen species (ROS). The steady-state level of SO2 (Cysteine sulfinic acid, Cys-SO2H) form for peroxiredoxin 3 (PRX3) was measured by a western blot. To evaluate the effect of sulfiredoxin 1 depletion, NB4 cells were transfected with small interfering RNA and analyzed for their influence on ROS, redox enzymes, and apoptosis. The mitochondrial ROS of NB4 cells significantly increased after ATO treatment. NB4 cell apoptosis after ATO treatment increased in a time-dependent manner. Increased SO2 form and dimeric PRX3 were observed as a hyperoxidation reaction in NB4 cells post-ATO treatment, in concordance with mitochondrial ROS accumulation. Sulfiredoxin 1 expression is downregulated by small interfering RNA transfection, which potentiated mitochondrial ROS generation and cell growth arrest in ATO-treated NB4 cells. Our results indicate that ATO-induced ROS generation in APL cell mitochondria is attributable to PRX3 hyperoxidation as well as dimerized PRX3 accumulation, subsequently triggering apoptosis. The downregulation of sulfiredoxin 1 could amplify apoptosis in ATO-treated APL cells.


Asunto(s)
Antineoplásicos/farmacología , Trióxido de Arsénico/farmacología , Leucemia Promielocítica Aguda/tratamiento farmacológico , Mitocondrias/metabolismo , Peroxiredoxina III/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Especies Reactivas de Oxígeno/metabolismo , Transfección
13.
Free Radic Biol Med ; 160: 618-629, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32763411

RESUMEN

Chronic hyperglycemia has deleterious effects on pancreatic ß-cell function and survival in type 2 diabetes (T2D) due to the low expression level of endogenous antioxidants in the ß-cells. Peroxiredoxin-3 (PRDX3) is a mitochondria specific H202 scavenger and protects the cell from mitochondrial damage. However, nothing is known about how glucotoxicity influences PRDX3 function in the pancreatic beta cells. Exposure of rat insulinoma INS-1 cells and human beta cells (1.1B4) to high glucose conditions (30mM) stimulated acetylation of PRDX3 which facilitates its hyper-oxidation causing mitochondrial dysfunction by SIRT1 degradation. SIRT1 deficiency induces beta cell apoptosis via NOX-JNK-p66Shc signalosome activation. Herein we investigated the direct effect of Teneligliptin, a newer DPP-4 inhibitor on beta-cell function and survival in response to high glucose conditions. Teneligliptin treatment enhances SIRT1 protein levels and activity by USP22, an ubiquitin specific peptidase. Activated SIRT1 prevents high glucose-induced PRDX3 acetylation by SIRT3 resulted in inhibition of PRDX3 hyper-oxidation thereby strengthening the mitochondrial antioxidant defense. Notably, we identify PRDX3 as a novel SIRT3 target and show their physical interaction. Intriguingly, inhibition of SIRT1 activity by EX-527 or SIRT1 siRNA knockdown exacerbated the SIRT3 mediated PRDX3 deacetylation which leads to peroxiredoxin-3 hyper-oxidation and beta-cell apoptosis by the activation of NOX-JNK-p66Shc signalosome. Collectively, our results unveil a novel and first direct effect of high glucose on PRDX3 acetylation on beta-cell dysfunction by impaired antioxidant defense and SIRT1 mediated SIRT3-PRDX3 activation by Teneligliptin suppresses high glucose-mediated mitochondrial dysfunction.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Neoplasias Pancreáticas , Acetilación , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glucosa/toxicidad , Humanos , Células Secretoras de Insulina/metabolismo , Estrés Oxidativo , Neoplasias Pancreáticas/metabolismo , Peroxiredoxina III/metabolismo , Pirazoles , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Tiazolidinas , Ubiquitina Tiolesterasa/metabolismo
14.
Oxid Med Cell Longev ; 2020: 1295984, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33425206

RESUMEN

Acute myeloid leukemia (AML) is a hematological malignancy with a poor prognosis attributed to elevated reactive oxygen species (ROS) levels. Thus, agents that inhibit ROS generation in AML should be exploited. Azelaic acid (AZA), a small molecular compound, can scavenge ROS and other free radicals, exerting antitumor effects on various tumor cells. Herein, this study evaluated the antileukemic activity of AZA against AML via regulation of the ROS signaling pathway. We found that AZA reduced intracellular ROS levels and increased total antioxidant capacity in AML cell lines and AML patient cells. AZA suppressed the proliferation of AML cell lines and AML patient cells, expending minimal cytotoxicity on healthy cells. Laser confocal microscopy showed that AZA-treated AML cells surged and ruptured gradually on microfluidic chips. Additionally, AZA promoted AML cell apoptosis and arrested the cell cycle at the G1 phase. Further analysis demonstrated that peroxiredoxin (Prdx) 2 and Prdx3 were upregulated in AZA-treated AML cells. In vivo, AZA prolonged survival and attenuated AML by decreasing CD33+ immunophenotyping in the bone marrow of a patient-derived xenograft AML model. Furthermore, mice in the AZA-treated group had an increased antioxidant capacity and Prdx2/Prdx3 upregulation. The findings indicate that AZA may be a potential agent against AML by regulating the Prdxs/ROS signaling pathway.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Ácidos Dicarboxílicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Peroxiredoxina III/metabolismo , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno , Animales , Apoptosis , Médula Ósea/inmunología , Médula Ósea/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Inmunofenotipificación , Ratones , Trasplante de Neoplasias , Pronóstico , Transducción de Señal , Células THP-1 , Células U937
15.
Redox Biol ; 28: 101343, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31655428

RESUMEN

BACKGROUND: Hydrogen peroxide (H2O2)-induced mitochondrial oxidative damage is critical to intestinal ischemia/reperfusion (I/R) injury, and PRDX3 is an efficient H2O2 scavenger that protects cells from mitochondrial oxidative damage and apoptosis. However, the function of PRDX3 in intestinal I/R injury is unclear. The aim of this study was to investigate the precise mechanism underlying the involvement of PRDX3 in intestinal I/R injury. METHODS: An intestinal I/R model was established in mice with superior mesenteric artery occlusion, and Caco-2 cells were subjected to hypoxia/reoxygenation (H/R) for the in vivo simulation of I/R. RESULTS: PRDX3 expression was decreased during intestinal I/R injury, and PRDX3 overexpression significantly attenuated H/R-induced mitochondrial oxidative damage and apoptosis in Caco-2 cells. The level of acetylated PRDX3 was clearly increased both in vivo and in vitro. The inhibition of SIRTs by nicotinamide (NAM) increased the level of acetylated PRDX3 and impaired the antioxidative activity of PRDX3. Furthermore, NAM did not increase the acetylation of PRDX3 in sirtuin-3 (SIRT3)-knockdown Caco-2 cells. Importantly, PRDX3 acetylation was increased in mice lacking SIRT3, and this effect was accompanied by serious mitochondrial oxidative damage, apoptosis and remote organ damage after intestinal I/R injury. We screened potential sites of PRDX3 acetylation in the previously reported acetylproteome through immunoprecipitation (IP) experiments and found that SIRT3 deacetylates K253 on PRDX3 in Caco-2 cells. Furthermore, PRDX3 with the lysine residue K253 mutated to arginine (K253R) increased its dimerization in Caco-2 cells after subjected to 12 h hypoxia and followed 4 h reoxygenation. Caco-2 cells transfected with the K253R plasmid exhibited notably less mitochondrial damage and apoptosis, and transfection of the K253Q plasmid abolished the protective effect of PRDX3 overexpression. Analysis of ischemic intestines from clinical patients further verified the correlation between SIRT3 and PRDX3. CONCLUSIONS: PRDX3 is a key protective factor for intestinal I/R injury, and SIRT3-mediated PRDX3 deacetylation can alleviate intestinal I/R-induced mitochondrial oxidative damage and apoptosis.


Asunto(s)
Intestinos/irrigación sanguínea , Intestinos/patología , Mitocondrias/metabolismo , Peroxiredoxina III/genética , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Sirtuina 3/metabolismo , Acetilación , Animales , Apoptosis , Biomarcadores , Biopsia , Línea Celular Tumoral , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Masculino , Ratones , Ratones Noqueados , Estrés Oxidativo , Peroxiredoxina III/metabolismo , Daño por Reperfusión/patología
16.
Ann Hepatol ; 19(1): 69-78, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31611063

RESUMEN

INTRODUCTION AND OBJECTIVES: Endurance exercise (EXE) has emerged as a potent inducer of autophagy essential in maintaining cellular homeostasis in various tissues; however, the functional significance and molecular mechanisms of EXE-induced autophagy in the liver remain unclear. Thus, the aim of this study is to examine the signaling nexus of hepatic autophagy pathways occurring during acute EXE and a potential crosstalk between autophagy and apoptosis. MATERIALS AND METHODS: C57BL/6 male mice were randomly assigned to sedentary control group (CON, n=9) and endurance exercise (EXE, n=9). Mice assigned to EXE were gradually acclimated to treadmill running and ran for 60min per day for five consecutive days. RESULTS: Our data showed that EXE promoted hepatic autophagy via activation of canonical autophagy signaling pathways via mediating microtubule-associated protein B-light chain 3 II (LC3-II), autophagy protein 7 (ATG7), phosphorylated adenosine mono phosphate-activated protein kinase (p-AMPK), CATHEPSIN L, lysosome-associated membrane protein 2 (LAMP2), and a reduction in p62. Interestingly, this autophagy promotion concurred with enhanced anabolic activation via AKT-mammalian target of rapamycin (mTOR)-p70S6K signaling cascade and enhanced antioxidant capacity such as copper zinc superoxide dismutase (CuZnSOD), glutathione peroxidase (GPX), and peroxiredoxin 3 (PRX3), known to be as antagonists of autophagy. Moreover, exercise-induced autophagy was inversely related to apoptosis in the liver. CONCLUSIONS: Our findings indicate that improved autophagy and antioxidant capacity, and potentiated anabolic signaling may be a potent non-pharmacological therapeutic strategy against diverse liver diseases.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Hígado/metabolismo , Condicionamiento Físico Animal/fisiología , Resistencia Física , Adenilato Quinasa/metabolismo , Animales , Antioxidantes/metabolismo , Proteína 7 Relacionada con la Autofagia/metabolismo , Catepsina L/metabolismo , Glutatión Peroxidasa/metabolismo , Hígado/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Peroxiredoxina III/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Distribución Aleatoria , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Conducta Sedentaria , Transducción de Señal , Superóxido Dismutasa-1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
17.
J Clin Pathol ; 73(7): 408-412, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31771972

RESUMEN

AIMS: Uveal melanoma (UM) is the most common primary intraocular malignancy in adults, and 40% develop fatal metastatic disease. Overexpression of thioredoxin-dependent peroxidase reductase (PRDX3) has been implicated in several cancers, including prostate, breast, colorectal and lung cancer. The aim of this study was to compare the immunohistochemical expression of PRDX3 in formalin-fixed, paraffin-embedded (FFPE) primary UM tissues of patients who did and did not develop metastatic disease. METHODS: Immunohistochemical staining of PRDX3 was performed on FFPE tissue microarray samples of 92 primary UM tumours from patients who did and did not develop metastatic disease. The immunohistochemical staining was assessed by two observers who were blinded to all clinicopathological and cytogenetic details including metastatic/non-metastatic information. Based on a scoring system, expression of PRDX3 was graded as high or low. RESULTS: There were 55 tumours (59.8%) from patients who developed metastatic disease, while 37 (40.2%) were from patients who did not develop metastasis. A statistically significant difference in PRDX3 expression was observed in patients who did and did not develop metastasis (p=0.001). A significant positive correlation between high PRDX3 expression and metastasis was observed (p=0.001). A significant negative correlation between PRDX3 expression and survival was found (p=0.005). Kaplan-Meier survival analysis showed a statistically significant difference in overall survival between tumours that demonstrated low and high expression of PRDX3 (67.61 vs 130.64 months, respectively, p=0.013). CONCLUSIONS: High immunohistochemical expression of PRDX3 in primary UM tissue is associated with metastasis and poor survival.


Asunto(s)
Melanoma/diagnóstico , Peroxiredoxina III/metabolismo , Neoplasias de la Úvea/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Melanoma/metabolismo , Melanoma/patología , Persona de Mediana Edad , Metástasis de la Neoplasia , Adhesión en Parafina , Pronóstico , Estudios Retrospectivos , Análisis de Matrices Tisulares , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Adulto Joven
18.
FASEB J ; 33(12): 14811-14824, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718280

RESUMEN

Reactive oxygen species (ROS) generation and mitochondrial dysfunction are related to neuron loss in multiple sclerosis (MS). Although peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) appears to play a key role in modulating levels of mitochondrial ROS, antioxidants, and uncoupling proteins (UCPs), and PGC-1α expression is reduced in the neocortex of patients with MS, it is unclear what its role is in neurons and in the manifestation of clinical symptoms of MS. Here, we show in wild-type (WT) experimental autoimmune encephalomyelitis (EAE) mice that PGC-1α is decreased 13 d after EAE induction followed by a steady decline up to 20 d. These changes were accompanied by parallel alterations in levels of superoxide dismutase 2, peroxiredoxin 3, thioredoxin 2, UCP4, and UCP5. In transgenic (TG) mice with neuron-specific overexpression of PGC-1α (PGC-1αf/fEno2-Cre), clinical symptoms after EAE induction were delayed and less severe than in WT mice. The degrees of apoptotic neuron loss and demyelination were also less severe in PGC-1α-TG mice. Overexpression of PGC-1α in neuronal neuroblastoma spinal cord 34 cells subjected to EAE inflammatory conditions showed similar results to those obtained in vivo. RNA sequencing analysis showed that apoptotic processes were significantly enriched in the top 10 significant gene ontology (GO) terms of differentially expressed genes, and the apoptotic pathway was significantly enriched in Kyoto Encyclopedia of Genes and Genomes pathway analysis. Our findings indicate that up-regulation of neuronal PGC-1α protected neurons from apoptosis in EAE. Manipulating PGC-1α levels in MS may help stave off this devastating disease.-Dang, C., Han, B., Li, Q., Han, R., Hao, J. Up-regulation of PGC-1α in neurons protects against experimental autoimmune encephalomyelitis.


Asunto(s)
Apoptosis , Encefalomielitis Autoinmune Experimental/metabolismo , Neuronas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Células Cultivadas , Encefalomielitis Autoinmune Experimental/genética , Femenino , Ratones , Ratones Endogámicos C57BL , Proteínas Desacopladoras Mitocondriales/genética , Proteínas Desacopladoras Mitocondriales/metabolismo , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
19.
Int J Mol Sci ; 20(18)2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500275

RESUMEN

Mitochondria are multifunctional cellular organelles that are major producers of reactive oxygen species (ROS) in eukaryotes; to maintain the redox balance, they are supplemented with different ROS scavengers, including mitochondrial peroxiredoxins (Prdxs). Mitochondrial Prdxs have physiological and pathological significance and are associated with the initiation and progression of various cancer types. In this review, we have focused on signaling involving ROS and mitochondrial Prdxs that is associated with cancer development and progression. An upregulated expression of Prdx3 and Prdx5 has been reported in different cancer types, such as breast, ovarian, endometrial, and lung cancers, as well as in Hodgkin's lymphoma and hepatocellular carcinoma. The expression of Prdx3 and Prdx5 in different types of malignancies involves their association with different factors, such as transcription factors, micro RNAs, tumor suppressors, response elements, and oncogenic genes. The microenvironment of mitochondrial Prdxs plays an important role in cancer development, as cancerous cells are equipped with a high level of antioxidants to overcome excessive ROS production. However, an increased production of Prdx3 and Prdx5 is associated with the development of chemoresistance in certain types of cancers and it leads to further complications in cancer treatment. Understanding the interplay between mitochondrial Prdxs and ROS in carcinogenesis can be useful in the development of anticancer drugs with better proficiency and decreased resistance. However, more targeted studies are required for exploring the tumor microenvironment in association with mitochondrial Prdxs to improve the existing cancer therapies and drug development.


Asunto(s)
Neoplasias/metabolismo , Peroxiredoxina III/metabolismo , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Elementos de Respuesta , Transducción de Señal , Microambiente Tumoral , Regulación hacia Arriba
20.
Exp Eye Res ; 185: 107641, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30980814

RESUMEN

Dysfunction and eventual loss of retinal pigment epithelial (RPE) cells is a hallmark of atrophic age-related macular degeneration (AMD), and linked to oxidative and nitrosative damage. Herein, we use a high-throughput screen (HTS) to identify compounds that protect human RPE cells from oxidative stress-induced cell death and elucidate the possible mechanism of action. HTS was used to identify compounds that protect RPE cells from oxidative damage. We tested the identified compound(s) in models of RPE stress, including tert-butyl hydroperoxide (TBHP) exposure, ultraviolet-B (UV-B)-mediated light damage and nitrosative stress to the basement membrane using ARPE-19 cells, primary human RPE cells and induced-pluripotent stem cell (iPSC)-derived RPE cells from patients with AMD. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect gene expression of oxidative stress- and apoptosis-related genes and mitochondrial function was measured using a Seahorse XF96 analyzer to elucidate possible mechanisms of action. Five thousand and sixty-five compounds were screened, and of these, 12 compounds were active based on their ability to improve cell viability after exposure to TBHP. After chemical structure review, we identified ciclopirox olamine as a potent inhibitor of oxidative damage to RPE cells. Ciclopirox olamine increased cell viability in ARPE-19 cells treated with TBHP, UV-B light or on nitrite-modified extracellular matrix (ECM) by 1.68-fold, 1.54-fold and 4.3-fold, respectively (p < 0.01). Treatment with TBHP altered expression of genes related to oxidative stress and apoptosis, which was reversed by pretreatment with ciclopirox olamine. Ciclopirox olamine improved mitochondrial function in TBHP-exposed ARPE-19 cells and iPSC-derived RPE cells. Ciclopirox olamine protected primary human RPE cells and iPSC-derived RPE cells from the oxidative stress or damaged basement membrane. HTS of bioactive Food and Drug Administration (FDA)-approved libraries and follow-up studies can be used to identify small molecules (including ciclopirox olamine) that protect RPE cells exposed to various stressors associated with disease progression of AMD. This strategy can be used to identify potential compounds for treatment and prevention of AMD.


Asunto(s)
Antifúngicos/uso terapéutico , Ciclopirox/uso terapéutico , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Degeneración Macular/tratamiento farmacológico , Estrés Oxidativo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Apoptosis , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Membrana Basal/patología , Catalasa/genética , Catalasa/metabolismo , Línea Celular , Citoprotección , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Estrés Nitrosativo/fisiología , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Rayos Ultravioleta/efectos adversos , terc-Butilhidroperóxido/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA