Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biotechnol ; 267: 19-28, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29301095

RESUMEN

Indirubin is an indole alkaloid that can be used to treat various diseases including granulocytic leukemia, cancer, and Alzheimer's disease. Microbial production of indirubin has so far been achieved by supplementation of rather expensive substrates such as indole or tryptophan. Here, we report the development of metabolically engineered Escherichia coli strain capable of producing indirubin directly from glucose. First, the Methylophaga aminisulfidivorans flavin-containing monooxygenase (FMO) and E. coli tryptophanase (TnaA) were introduced into E. coli in order to complete the biosynthetic pathway from tryptophan to indirubin. Further engineering was performed through rational strategies including disruption of the regulatory repressor gene trpR and removal of feedback inhibitions on AroG and TrpE. Then, combinatorial approach was employed by systematically screening eight genes involved in the common aromatic amino acid pathway. Moreover, availability of the aromatic precursor substrates, phosphoenolpyruvate and erythrose-4-phosphate, was enhanced by inactivating the pykF (pyruvate kinase I) and pykA (pyruvate kinase II) genes, and by overexpressing the tktA gene (encoding transketolase), respectively. Fed-batch fermentation of the final engineered strain led to production of 0.056 g/L of indirubin directly from glucose. The metabolic engineering and synthetic biology strategies reported here thus allows microbial fermentative production of indirubin from glucose.


Asunto(s)
Ingeniería Metabólica , Oxigenasas/genética , Triptofanasa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Glucosa/biosíntesis , Glucosa/química , Indoles/química , Indoles/metabolismo , Ingeniería Metabólica/métodos , Oxigenasas/metabolismo , Fosfoenolpiruvato/química , Piscirickettsiaceae/enzimología , Piruvato Quinasa/química , Piruvato Quinasa/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Especificidad por Sustrato , Transcetolasa/química , Transcetolasa/genética
2.
Arch Microbiol ; 198(2): 149-59, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26581415

RESUMEN

The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an aerobic sulfur-oxidizing hydrothermal vent chemolithoautotroph that has a CO2 concentrating mechanism (CCM), which generates intracellular dissolved inorganic carbon (DIC) concentrations much higher than extracellular, thereby providing substrate for carbon fixation at sufficient rate. This CCM presumably requires at least one active DIC transporter to generate the elevated intracellular concentrations of DIC measured in this organism. In this study, the half-saturation constant (K CO2) for purified carboxysomal RubisCO was measured (276 ± 18 µM) which was much greater than the K CO2 of whole cells (1.03 µM), highlighting the degree to which the CCM facilitates CO2 fixation under low CO2 conditions. To clarify the bioenergetics powering active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis (DCCD) or proton potential (CCCP). Incubations with each of these inhibitors resulted in diminished intracellular ATP, DIC, and fixed carbon, despite an absence of an inhibitory effect on proton potential in the DCCD-incubated cells. Electron transport complexes NADH dehydrogenase and the bc 1 complex were found to be insensitive to DCCD, suggesting that ATP synthase was the primary target of DCCD. Given the correlation of DIC uptake to the intracellular ATP concentration, the ABC transporter genes were targeted by qRT-PCR, but were not upregulated under low-DIC conditions. As the T. crunogena genome does not include orthologs of any genes encoding known DIC uptake systems, these data suggest that a novel, yet to be identified, ATP- and proton potential-dependent DIC transporter is active in this bacterium. This transporter serves to facilitate growth by T. crunogena and other Thiomicrospiras in the many habitats where they are found.


Asunto(s)
Ciclo del Carbono/fisiología , Carbono/metabolismo , Piscirickettsiaceae/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Bacteriana de la Expresión Génica , Piscirickettsiaceae/enzimología , Piscirickettsiaceae/genética
3.
J Am Chem Soc ; 135(32): 11809-23, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23848168

RESUMEN

Broken-symmetry density functional theory (BS-DFT) has been used to address the redox-dependent structural changes of the proximal [4Fe-3S] cluster, implicated in the O2-tolerance of membrane-bound [NiFe]-hydrogenase (MBH). The recently determined structures of the [4Fe-3S] cluster together with its protein ligands were studied at the reduced [4Fe-3S](3+), oxidized [4Fe-3S](4+), and superoxidized [4Fe-3S](5+) levels in context of their relative energies and protonation states. The observed proximal cluster conformational switch, concomitant with the proton transfer from the cysteine Cys20 backbone amide to the nearby glutamate Glu76 carboxylate, is found to be a single-step process requiring ~12-17 kcal/mol activation energy at the superoxidized [4Fe-3S](5+) level. At the more reduced [4Fe-3S](4+/3+) oxidation levels, this rearrangement has at least 5 kcal/mol higher activation barriers and prohibitively unfavorable product energies. The reverse transformation of the proximal cluster is a fast unidirectional process with ~8 kcal/mol activation energy, triggered by one-electron reduction of the superoxidized species. A previously discussed ambiguity of the Glu76 carboxylate and 'special' Fe4 iron positions in the superoxidized cluster is now rationalized as a superposition of two local minima, where Glu76-Fe4 coordination is either present or absent. The calculated 12.3-17.9 MHz (14)N hyperfine coupling (HFC) for the Fe4-bound Cys20 backbone nitrogen is in good agreement with the large 13.0/14.6 MHz (14)N couplings from the latest HYSCORE/ENDOR studies.


Asunto(s)
Cupriavidus necator/enzimología , Escherichia coli/enzimología , Hidrogenasas/química , Piscirickettsiaceae/enzimología , Cupriavidus necator/química , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/química , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Oxidación-Reducción , Oxígeno/metabolismo , Piscirickettsiaceae/química , Conformación Proteica , Protones , Teoría Cuántica
4.
Nature ; 479(7372): 253-6, 2011 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22002607

RESUMEN

Membrane-bound respiratory [NiFe]-hydrogenase (MBH), a H(2)-uptake enzyme found in the periplasmic space of bacteria, catalyses the oxidation of dihydrogen: H(2) → 2H(+) + 2e(-) (ref. 1). In contrast to the well-studied O(2)-sensitive [NiFe]-hydrogenases (referred to as the standard enzymes), MBH has an O(2)-tolerant H(2) oxidation activity; however, the mechanism of O(2) tolerance is unclear. Here we report the crystal structures of Hydrogenovibrio marinus MBH in three different redox conditions at resolutions between 1.18 and 1.32 Å. We find that the proximal iron-sulphur (Fe-S) cluster of MBH has a [4Fe-3S] structure coordinated by six cysteine residues--in contrast to the [4Fe-4S] cubane structure coordinated by four cysteine residues found in the proximal Fe-S cluster of the standard enzymes--and that an amide nitrogen of the polypeptide backbone is deprotonated and additionally coordinates the cluster when chemically oxidized, thus stabilizing the superoxidized state of the cluster. The structure of MBH is very similar to that of the O(2)-sensitive standard enzymes except for the proximal Fe-S cluster. Our results give a reasonable explanation why the O(2) tolerance of MBH is attributable to the unique proximal Fe-S cluster; we propose that the cluster is not only a component of the electron transfer for the catalytic cycle, but that it also donates two electrons and one proton crucial for the appropriate reduction of O(2) in preventing the formation of an unready, inactive state of the enzyme.


Asunto(s)
Hidrogenasas/química , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/química , Hierro/química , Oxígeno/metabolismo , Piscirickettsiaceae/enzimología , Azufre/química , Biocatálisis , Cristalografía por Rayos X , Cisteína/química , Desulfovibrio gigas/enzimología , Proteínas Hierro-Azufre/metabolismo , Modelos Químicos , Modelos Moleculares , Oxidación-Reducción , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Protones , Relación Estructura-Actividad
5.
Arch Biochem Biophys ; 437(2): 168-77, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15850556

RESUMEN

DNA topoisomerase is involved in DNA repair and replication. In this study, a novel ATP-independent 30-kDa type I DNA topoisomerase was purified and characterized from a marine methylotroph, Methylophaga sp. strain 3. The purified enzyme composed of a single polypeptide was active over a broad range of temperature and pH. The enzyme was able to relax only negatively supercoiled DNA. Mg(2+) was required for its relaxation activity, while ATP gave no effect. The enzyme was clearly inhibited by camptothecin, ethidium bromide, and single-stranded DNA, but not by nalidixic acid and etoposide. Interestingly, the purified enzyme showed Mn(2+)-activated endonuclease activity on supercoiled DNA. The N-terminal sequence of the purified enzyme showed no homology with those of other type I enzymes. These results suggest that the purified enzyme is an ATP-independent type I DNA topoisomerase that has, for the first time, been characterized from a marine methylotroph.


Asunto(s)
ADN-Topoisomerasas de Tipo I/aislamiento & purificación , ADN-Topoisomerasas de Tipo I/metabolismo , Piscirickettsiaceae/clasificación , Piscirickettsiaceae/enzimología , Adenosina Trifosfato/farmacología , Cationes Bivalentes/farmacología , Cromatografía Líquida de Alta Presión , ADN-Topoisomerasas de Tipo I/clasificación , ADN de Cadena Simple/farmacología , Ácido Edético/farmacología , Etidio/farmacología , Concentración de Iones de Hidrógeno , Manganeso/farmacología , Biología Marina , Factores de Tiempo , Inhibidores de Topoisomerasa I
6.
Biol. Res ; 37(4,supl.A): 783-793, 2004. ilus
Artículo en Inglés | LILACS | ID: lil-399658

RESUMEN

We have isolated and sequenced the genes encoding the membrane bound transglycosylase B (MltB) and the transferring binding protein B (TbpB) of the salmon pathogen Piscirickettsia salmonis. The results of the sequence revealed two open reading frames that encode proteins with calculated molecular weights of 38,830 and 85,140. The deduced aminoacid sequences of both proteins show a significant homology to the respective protein from phylogenetically related microorganisms. Partial sequences coding the amino and carboxyl regions of MltB and a sequence of 761 base pairs encoding the amino region of TbpB have been expressed in E. coli. The strong humoral response elicited by these proteins in mouse confirmed the immunogenic properties of the recombinant proteins. A similar response was elicited by both proteins when injected intraperitoneally in Atlantic salmon. The present data indicates that these proteins are good candidates to be used in formulations to study the protective immunity of salmon to infection by P. salmonis.


Asunto(s)
Masculino , Animales , Ratones , Código Genético/genética , Glicosiltransferasas/genética , Piscirickettsiaceae/enzimología , Salmón/microbiología , Proteína B de Unión a Transferrina , Secuencia de Bases , Técnicas de Cultivo de Célula , Ensayo de Inmunoadsorción Enzimática , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Piscirickettsiaceae/genética , Piscirickettsiaceae/inmunología , Proteínas de la Membrana/genética , Salmón/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA