Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.031
Filtrar
1.
Cell Mol Life Sci ; 81(1): 213, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727814

RESUMEN

Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans). Here we show a dynamic presence of Gv mRNA in several organs during early development of zebrafish, including the hatching gland, the pronephros and several cartilage anlagen, employing in situ hybridisation. Next, we generated a Gv frameshift mutation in zebrafish and observed distinct phenotypes such as reduced oviposition, premature hatching and craniofacial abnormalities in bone and cartilage of larval zebrafish. These phenotypes could suggest a disturbance in ionic homeostasis as a common denominator. Indeed, we find reduced levels of calcium, magnesium and potassium in the larvae and changes in expression levels of the sodium potassium pump atp1a1a.5 and the sodium/calcium exchanger ncx1b in larvae and in the adult kidney, a major osmoregulatory organ. Additionally, expression of sodium chloride cotransporter slc12a3 and the anion exchanger slc26a4 is altered in complementary ways in adult kidney. It appears that Gv may modulate ionic homeostasis in zebrafish during development and in adults. Our results constitute the first insight into the function of the fifth class of G alpha proteins.


Asunto(s)
Homeostasis , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Homeostasis/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/genética , Larva/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Calcio/metabolismo , Riñón/metabolismo , Magnesio/metabolismo
2.
Cell Death Dis ; 15(4): 269, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627369

RESUMEN

Most of the patients affected by neuronopathic forms of Mucopolysaccharidosis type II (MPS II), a rare lysosomal storage disorder caused by defects in iduronate-2-sulfatase (IDS) activity, exhibit early neurological defects associated with white matter lesions and progressive behavioural abnormalities. While neuronal degeneration has been largely described in experimental models and human patients, more subtle neuronal pathogenic defects remain still underexplored. In this work, we discovered that the axon guidance receptor Deleted in Colorectal Cancer (Dcc) is significantly dysregulated in the brain of ids mutant zebrafish since embryonic stages. In addition, thanks to the establishment of neuronal-enriched primary cell cultures, we identified defective proteasomal degradation as one of the main pathways underlying Dcc upregulation in ids mutant conditions. Furthermore, ids mutant fish-derived primary neurons displayed higher levels of polyubiquitinated proteins and P62, suggesting a wider defect in protein degradation. Finally, we show that ids mutant larvae display an atypical response to anxiety-inducing stimuli, hence mimicking one of the characteristic features of MPS II patients. Our study provides an additional relevant frame to MPS II pathogenesis, supporting the concept that multiple developmental defects concur with early childhood behavioural abnormalities.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Enfermedades del Sistema Nervioso , Animales , Orientación del Axón , Encéfalo/metabolismo , Iduronato Sulfatasa/metabolismo , Mucopolisacaridosis II/metabolismo , Enfermedades del Sistema Nervioso/patología , Pez Cebra/metabolismo
3.
Mol Med ; 30(1): 47, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594640

RESUMEN

BACKGROUND: RASopathies are genetic syndromes affecting development and having variable cancer predisposition. These disorders are clinically related and are caused by germline mutations affecting key players and regulators of the RAS-MAPK signaling pathway generally leading to an upregulated ERK activity. Gain-of-function (GOF) mutations in PTPN11, encoding SHP2, a cytosolic protein tyrosine phosphatase positively controlling RAS function, underlie approximately 50% of Noonan syndromes (NS), the most common RASopathy. A different class of these activating mutations occurs as somatic events in childhood leukemias. METHOD: Here, we evaluated the application of a FRET-based zebrafish ERK reporter, Teen, and used quantitative FRET protocols to monitor non-physiological RASopathy-associated changes in ERK activation. In a multi-level experimental workflow, we tested the suitability of the Teen reporter to detect pan-embryo ERK activity correlates of morphometric alterations driven by the NS-causing Shp2D61G allele. RESULTS: Spectral unmixing- and acceptor photobleaching (AB)-FRET analyses captured pathological ERK activity preceding the manifestation of quantifiable body axes defects, a morphological pillar used to test the strength of SHP2 GoF mutations. Last, the work shows that by multi-modal FRET analysis, we can quantitatively trace back the modulation of ERK phosphorylation obtained by low-dose MEK inhibitor treatment to early development, before the onset of morphological defects. CONCLUSION: This work proves the usefulness of FRET imaging protocols on both live and fixed Teen ERK reporter fish to readily monitor and quantify pharmacologically- and genetically-induced ERK activity modulations in early embryos, representing a useful tool in pre-clinical applications targeting RAS-MAPK signaling.


Asunto(s)
Síndrome de Noonan , Pez Cebra , Animales , Humanos , Adolescente , Pez Cebra/genética , Pez Cebra/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Síndrome de Noonan/genética , Mutación , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
4.
Nat Commun ; 15(1): 3165, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605010

RESUMEN

The mechanisms of bifurcation, a key step in thyroid development, are largely unknown. Here we find three zebrafish lines from a forward genetic screening with similar thyroid dysgenesis phenotypes and identify a stop-gain mutation in hgfa and two missense mutations in met by positional cloning from these zebrafish lines. The elongation of the thyroid primordium along the pharyngeal midline was dramatically disrupted in these zebrafish lines carrying a mutation in hgfa or met. Further studies show that MAPK inhibitor U0126 could mimic thyroid dysgenesis in zebrafish, and the phenotypes are rescued by overexpression of constitutively active MEK or Snail, downstream molecules of the HGF/Met pathway, in thyrocytes. Moreover, HGF promotes thyrocyte migration, which is probably mediated by downregulation of E-cadherin expression. The delayed bifurcation of the thyroid primordium is also observed in thyroid-specific Met knockout mice. Together, our findings reveal that HGF/Met is indispensable for the bifurcation of the thyroid primordium during thyroid development mediated by downregulation of E-cadherin in thyrocytes via MAPK-snail pathway.


Asunto(s)
Factor de Crecimiento de Hepatocito , Disgenesias Tiroideas , Animales , Ratones , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Cadherinas/genética , Disgenesias Tiroideas/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
5.
BMJ Open Diabetes Res Care ; 12(2)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575153

RESUMEN

INTRODUCTION: Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (KATP) are limited to primary islets from patients and the Sur1 -/- mouse model. Zebrafish exhibit potential as a novel KATPHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations. Moreover, zebrafish larvae transparency provides a unique opportunity for in vivo visualization of pancreatic islets. RESEARCH DESIGN AND METHODS: We evaluated zebrafish as a model for KATPHI using a genetically encoded Ca2+ sensor (ins:gCaMP6s) expressed under control of the insulin promoter in beta cells of an abcc8 -/- zebrafish line. RESULTS: We observed significantly higher islet cytosolic Ca2+ in vivo in abcc8 -/- compared with abcc8 +/+ zebrafish larvae. Additionally, abcc8 -/- larval zebrafish had significantly lower whole body glucose and higher whole body insulin levels compared with abcc8 +/+ controls. However, adult abcc8 -/- zebrafish do not show differences in plasma glucose, plasma insulin, or glucose tolerance when compared with abcc8 +/+ zebrafish. CONCLUSIONS: Our results identify that zebrafish larvae, but not adult fish, are a demonstrable novel model for advancement of HI research.


Asunto(s)
Hiperinsulinismo Congénito , Canales de Potasio de Rectificación Interna , Lactante , Adulto , Animales , Ratones , Humanos , Canales KATP/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Canales de Potasio de Rectificación Interna/genética , Hiperinsulinismo Congénito/genética , Insulina/metabolismo , Glucosa , Adenosina Trifosfato
6.
Anal Chem ; 96(15): 5931-5939, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573171

RESUMEN

Cuproptosis is a novel copper-dependent form of programmed cell death, displaying important regulatory functions in many human diseases, including cancer. However, the relationship between the changes in mitochondrial viscosity, a key factor associated with cellular malfunction, and cuproptosis is still unclear. Herein, we prepared a phosphorescent iridium (Ir) complex probe for precisely monitoring the changes of mitochondrial viscosity during cuprotosis via phosphorescence lifetime imaging. The Ir complex probe possessed microsecond lifetimes (up to 1 µs), which could be easily distinguished from cellular autofluorescence to improve the imaging contrast and sensitivity. Benefiting from the long phosphorescence lifetime, excellent viscosity selectivity, and mitochondrial targeting abilities, the Ir complex probe could monitor the increase in the mitochondrial viscosity during cuproptosis (from 46.8 to 68.9 cP) in a quantitative manner. Moreover, through in situ fluorescence imaging, the Ir complex probe successfully monitored the increase in viscosity in zebrafish treated with lipopolysaccharides or elescolomol-Cu2+, which were well-known cuproptosis inducers. We anticipate that this new Ir complex probe will be a useful tool for in-depth understanding of the biological effects of mitochondrial viscosity during cuproptosis.


Asunto(s)
Iridio , Pez Cebra , Animales , Humanos , Viscosidad , Pez Cebra/metabolismo , Línea Celular Tumoral , Células HeLa
7.
Zebrafish ; 21(2): 223-230, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38621217

RESUMEN

Obesity is a public health concern resulting in a variety of health complications, including heart disease and insulin resistance. Estrogens have been associated with a reduced risk of obesity, but this relationship remains incompletely understood. We assessed the role of 17ß-estradiol (E2) in mitigating complications associated with obesity by supplementing E2 in the diets of overfed zebrafish. We report that dietary E2 supplementation protects against weight gain and modulates de novo cholesterol synthesis in a sex-specific manner. Our studies lead us to propose a model in which E2 regulates hmgcr expression independently of unsaturated fat consumption. These data can be used to develop sex-specific treatments for obesity-related health conditions.


Asunto(s)
Grasas Insaturadas , Pez Cebra , Masculino , Femenino , Animales , Pez Cebra/metabolismo , Grasas Insaturadas/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Estrógenos/metabolismo , Obesidad/etiología , Colesterol/metabolismo , Suplementos Dietéticos
8.
Eur J Med Chem ; 270: 116367, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581732

RESUMEN

Breast cancer is one of the most common female malignant tumors, with triple-negative breast cancer (TNBC) being the most specific, highly invasive, metastatic and associated with a poor prognosis. Our previous study showed that the natural product ganoderic acid A (GAA) has a certain affinity for MDM2. In this study, two series of novel GAA PROTACs C1-C10 and V1-V10 were designed and synthesized for the treatment of breast cancer. The antitumor activity of these compounds was evaluated against four human tumor cell lines (MCF-7, MDA-MB-231, SJSA-1, and HepG2). Among them, V9 and V10 showed stronger anti-proliferative effects against breast cancer cells, and V10 showed the best selectivity in MDA-MB-231 cells (TNBC), which was 5-fold higher than that of the lead compound GAA. Preliminary structure-activity analysis revealed that V-series GAA PROTACs had better effects than C-series, and the introduction of 2O-4O PEG linkers could significantly improve the antitumor activity. Molecular docking, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), and Western blot researches showed that both V9 and V10 could bind with MDM2, and degrade the protein through the ubiquitin-proteasome system. Molecular dynamics simulation (MD) revealed that V10 is a bifunctional molecule that can bind to von Hippel-Lindau (VHL) at one end and target MDM2 at the other. In addition, V10 promoted the upregulation of p21 in p53-mutant MDA-MB-231 cells, and induced apoptosis via down-regulation of the bcl-2/bax ratio and the expression of cyclin B1. Finally, in vivo experiments showed that, V10 also exhibited good tumor inhibitory activity in xenografted TNBC zebrafish models, with an inhibition rate of 27.2% at 50 µg/mL. In conclusion, our results suggested that V10 has anti-tumor effects on p53-mutant breast cancer in vitro and in vivo, and may be used as a novel lead compound for the future development of TNBC.


Asunto(s)
Ácidos Heptanoicos , Lanosterol/análogos & derivados , Proteínas Proto-Oncogénicas c-mdm2 , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Proteína p53 Supresora de Tumor/metabolismo , Simulación del Acoplamiento Molecular , Pez Cebra/metabolismo , Línea Celular Tumoral , Proliferación Celular , Apoptosis
9.
Sci Rep ; 14(1): 7862, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570547

RESUMEN

The small muscle protein, X-linked (SMPX) gene encodes a cytoskeleton-associated protein, highly expressed in the inner ear hair cells (HCs), possibly regulating auditory function. In the last decade, several mutations in SMPX have been associated with X-chromosomal progressive non syndromic hearing loss in humans and, in line with this, Smpx-deficient animal models, namely zebrafish and mouse, showed significant impairment of inner ear HCs development, maintenance, and functioning. In this work, we uncovered smpx expression in the neuromast mechanosensory HCs of both Anterior and Posterior Lateral Line (ALL and PLL, respectively) of zebrafish larvae and focused our attention on the PLL. Smpx was subcellularly localized throughout the cytoplasm of the HCs, as well as in their primary cilium. Loss-of-function experiments, via both morpholino-mediated gene knockdown and CRISPR/Cas9 F0 gene knockout, revealed that the lack of Smpx led to fewer properly differentiated and functional neuromasts, as well as to a smaller PLL primordium (PLLp), the latter also Smpx-positive. In addition, the kinocilia of Smpx-deficient neuromast HCs appeared structurally and numerically altered. Such phenotypes were associated with a significant reduction in the mechanotransduction activity of the neuromast HCs, in line with their positivity for Smpx. In summary, this work highlights the importance of Smpx in lateral line development and, specifically, in proper HCs differentiation and/or maintenance, and in the mechanotransduction process carried out by the neuromast HCs. Because lateral line HCs are both functionally and structurally analogous to the cochlear HCs, the neuromasts might represent an invaluable-and easily accessible-tool to dissect the role of Smpx in HCs development/functioning and shed light on the underlying mechanisms involved in hearing loss.


Asunto(s)
Pérdida Auditiva , Sistema de la Línea Lateral , Humanos , Animales , Ratones , Pez Cebra/genética , Pez Cebra/metabolismo , Sistema de la Línea Lateral/metabolismo , Mecanotransducción Celular , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva/genética , Proteínas Musculares/metabolismo
10.
Nature ; 628(8009): 863-871, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570687

RESUMEN

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Asunto(s)
Encéfalo , Neovascularización Fisiológica , Animales , Membrana Basal/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/citología , Encéfalo/citología , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Movimiento Celular , Colágeno Tipo IV/metabolismo , Sistemas CRISPR-Cas/genética , Células Endoteliales/metabolismo , Células Endoteliales/citología , Meninges/citología , Meninges/irrigación sanguínea , Meninges/metabolismo , Especificidad de Órganos , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
11.
EMBO J ; 43(10): 1990-2014, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605226

RESUMEN

Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.


Asunto(s)
Células Madre Hematopoyéticas , Metiltransferasas , Proteínas de Unión al ARN , Pez Cebra , Animales , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Humanos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ciclo Celular , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Desarrollo Embrionario/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proliferación Celular
12.
Cell Rep ; 43(4): 114092, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607913

RESUMEN

Macrophages conduct critical roles in heart repair, but the niche required to nurture and anchor them is poorly studied. Here, we investigated the macrophage niche in the regenerating heart. We analyzed cell-cell interactions through published single-cell RNA sequencing datasets and identified a strong interaction between fibroblast/epicardial (Fb/Epi) cells and macrophages. We further visualized the association of macrophages with Fb/Epi cells and the blockage of macrophage response without Fb/Epi cells in the regenerating zebrafish heart. Moreover, we found that ptx3a+ epicardial cells associate with reparative macrophages, and their depletion resulted in fewer reparative macrophages. Further, we identified csf1a expression in ptx3a+ cells and determined that pharmacological inhibition of the csf1a pathway or csf1a knockout blocked the reparative macrophage response. Moreover, we found that genetic overexpression of csf1a enhanced the reparative macrophage response with or without heart injury. Altogether, our studies illuminate a cardiac Fb/Epi niche, which mediates a beneficial macrophage response after heart injury.


Asunto(s)
Fibroblastos , Corazón , Macrófagos , Regeneración , Pez Cebra , Animales , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/genética , Fibroblastos/metabolismo , Corazón/fisiología , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Macrófagos/metabolismo , Pericardio/metabolismo , Pericardio/citología , Regeneración/fisiología , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
13.
Biomolecules ; 14(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38672412

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative olfactory disorder affecting millions of people worldwide. Alterations in the hexosamine- or glucose-related pathways have been described through AD progression. Specifically, an alteration in glucosamine 6 phosphate isomerase 2 (GNPDA2) protein levels has been observed in olfactory areas of AD subjects. However, the biological role of GNPDA2 in neurodegeneration remains unknown. Using mass spectrometry, multiple GNPDA2 interactors were identified in human nasal epithelial cells (NECs) mainly involved in intraciliary transport. Moreover, GNPDA2 overexpression induced an increment in NEC proliferation rates, accompanied by transcriptomic alterations in Type II interferon signaling or cellular stress responses. In contrast, the presence of beta-amyloid or mutated Tau-P301L in GNPDA2-overexpressing NECs induced a slowdown in the proliferative capacity in parallel with a disruption in protein processing. The proteomic characterization of Tau-P301L transgenic zebrafish embryos demonstrated that GNPDA2 overexpression interfered with collagen biosynthesis and RNA/protein processing, without inducing additional changes in axonal outgrowth defects or neuronal cell death. In humans, a significant increase in serum GNPDA2 levels was observed across multiple neurological proteinopathies (AD, Lewy body dementia, progressive supranuclear palsy, mixed dementia and amyotrophic lateral sclerosis) (n = 215). These data shed new light on GNPDA2-dependent mechanisms associated with the neurodegenerative process beyond the hexosamine route.


Asunto(s)
Isomerasas Aldosa-Cetosa , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Pez Cebra , Proteínas tau , Animales , Humanos , Isomerasas Aldosa-Cetosa/metabolismo , Isomerasas Aldosa-Cetosa/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales Modificados Genéticamente , Proliferación Celular , Células Epiteliales/metabolismo , Proteómica , Proteínas tau/metabolismo , Proteínas tau/genética , Pez Cebra/metabolismo
14.
Sci Signal ; 17(832): eadf4299, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626007

RESUMEN

Cell-to-cell communication through secreted Wnt ligands that bind to members of the Frizzled (Fzd) family of transmembrane receptors is critical for development and homeostasis. Wnt9a signals through Fzd9b, the co-receptor LRP5 or LRP6 (LRP5/6), and the epidermal growth factor receptor (EGFR) to promote early proliferation of zebrafish and human hematopoietic stem cells during development. Here, we developed fluorescently labeled, biologically active Wnt9a and Fzd9b fusion proteins to demonstrate that EGFR-dependent endocytosis of the ligand-receptor complex was required for signaling. In human cells, the Wnt9a-Fzd9b complex was rapidly endocytosed and trafficked through early and late endosomes, lysosomes, and the endoplasmic reticulum. Using small-molecule inhibitors and genetic and knockdown approaches, we found that Wnt9a-Fzd9b endocytosis required EGFR-mediated phosphorylation of the Fzd9b tail, caveolin, and the scaffolding protein EGFR protein substrate 15 (EPS15). LRP5/6 and the downstream signaling component AXIN were required for Wnt9a-Fzd9b signaling but not for endocytosis. Knockdown or loss of EPS15 impaired hematopoietic stem cell development in zebrafish. Other Wnt ligands do not require endocytosis for signaling activity, implying that specific modes of endocytosis and trafficking may represent a method by which Wnt-Fzd specificity is established.


Asunto(s)
Pez Cebra , beta Catenina , Animales , Humanos , beta Catenina/metabolismo , Endocitosis , Receptores ErbB/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
15.
Nat Commun ; 15(1): 2859, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570500

RESUMEN

Cold-induced injuries severely limit opportunities and outcomes of hypothermic therapies and organ preservation, calling for better understanding of cold adaptation. Here, by surveying cold-altered chromatin accessibility and integrated CUT&Tag/RNA-seq analyses in human stem cells, we reveal forkhead box O1 (FOXO1) as a key transcription factor for autonomous cold adaptation. Accordingly, we find a nonconventional, temperature-sensitive FOXO1 transport mechanism involving the nuclear pore complex protein RANBP2, SUMO-modification of transporter proteins Importin-7 and Exportin-1, and a SUMO-interacting motif on FOXO1. Our conclusions are supported by cold survival experiments with human cell models and zebrafish larvae. Promoting FOXO1 nuclear entry by the Exportin-1 inhibitor KPT-330 enhances cold tolerance in pre-diabetic obese mice, and greatly prolongs the shelf-life of human and mouse pancreatic tissues and islets. Transplantation of mouse islets cold-stored for 14 days reestablishes normoglycemia in diabetic mice. Our findings uncover a regulatory network and potential therapeutic targets to boost spontaneous cold adaptation.


Asunto(s)
Diabetes Mellitus Experimental , Factores de Transcripción Forkhead , Ratones , Humanos , Animales , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Transporte Activo de Núcleo Celular , Pez Cebra/metabolismo , Carioferinas/metabolismo
16.
Biomolecules ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38672460

RESUMEN

A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.


Asunto(s)
Antioxidantes , Edaravona , Receptores de Hidrocarburo de Aril , Transducción de Señal , Animales , Humanos , Ratones , Antioxidantes/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Edaravona/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo
17.
FEBS J ; 291(10): 2094-2097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38680125

RESUMEN

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a transmembrane protein that, when cleaved by metalloproteases through a process called ectodomain shedding, binds to the EGF receptor (EGFR), activating downstream signaling. The HB-EGF/EGFR pathway is crucial in development and is involved in numerous pathophysiological processes. In this issue of The FEBS Journal, Sireci et al. reveal a previously unexplored function of the HB-EGF/EGFR pathway in promoting neuronal progenitor proliferation and sensory neuron regeneration in the zebrafish olfactory epithelium in response to injury.


Asunto(s)
Receptores ErbB , Factor de Crecimiento Similar a EGF de Unión a Heparina , Transducción de Señal , Pez Cebra , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Animales , Receptores ErbB/metabolismo , Receptores ErbB/genética , Pez Cebra/metabolismo , Humanos , Proliferación Celular , Neuronas/metabolismo , Regeneración Nerviosa , Mucosa Olfatoria/metabolismo
18.
Cell Mol Life Sci ; 81(1): 158, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556571

RESUMEN

Mutations in cysteine and glycine-rich protein 3 (CSRP3)/muscle LIM protein (MLP), a key regulator of striated muscle function, have been linked to hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) in patients. However, the roles of CSRP3 in heart development and regeneration are not completely understood. In this study, we characterized a novel zebrafish gene-trap line, gSAIzGFFM218A, which harbors an insertion in the csrp3 genomic locus, heterozygous fish served as a csrp3 expression reporter line and homozygous fish served as a csrp3 mutant line. We discovered that csrp3 is specifically expressed in larval ventricular cardiomyocytes (CMs) and that csrp3 deficiency leads to excessive trabeculation, a common feature of CSRP3-related HCM and DCM. We further revealed that csrp3 expression increased in response to different cardiac injuries and was regulated by several signaling pathways vital for heart regeneration. Csrp3 deficiency impeded zebrafish heart regeneration by impairing CM dedifferentiation, hindering sarcomere reassembly, and reducing CM proliferation while aggravating apoptosis. Csrp3 overexpression promoted CM proliferation after injury and ameliorated the impairment of ventricle regeneration caused by pharmacological inhibition of multiple signaling pathways. Our study highlights the critical role of Csrp3 in both zebrafish heart development and regeneration, and provides a valuable animal model for further functional exploration that will shed light on the molecular pathogenesis of CSRP3-related human cardiac diseases.


Asunto(s)
Cardiomiopatía Hipertrófica , Proteínas con Dominio LIM , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Cisteína/genética , Cisteína/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Miocitos Cardíacos/metabolismo
19.
Anal Chem ; 96(14): 5615-5624, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38544396

RESUMEN

Abnormal lipid droplets (LDs) are known to be intimately bound with the occurrence and development of cancer, allowing LDs to be critical biomarkers for cancers. Aggregation-induced emission luminogens (AIEgens), with efficient reactive oxygen species (ROS) production performance, are prime photosensitizers (PSs) for photodynamic therapy (PDT) with imaging. Therefore, the development of dual-functional fluorescent probes with aggregation-induced emission (AIE) characteristics that enable both simultaneous LD monitoring and imaging-guided PDT is essential for concurrent cancer diagnosis and treatment. Herein, we reported the development of a novel LD-targeting fluorescent probe (TDTI) with AIE performance, which was expected to realize the integration of cancer diagnosis through LD visualization and cancer treatment via PDT. We demonstrated that TDTI, with typical AIE characteristics and excellent photostability, could target LDs with high specificity, which enables the dynamic tracking of LDs in living cells, specific imaging of LDs in zebrafish, and the differentiation of cancer cells from normal cells for cancer diagnosis. Meanwhile, TDTI exhibited fast ROS generation ability (achieving equilibrium within 60 s) under white light irradiation (10 mW/cm2). The cell apoptosis assay revealed that TDTI effectively induced growth inhibition and apoptosis of HeLa cells. Further, the results of PDT in vivo indicated that TDTI had a good antitumor effect on the tumor-bearing mice model. Collectively, these results highlight the potential utility of the dual-functional fluorescent probe TDTI in the integrated diagnosis and treatment of cancer.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Animales , Ratones , Células HeLa , Colorantes Fluorescentes , Gotas Lipídicas/metabolismo , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
20.
J Med Chem ; 67(7): 5902-5923, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38520399

RESUMEN

Nuclear factor kappa beta (NF-κB) plays a pivotal role in breast cancer, particularly triple-negative breast cancer, by promoting inflammation, proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance. Upregulation of NF-κB boosts vascular endothelial growth factor (VEGF) expression, assisting angiogenesis. The Ru(II) complexes of methyl- and dimethylpyrazolyl-benzimidazole N,N donors inhibit phosphorylation of ser536 in p65 and translocation of the NF-κB heterodimer (p50/p65) to the nucleus, disabling transcription to upregulate inflammatory signaling. The methyl- and dimethylpyrazolyl-benzimidazole inhibit VEGFR2 phosphorylation at Y1175, disrupting downstream signaling through PLC-γ and ERK1/2, ultimately suppressing Ca(II)-signaling. Partial release of the antiangiogenic ligand in a reactive oxygen species-rich environment is possible as per our observation to inhibit both NF-κB and VEGFR2 by the complexes. The complexes are nontoxic to zebrafish embryos up to 50 µM, but the ligands show strong in vivo antiangiogenic activity at 3 µM during embryonic growth in Tg(fli1:GFP) zebrafish but no visible effect on the adult phase.


Asunto(s)
FN-kappa B , Neoplasias de la Mama Triple Negativas , Humanos , Animales , FN-kappa B/metabolismo , Pez Cebra/metabolismo , Factor de Transcripción ReIA/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular , Ligandos , Bencimidazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA