Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 21(16)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784357

RESUMEN

Somatic embryogenesis (SE) is a valuable model for understanding the mechanism of plant embryogenesis and a tool for the mass production of plants. However, establishing SE in avocado has been complicated due to the very low efficiency of embryo induction and plant regeneration. To understand the molecular foundation of the SE induction and development in avocado, we compared embryogenic (EC) and non-embryogenic (NEC) cultures of two avocado varieties using proteomic and metabolomic approaches. Although Criollo and Hass EC exhibited similarities in the proteome and metabolome profile, in general, we observed a more active phenylpropanoid pathway in EC than NEC. This pathway is associated with the tolerance of stress responses, probably through the reinforcement of the cell wall and flavonoid production. We could corroborate that particular polyphenolics compounds, including p-coumaric acid and t-ferulic acid, stimulated the production of somatic embryos in avocado. Exogen phenolic compounds were associated with the modification of the content of endogenous polyphenolic and the induction of the production of the putative auxin-a, adenosine, cellulose and 1,26-hexacosanediol-diferulate. We suggest that in EC of avocado, there is an enhanced phenylpropanoid metabolism for the production of the building blocks of lignin and flavonoid compounds having a role in cell wall reinforcement for tolerating stress response. Data are available at ProteomeXchange with the identifier PXD019705.


Asunto(s)
Adaptación Fisiológica , Pared Celular/metabolismo , Persea/embriología , Persea/fisiología , Técnicas de Embriogénesis Somática de Plantas , Propanoles/metabolismo , Estrés Fisiológico , Pared Celular/ultraestructura , Metabolómica , Modelos Biológicos , Persea/ultraestructura , Fenotipo , Proteínas de Plantas/metabolismo , Polifenoles/metabolismo , Análisis de Componente Principal , Proteómica
2.
Food Chem ; 245: 879-884, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29287454

RESUMEN

Persea schiedeana Nees is an underutilized and very little known species whose fruit is consumed in Mesoamerica where it grows wild. This study was carried out to evaluate: 1) the variability of fruit characteristics of different accessions; 2) the effects of centrifugation and microwave treatment on extracting oil from the fruit and on its qualitative characteristics; 3) the nutraceutical characteristics of the fruit and seeds of different accessions. The results showed a large variability in fruit size and oil/dry matter contents among the different accessions. There was a significant relationship between the dry matter and oil contents in the pulp. The combined use of centrifugation and microwave treatments gave high oil extraction yields (67-68%). The oils had good fatty acid composition and antioxidant capacity. The results gave an initial picture about the total phenol contents and antioxidant capacities in the seeds and in the different parts of the fruit.


Asunto(s)
Frutas/química , Valor Nutritivo , Persea/química , Aceites de Plantas/aislamiento & purificación , Antioxidantes/análisis , Centrifugación , Suplementos Dietéticos/análisis , Ácidos Grasos/análisis , Frutas/fisiología , Microondas , Persea/fisiología , Fenoles/análisis , Semillas/química
3.
Phytopathology ; 105(4): 433-40, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25496301

RESUMEN

Laurel wilt, caused by Raffaelea lauricola, is a destructive disease of avocado (Persea americana). The susceptibility of different cultivars and races was examined previously but more information is needed on how this host responds to the disease. In the present study, net CO2 assimilation (A), stomatal conductance of H2O (gs), transpiration (E), water use efficiency (WUE), and xylem sap flow rates were assessed in cultivars that differed in susceptibility. After artificial inoculation with R. lauricola, there was a close relationship between symptom development and reductions in A, gs, E, WUE, and mean daily sap flow in the most susceptible cultivar, 'Russell', and significantly greater disease and lower A, gs, E, WUE, and sap flow rates were usually detected after 15 days compared with the more tolerant 'Brogdon' and 'Marcus Pumpkin'. Significant differences in preinoculation A, gs, E, and WUE were generally not detected among the cultivars but preinoculation sap flow rates were greater in Russell than in Brogdon and Marcus Pumpkin. Preinoculation sap flow rates and symptom severity for individual trees were correlated at the end of an experiment (r=0.46), indicating that a plant's susceptibility to laurel wilt was related to its ability to conduct water. The potential management of this disease with clonal rootstocks that reduce sap flow rates is discussed.


Asunto(s)
Ophiostomatales/fisiología , Persea/fisiología , Enfermedades de las Plantas/microbiología , Transpiración de Plantas/fisiología , Dióxido de Carbono/metabolismo , Luz , Persea/microbiología , Persea/efectos de la radiación , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/microbiología , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Estaciones del Año , Especificidad de la Especie , Agua/metabolismo , Xilema/microbiología , Xilema/fisiología , Xilema/efectos de la radiación
4.
J Agric Food Chem ; 57(21): 10408-13, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19813713

RESUMEN

The California Hass avocado ( Persea americana ) is an example of a domesticated berry fruit that matures on the tree during its growing season but ripens only after being harvested. Avocados are typically harvested multiple times during the growing season in California. Previous research has demonstrated potential health benefits of avocados and extracts of avocado against inflammation and cancer cell growth, but seasonal variations in the phytochemical profile of the fruits being studied may affect the results obtained in future research. Therefore, in the present study, avocados were harvested in January, April, July, and September, 2008, from four different growing locations in California (San Luis Obispo, Ventura, Riverside, and San Diego) and analyzed for total fat content, fatty acid profile, carotenoids, and vitamin E. A significant increase in total carotenoid and fat content of avocados from all regions was noted as the season progressed from January to September. Four carotenoids not previously described in the avocado were quantified. The total content of carotenoids was highly correlated with the total fat content (r = 0.99, p < 0.001) demonstrating a remarkable degree of constancy of carotenoid intake per gram of fat content in the California Hass avocado. Future clinical research on the health benefits of the avocado should specify the time of harvest, degree of ripening, growing area, and the total phytochemical profile of the fruit or extract being studied. These steps will enable researchers to account for potential nutrient-nutrient interactions that might affect the research outcomes.


Asunto(s)
Carotenoides/análisis , Grasas/análisis , Ácidos Grasos/análisis , Persea/química , Persea/fisiología , Tocoferoles/análisis , California , Frutas/química , Frutas/fisiología , Estaciones del Año
5.
Plant Signal Behav ; 4(2): 100-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19649181

RESUMEN

Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone.


Asunto(s)
Ácido Abscísico/análisis , Fenómenos Electrofisiológicos , Etilenos/análisis , Persea/fisiología , Raíces de Plantas/fisiología , Estomas de Plantas/fisiología , Hipoxia de la Célula , Sequías , Hojas de la Planta/fisiología , Brotes de la Planta/fisiología , Árboles/fisiología
6.
J Plant Physiol ; 166(17): 1855-62, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19592132

RESUMEN

Chilling of avocado fruit (Persea americana cv. Arad) in the orchard caused a dramatic induction of fruit ripening and a parallel increase in ethylene biosynthesis and receptor genes' expression during shelf life. In-orchard chilling stress stimulated ethylene and CO(2) production already in fruit attached to the tree, and these reduced thereafter during 20 degrees C storage. In non-chilled control fruit, ethylene and CO(2) production started after 3d at 20 degrees C and exhibited a climacteric peak. In-orchard chilling stress also led to membrane destruction expressed as higher electrical conductivity (EC) in chilling stressed (CS) fruit and accelerated softening compared with control fruit. The increase in ethylene production on the day of harvest in CS fruit was accompanied by high expression of two 1-aminocyclopropane-1-carboxylic aCSd (ACC) synthase genes: PaACS1 and PaACS2, and ACC oxidase PaACO. The initial gene expressions of PaACS1, PaACS2, and PaACO in the CS fruit at the day of harvest was similar to the levels reached by the control fruit after 4d at 20 degrees C. The expression levels of both PaETR and PaERS1 in CS fruit on tree were 25 times higher than the control. In control fruit, expression of ethylene receptor genes was very low at harvest and increased in parallel to the onset of the climacteric ethylene peak. PaCTR1 transcript levels were less affected by chilling stress, and small changes (less than 3-fold) were observed in CS fruit on the day of harvest. Together, our results suggest that ethylene biosynthesis and ethylene response-pathway genes are involved in regulation of ethylene responsiveness in response to in-orchard chilling stress and during ripening.


Asunto(s)
Frío , Etilenos/biosíntesis , Frutas/metabolismo , Persea/metabolismo , Estrés Fisiológico , Dióxido de Carbono , Conductividad Eléctrica , Frutas/genética , Frutas/fisiología , Expresión Génica , Persea/genética , Persea/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal
7.
J Exp Bot ; 60(3): 791-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19196750

RESUMEN

Chilling injury (CI) symptoms in avocado (Persea americana Mill.) fruit, expressed as mesocarp discoloration, were found to be associated with embryo growth and ethylene production during cold storage. In cvs Ettinger and Arad most mesocarp discoloration was located close to the base of the seed and was induced by ethylene treatment in seeded avocado fruit. However, ethylene did not increase mesocarp discoloration in seedless fruit stored at 5 degrees C. Application of ethylene to whole fruit induced embryo development inside the seed. It also induced seedling elongation when seeds were imbibed separately. Persea americana ethylene receptor (PaETR) gene expression and polyphenol oxidase activity were highest close to the base of the seed and decreased gradually toward the blossom end. By contrast, expressions of PaETR transcript and polyphenol oxidase activity in seedless avocado fruit were similar throughout the pulp at the base of the fruit. Application of the ethylene inhibitor, 1-methylcyclopropene, decreased mesocarp browning, embryo development, seedling growth, and ion leakage, and down-regulated polyphenol oxidase activity. The results demonstrate that ethylene-mediated embryo growth in whole fruit is involved in the mesocarp response to ethylene perception and the development of CI disorders.


Asunto(s)
Etilenos/metabolismo , Frutas/fisiología , Persea/embriología , Persea/fisiología , Pigmentación , Semillas/fisiología , Catecol Oxidasa/metabolismo , Ciclopropanos/farmacología , Conductividad Eléctrica , Etilenos/farmacología , Frutas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Modelos Biológicos , Persea/enzimología , Persea/genética , Pigmentación/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos
8.
Bioessays ; 30(4): 386-96, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18348249

RESUMEN

The avocado (Persea americana) is a major crop commodity worldwide. Moreover, avocado, a paleopolyploid, is an evolutionary "outpost" among flowering plants, representing a basal lineage (the magnoliid clade) near the origin of the flowering plants themselves. Following centuries of selective breeding, avocado germplasm has been characterized at the level of microsatellite and RFLP markers. Nonetheless, little is known beyond these general diversity estimates, and much work remains to be done to develop avocado as a major subtropical-zone crop. Among the goals of avocado improvement are to develop varieties with fruit that will "store" better on the tree, show uniform ripening and have better post-harvest storage. Avocado transcriptome sequencing, genome mapping and partial genomic sequencing will represent a major step toward the goal of sequencing the entire avocado genome, which is expected to aid in improving avocado varieties and production, as well as understanding the evolution of flowers from non-flowering seed plants (gymnosperms). Additionally, continued evolutionary and other comparative studies of flower and fruit development in different avocado strains can be accomplished at the gene expression level, including in comparison with avocado relatives, and these should provide important insights into the genetic regulation of fruit development in basal angiosperms.


Asunto(s)
Frutas/genética , Genómica , Persea/fisiología , Evolución Molecular , Flores , Genes de Plantas , Genoma de Planta , Magnoliopsida/genética , Repeticiones de Microsatélite , Filogenia , Fenómenos Fisiológicos de las Plantas , Polimorfismo de Longitud del Fragmento de Restricción , Poliploidía , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA