Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.132
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Dent Res ; 103(6): 622-630, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38715225

RESUMEN

microRNA-200a (miR-200a) targets multiple signaling pathways that are involved in osteogenic differentiation and bone development. However, its therapeutic function in osteogenesis and bone regeneration remains unknown. In this study, we use in vitro and in vivo models to investigate the molecular function of miR-200a overexpression and miR-200a inhibition using a plasmid-based miR inhibitor system (PMIS) on osteogenic differentiation and bone regeneration. Inhibition of miR-200a using PMIS-miR-200a significantly increased osteogenic biomarkers of human embryonic palatal mesenchyme cells and promoted bone regeneration in rat tooth socket defects. In rat maxillary M1 molar extractions, the supporting tooth structures were removed with an implant drill to yield a 3-mm defect in the alveolar bone. A collagen sponge was inserted into the open alveolar defect and PMIS-miR-200a plasmid DNA was added to the sponge and the wound sutured to protect the sponge and close the defect. It was important to remove the existing tooth supporting structure, which can influence alveolar bone regeneration. The alveolar bone was regenerated in 4 wk. The collagen sponge acts to stabilize and deliver the PMIS-miR-200a DNA to cells entering the sponge in the bone defect. We show that mesenchymal stem cells expressing CD90 and Stro-1 enter the sponges, take up the DNA, and express PMIS-miR-200a. PMIS-miR-200a initiates a bone regeneration program in transformed cells in vivo. In vitro inhibition of miR-200a was found to upregulate Wnt and BMP signaling activity as well as Runx2, OCN, Lef-1, Msx2, and Dlx5 associated with osteogenesis. Liver and blood toxicity testing of PMIS-miR-200a-treated rats showed no increase in several biomarkers of liver disease. These results demonstrate the therapeutic function of PMIS-miR-200a for rapid bone regeneration. Furthermore, the studies were designed to demonstrate the ease of use of PMIS-miR-200a in solution and applied using a syringe in the clinic through a simple one-time application.


Asunto(s)
Regeneración Ósea , MicroARNs , Osteogénesis , Alveolo Dental , Animales , Ratas , Humanos , Osteogénesis/fisiología , Alveolo Dental/cirugía , Células Madre Mesenquimatosas , Diferenciación Celular , Ratas Sprague-Dawley , Masculino , Extracción Dental , Proceso Alveolar , Plásmidos , Pérdida de Hueso Alveolar/terapia , Colágeno
2.
Viruses ; 16(5)2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793642

RESUMEN

Mouse adenoviruses (MAdV) play important roles in studying host-adenovirus interaction. However, easy-to-use reverse genetics systems are still lacking for MAdV. An infectious plasmid pKRMAV1 was constructed by ligating genomic DNA of wild-type MAdV-1 with a PCR product containing a plasmid backbone through Gibson assembly. A fragment was excised from pKRMAV1 by restriction digestion and used to generate intermediate plasmid pKMAV1-ER, which contained E3, fiber, E4, and E1 regions of MAdV-1. CMV promoter-controlled GFP expression cassette was inserted downstream of the pIX gene in pKMAV1-ER and then transferred to pKRMAV1 to generate adenoviral plasmid pKMAV1-IXCG. Replacement of transgene could be conveniently carried out between dual BstZ17I sites in pKMAV1-IXCG by restriction-assembly, and a series of adenoviral plasmids were generated. Recombinant viruses were rescued after transfecting linearized adenoviral plasmids to mouse NIH/3T3 cells. MAdV-1 viruses carrying GFP or firefly luciferase genes were characterized in gene transduction, plaque-forming, and replication in vitro or in vivo by observing the expression of reporter genes. The results indicated that replication-competent vectors presented relevant properties of wild-type MAdV-1 very well. By constructing viruses bearing exogenous fragments with increasing size, it was found that MAdV-1 could tolerate an insertion up to 3.3 kb. Collectively, a replication-competent MAdV-1 vector system was established, which simplified procedures for the change of transgene or modification of E1, fiber, E3, or E4 genes.


Asunto(s)
Vectores Genéticos , Plásmidos , Replicación Viral , Animales , Ratones , Vectores Genéticos/genética , Plásmidos/genética , Adenoviridae/genética , Células 3T3 NIH , Clonación Molecular , Genes Reporteros
3.
Amino Acids ; 56(1): 34, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691208

RESUMEN

Breast cancer is the most common cancer among women worldwide, and marine creatures are the most abundant reservoir of anticancer medicines. Tachyplesin peptides have shown antibacterial capabilities, but their potential to inhibit cancer growth and trigger cancer cell death has not been investigated. A synthetic tachyplesin nucleotide sequence was generated and inserted into the pcDNA3.1( +) Mammalian Expression Vector. PCR analysis and enzyme digesting procedures were used to evaluate the vectors' accuracy. The transfection efficiency of MCF-7 and MCF10-A cells was 57% and 65%, respectively. The proliferation of MCF-7 cancer cells was markedly suppressed. Administration of plasmid DNA (pDNA) combined with tachyplesin to mice with tumors did not cause any discernible morbidity or mortality throughout treatment. The final body weight curves revealed a significant reduction in weight among mice treated with pDNA/tachyplesin and tachyplesin at a dose of 100 µg/ml (18.4 ± 0.24 gr, P < 0.05; 11.4 ± 0.24 gr P < 0.01) compared to the control group treated with PBS (22 ± 0.31 gr). Animals treated with pDNA/tachyplesin and tachyplesin exhibited a higher percentage of CD4 + Foxp3 + Tregs, CD8 + Foxp3 + Tregs, and CD4 + and CD8 + T cell populations expressing CTLA-4 in their lymph nodes and spleen compared to the PBS group. The groups that received pDNA/tachyplesin exhibited a substantial upregulation in the expression levels of caspase-3, caspase-8, BAX, PI3K, STAT3, and JAK genes. The results offer new possibilities for treating cancer by targeting malignancies using pDNA/tachyplesin and activating the mTOR and NFκB signaling pathways.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Apoptosis , Proteínas de Unión al ADN , Péptidos Cíclicos , Plásmidos , Animales , Apoptosis/efectos de los fármacos , Humanos , Ratones , Femenino , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Cíclicos/farmacología , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , ADN , Ratones Endogámicos BALB C
4.
Genes (Basel) ; 15(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38790204

RESUMEN

Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein-Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors.


Asunto(s)
Reprogramación Celular , Fibroblastos , Vectores Genéticos , Células Madre Pluripotentes Inducidas , Plásmidos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Vectores Genéticos/genética , Reprogramación Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Plásmidos/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Células Cultivadas , Transfección/métodos
5.
Front Cell Infect Microbiol ; 14: 1390966, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817448

RESUMEN

Introduction: Carbapenemase-Producing Escherichia coli (CP-Eco) isolates, though less prevalent than other CP-Enterobacterales, have the capacity to rapidly disseminate antibiotic resistance genes (ARGs) and cause serious difficult-to-treat infections. The aim of this study is phenotypically and genotypically characterizing CP-Eco isolates collected from Spain to better understand their resistance mechanisms and population structure. Methods: Ninety representative isolates received from 2015 to 2020 from 25 provinces and 59 hospitals Spanish hospitals were included. Antibiotic susceptibility was determined according to EUCAST guidelines and whole-genome sequencing was performed. Antibiotic resistance and virulence-associated genes, phylogeny and population structure, and carbapenemase genes-carrying plasmids were analyzed. Results and discussion: The 90 CP-Eco isolates were highly polyclonal, where the most prevalent was ST131, detected in 14 (15.6%) of the isolates. The carbapenemase genes detected were bla OXA-48 (45.6%), bla VIM-1 (23.3%), bla NDM-1 (7.8%), bla KPC-3 (6.7%), and bla NDM-5 (6.7%). Forty (44.4%) were resistant to 6 or more antibiotic groups and the most active antibiotics were colistin (98.9%), plazomicin (92.2%) and cefiderocol (92.2%). Four of the seven cefiderocol-resistant isolates belonged to ST167 and six harbored bla NDM. Five of the plazomicin-resistant isolates harbored rmt. IncL plasmids were the most frequent (45.7%) and eight of these harbored bla VIM-1. bla OXA-48 was found in IncF plasmids in eight isolates. Metallo-ß-lactamases were more frequent in isolates with resistance to six or more antibiotic groups, with their genes often present on the same plasmid/integron. ST131 isolates were associated with sat and pap virulence genes. This study highlights the genetic versatility of CP-Eco and its potential to disseminate ARGs and cause community and nosocomial infections.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Infecciones por Escherichia coli , Escherichia coli , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos , beta-Lactamasas , España/epidemiología , beta-Lactamasas/genética , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/epidemiología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Plásmidos/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Heterogeneidad Genética , Secuenciación Completa del Genoma , Factores de Virulencia/genética , Genotipo , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/enzimología , Enterobacteriaceae Resistentes a los Carbapenémicos/clasificación , Farmacorresistencia Bacteriana Múltiple/genética , Virulencia/genética
6.
Methods Enzymol ; 697: 293-319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38816127

RESUMEN

Assembly of de novo peptides designed from scratch is in a semi-rational manner and creates artificial supramolecular structures with unique properties. Considering that the functions of various proteins in living cells are highly regulated by their assemblies, building artificial assemblies within cells holds the potential to simulate the functions of natural protein assemblies and engineer cellular activities for controlled manipulation. How can we evaluate the self-assembly of designed peptides in cells? The most effective approach involves the genetic fusion of fluorescent proteins (FPs). Expressing a self-assembling peptide fused with an FP within cells allows for evaluating assemblies through fluorescence signal. When µm-scale assemblies such as condensates are formed, the peptide assemblies can be directly observed by imaging. For sub-µm-scale assemblies, fluorescence correlation spectroscopy analysis is more practical. Additionally, the fluorescence resonance energy transfer (FRET) signal between FPs is valuable evidence of proximity. The decrease in fluorescence anisotropy associated with homo-FRET reveals the properties of self-assembly. Furthermore, by combining two FPs, one acting as a donor and the other as an acceptor, the heteromeric interaction between two different components can be studied through the FRET signal. In this chapter, we provide detailed protocols, from designing and constructing plasmid DNA expressing the peptide-fused protein to analysis of self-assembly in living cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas Luminiscentes , Péptidos , Proteínas Recombinantes de Fusión , Transferencia Resonante de Energía de Fluorescencia/métodos , Péptidos/química , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/química , Plásmidos/genética
7.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732235

RESUMEN

The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.


Asunto(s)
Quitosano , Técnicas de Transferencia de Gen , Oro , Neoplasias Hepáticas , Nanopartículas del Metal , Humanos , Oro/química , Nanopartículas del Metal/química , Células Hep G2 , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Quitosano/química , Células HEK293 , Receptor de Asialoglicoproteína/metabolismo , Receptor de Asialoglicoproteína/genética , Células CACO-2 , Luciferasas/genética , Luciferasas/metabolismo , Polietilenglicoles/química , Plásmidos/genética , Disacáridos/química , Terapia Genética/métodos , Polímeros/química , Supervivencia Celular/efectos de los fármacos
8.
ACS Appl Mater Interfaces ; 16(21): 26984-26997, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38753459

RESUMEN

Lipid nanoparticles (LNPs) are clinically advanced nonviral gene delivery vehicles with a demonstrated ability to address viral, oncological, and genetic diseases. However, the further development of LNP therapies requires rapid analytical techniques to support their development and manufacturing. The method developed and described in this paper presents an approach to rapidly and accurately analyze LNPs for optimized therapeutic loading by utilizing an electrophoresis microfluidic platform to analyze the composition of LNPs with different clinical lipid compositions (Onpattro, Comirnaty, and Spikevax) and nucleic acid (plasmid DNA (pDNA) and messenger RNA (mRNA)) formulations. This method enables the high-throughput screening of LNPs using a 96- or 384-well plate with approximate times of 2-4 min per sample using a total volume of 11 µL. The lipid analysis requires concentrations approximately between 109 and 1010 particles/mL and has an average precision error of 10.4% and a prediction error of 19.1% when compared to using a NanoSight, while the nucleic acid analysis requires low concentrations of 1.17 ng/µL for pDNA and 0.17 ng/µL for mRNA and has an average precision error of 4.8% and a prediction error of 9.4% when compared to using a PicoGreen and RiboGreen assay. In addition, our method quantifies the relative concentration of nucleic acid per LNP. Utilizing this approach, we observed an average of 263 ± 62.2 mRNA per LNP and 126.3 ± 21.2 pDNA per LNP for the LNP formulations used in this study, where the accuracy of these estimations is dependent on reference standards. We foresee the utility of this technique in the high-throughput characterization of LNPs during manufacturing and formulation research and development.


Asunto(s)
ADN , Lípidos , Nanopartículas , Plásmidos , ARN Mensajero , ARN Mensajero/genética , Nanopartículas/química , Plásmidos/genética , ADN/química , Lípidos/química , Humanos , Microfluídica/métodos , Técnicas de Transferencia de Gen , Electroforesis , Liposomas
9.
Protein Eng Des Sel ; 372024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38696722

RESUMEN

The yeast endoplasmic reticulum sequestration and screening (YESS) system is a broadly applicable platform to perform high-throughput biochemical studies of post-translational modification enzymes (PTM-enzymes). This system enables researchers to profile and engineer the activity and substrate specificity of PTM-enzymes and to discover inhibitor-resistant enzyme mutants. In this study, we expand the capabilities of YESS by transferring its functional components to integrative plasmids. The YESS integrative system yields uniform protein expression and protease activities in various configurations, allows one to integrate activity reporters at two independent loci and to split the system between integrative and centromeric plasmids. We characterize these integrative reporters with two viral proteases, Tobacco etch virus (TEVp) and 3-chymotrypsin like protease (3CLpro), in terms of coefficient of variance, signal-to-noise ratio and fold-activation. Overall, we provide a framework for chromosomal-based studies that is modular, enabling rigorous high-throughput assays of PTM-enzymes in yeast.


Asunto(s)
Retículo Endoplásmico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética , Procesamiento Proteico-Postraduccional , Genes Reporteros , Endopeptidasas/genética , Endopeptidasas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo
10.
Microbiol Spectr ; 12(6): e0061424, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38727230

RESUMEN

We describe four cases of a novel carbapenem-resistant Pseudomonas aeruginosa ST179 clone carrying the blaKPC-2 or blaKPC-35 gene together with blaIMP-16, imported from Peru to Spain and isolated from leukemia patients. All isolates were multidrug-resistant but remained susceptible to fosfomycin, cefiderocol, and colistin. Whole-genome sequencing revealed that blaKPC-2 and blaKPC-35 were located in an IncP6 plasmid, whereas blaIMP-16 was in a chromosomal type 1 integron. This study highlights the global threat of multidrug-resistant P. aeruginosa clones and underscores the importance of monitoring and early detection of emerging resistance mechanisms to guide appropriate treatment strategies. The importation and spread of such clones emphasize the urgent need to implement strict infection control measures to prevent the dissemination of carbapenem-resistant bacteria. IMPORTANCE: This is the first documented case of a Pseudomonas aeruginosa ST179 strain carrying the blaKPC-35 gene, and it represents the first report of a P. aeruginosa co-harboring blaIMP-16 and either blaKPC-2 or blaKPC-35, which wre imported from Peru to Spain, highlighting a threat due to the capacity of spreading carbapenem-resistance via plasmid conjugation.


Asunto(s)
Antibacterianos , Carbapenémicos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Pseudomonas , Pseudomonas aeruginosa , beta-Lactamasas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/enzimología , Humanos , España , Perú , Infecciones por Pseudomonas/microbiología , Carbapenémicos/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Masculino , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuenciación Completa del Genoma , Femenino , Persona de Mediana Edad , Adulto
11.
Eur J Pharm Biopharm ; 199: 114297, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641228

RESUMEN

Spray-drying of nucleic acid-based drugs designed for gene therapy or gene knockdown is associated with many advantages including storage stability and handling as well as the possibility of pulmonary application. The encapsulation of nucleic acids in nanoparticles prior to spray-drying is one strategy for obtaining efficient formulations. This, however, strongly relies on the definition of optimal nanoparticles, excipients and spray-drying conditions. Among polymeric nanoparticles, polyethylenimine (PEI)-based complexes with or without chemical modifications have been described previously as very efficient for gene or oligonucleotide delivery. The tyrosine-modification of linear or branched low molecular weight PEIs, or of polypropylenimine (PPI) dendrimers, has led to high complex stability, improved cell uptake and transfection efficacy as well as high biocompatibility. In this study, we identify optimal spray-drying conditions for PEI-based nanoparticles containing large plasmid DNA or small siRNAs, and further explore the spray-drying of nanoparticles containing chemically modified polymers. Poly(vinyl alcohol) (PVA), but not trehalose or lactose, is particularly well-suited as excipient, retaining or even enhancing transfection efficacies compared to fresh complexes. A big mesh size is critically important as well, while the variation of the spray-drying temperature plays a minor role. Upon spray-drying, microparticles in a âˆ¼ 3.3 - 8.5 µm size range (laser granulometry) are obtained, dependent on the polymers. Upon their release from the spray-dried material, the nanoparticles show increased sizes and markedly altered zeta potentials as compared to their fresh counterparts. This may contribute to their high efficacy that is seen also after prolonged storage of the spray-dried material. We conclude that these spray-dried systems offer a great potential for the preparation of nucleic acid drug storage forms with facile reconstitution, as well as for their direct pulmonary application as dry powder.


Asunto(s)
ADN , Nanopartículas , Polietileneimina , ARN Interferente Pequeño , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Nanopartículas/química , Polietileneimina/química , ADN/administración & dosificación , ADN/química , Humanos , Técnicas de Transferencia de Gen , Secado por Pulverización , Transfección/métodos , Polipropilenos/química , Excipientes/química , Tamaño de la Partícula , Plásmidos/administración & dosificación , Desecación/métodos , Alcohol Polivinílico/química
12.
J Microbiol Methods ; 221: 106928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583783

RESUMEN

The bicistronic expression system that utilizes fluorescent reporters has been demonstrated to be a straightforward method for detecting recombinant protein expression levels, particularly when compared to polyacrylamide gel electrophoresis and immunoblot analysis, which are tedious and labor-intensive. However, existing bicistronic reporter systems are less capable of quantitative measurement due to the lag in reporter expression and its negative impact on target protein. In this work, a plug and play bicistronic construct using mCherry as reporter was applied in the screening of optimal replicon and promoter for Sortase expression in Escherichia coli (E. coli). The bicistronic construct allowed the reporter gene and target open reading frame (ORF) to be co-transcribed under the same promoter, resulting in a highly positive quantitative correlation between the expression titer of Sortase and the fluorescent intensity (R2 > 0.97). With the correlation model, the titer of target protein can be quantified by noninvasively measuring the fluorescent intensity. On top of this, the expression of reporter has no significant effect on the yield of target protein, thus favoring a plug and play design for removing reporter gene to generate a plain plasmid for industrial use.


Asunto(s)
Escherichia coli , Genes Reporteros , Proteínas Luminiscentes , Plásmidos , Regiones Promotoras Genéticas , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Luminiscentes/genética , Plásmidos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Fluorescente Roja , Sistemas de Lectura Abierta , Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vectores Genéticos , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Replicón/genética
13.
J Viral Hepat ; 31 Suppl 1: 26-34, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38606944

RESUMEN

Adeno-associated virus (AAV)-based gene therapies are in clinical development for haemophilia and other genetic diseases. Since the recombinant AAV genome primarily remains episomal, it provides the opportunity for long-term expression in tissues that are not proliferating and reduces the safety concerns compared with integrating viral vectors. However, AAV integration events are detected at a low frequency. Preclinical studies in mouse models have reported hepatocellular carcinoma (HCC) after systemic AAV administration in some settings, though this has not been reported in large animal models. The risk of HCC or other cancers after AAV gene therapy in clinical studies thus remains theoretical. Potential risk factors for HCC after gene therapy are beginning to be elucidated through animal studies, but their relevance to human studies remains unknown. Studies to investigate the factors that may influence the risk of oncogenesis as well as detailed investigation of cases of cancer in AAV gene therapy patients will be important to define the potential risk of AAV genotoxicity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/patología , Vectores Genéticos , Plásmidos , Terapia Genética , Dependovirus/genética , Dependovirus/metabolismo , Integración Viral
14.
Sci Rep ; 14(1): 8103, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582880

RESUMEN

Antimicrobial resistance genes (ARG), such as extended-spectrum ß-lactamase (ESBL) and carbapenemase genes, are commonly carried on plasmids. Plasmids can transmit between bacteria, disseminate globally, and cause clinically important resistance. Therefore, targeting plasmids could reduce ARG prevalence, and restore the efficacy of existing antibiotics. Cobalt complexes possess diverse biological activities, including antimicrobial and anticancer properties. However, their effect on plasmid conjugation has not been explored yet. Here, we assessed the effect of four previously characterised bis(N-picolinamido)cobalt(II) complexes lacking antibacterial activity on plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Antimicrobial susceptibility testing of these cobalt complexes confirmed the lack of antibacterial activity in E. coli and K. pneumoniae. Liquid broth and solid agar conjugation assays were used to screen the activity of the complexes on four archetypical plasmids in E. coli J53. The cobalt complexes significantly reduced the conjugation of RP4, R6K, and R388 plasmids, but not pKM101, on solid agar in E. coli J53. Owing to their promising activity, the impact of cobalt complexes was tested on the conjugation of fluorescently tagged extended-spectrum ß-lactamase encoding pCTgfp plasmid in E. coli and carbapenemase encoding pKpQILgfp plasmid in K. pneumoniae, using flow cytometry. The complexes significantly reduced the conjugation of pKpQILgfp in K. pneumoniae but had no impact on pCTgfp conjugation in E. coli. The cobalt complexes did not have plasmid-curing activity, suggesting that they target conjugation rather than plasmid stability. To our knowledge, this is the first study to report reduced conjugation of clinically relevant plasmids with cobalt complexes. These cobalt complexes are not cytotoxic towards mammalian cells and are not antibacterial, therefore they could be optimised and employed as inhibitors of plasmid conjugation.


Asunto(s)
Antiinfecciosos , Infecciones por Klebsiella , Animales , Agar , Antibacterianos/farmacología , Antiinfecciosos/farmacología , beta-Lactamasas/genética , Escherichia coli/genética , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Mamíferos/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética
15.
Mol Biol Rep ; 51(1): 566, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656625

RESUMEN

BACKGROUND: Escherichia coli is the most common etiological agent of urinary tract infections (UTIs). Meanwhile, plasmid-mediated quinolone resistance (PMQR) is reported in E. coli isolates producing extended-spectrum ß-lactamases (ESBLs). Furthermore, the reservoirs and mechanisms of acquisition of uropathogenic Escherichia coli (UPEC) strains are poorly understood. On the other hand, UTIs are common in pregnant women and the treatment challenge is alarming. METHODS AND RESULTS: In the present study, 54 pregnant women with acute cystitis were included. A total of 108 E. coli isolates, 54 isolates from UTI and 54 isolates from faeces of pregnant women (same host) were collected. In the antimicrobial susceptibility test, the highest rate of antibiotic resistance was to nalidixic acid (77%, 83/108) and the lowest rate was to imipenem (9%, 10/108). Among the isolates, 44% (48/108) were ESBLs producers. A high frequency of PMQR genes was observed in the isolates. The frequency of PMQR genes qnrS, qnrB, aac(6')-Ib-cr, and qnrA was 58% (63/108), 21% (23/108), 9% (10/108), and 4% (4/108), respectively. Meanwhile, PMQR genes were not detected in 24% (20/85) of isolates resistant to nalidixic acid and/or fluoroquinolone, indicating that other mechanisms, i.e. chromosomal mutations, are involved in resistance to quinolones, which were not detected in the present study. In ESBL-producing isolates, the frequency of PMQR genes was higher than that of non-ESBL-producing isolates (81% vs. 53%). Meanwhile, UTI and faeces isolates mainly belonged to phylogenetic group B2 (36/54, 67% and 25/54, 46%, respectively) compared to other phylogenetic groups. In addition, virulence factors and multidrug-resistant (MDR) were mainly associated with phylogenetic group B2. However, predominant clones in faeces were not found in UTIs. Rep-PCR revealed the presence of 85 clones in patients. Among the clones, 40 clones were detected only in faeces (faeces-only), 35 clones only in UTI (UTI-only) and 10 clones in both faeces and UTI (faeces-UTI). We found that out of 10 faeces-UTI clones, 5 clones were present in the host's faeces flora. CONCLUSION: This study revealed a high rate of resistance to the quinolone nalidixic acid and a widespread distribution of PMQR genes in MDR E. coli strains producing ESBLs. The strains represented virulence factors and phylogenetic group B2 are closely associated with abundance in UTI and faeces. However, the predominant clones in faeces were not found in UTIs and it is possible that rep-PCR is not sufficiently discriminating clones.


Asunto(s)
Antibacterianos , Cistitis , Infecciones por Escherichia coli , Escherichia coli , Heces , Pruebas de Sensibilidad Microbiana , Plásmidos , Quinolonas , beta-Lactamasas , Humanos , Femenino , beta-Lactamasas/genética , Plásmidos/genética , Heces/microbiología , Quinolonas/farmacología , Embarazo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Adulto , Antibacterianos/farmacología , Cistitis/microbiología , Farmacorresistencia Bacteriana/genética , Prevalencia , Infecciones Urinarias/microbiología , Ácido Nalidíxico/farmacología
16.
Benef Microbes ; 15(2): 211-225, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38688481

RESUMEN

Enterococcus faecium SF68 (SF68) is a well-known probiotic with a long history of safe use. Recent changes in the taxonomy of enterococci have shown that a novel species, Enterococcus lactis, is closely related with E. faecium and occurs together with other enterococci in a phylogenetically well-defined E. faecium species group. The close phylogenetic relationship between the species E. faecium and E. lactis prompted a closer investigation into the taxonomic status of E. faecium SF68. Using phylogenomics and ANI, the taxonomic analysis in this study showed that probiotic E. faecium SF68, when compared to other E. faecium and E. lactis type and reference strains, could be re-classified as belonging to the species E. lactis. Further investigations into the functional properties of SF68 showed that it is potentially capable of bacteriocin production, as a bacteriocin gene cluster encoding the leaderless bacteriocin EntK1 together with putative Lactococcus lactis bacteriocins LsbA, and LsbB-like putative immunity peptide (LmrB) were found located in an operon on plasmid pF9. However, bacteriocin expression was not studied. Competitive exclusion experiments in co-culture over 7 days at 37 °C showed that the probiotic SF68 could inhibit the growth of specific E. faecium and Listeria monocytogenes strains, while showing little or no inhibitory activity towards an entero-invasive Escherichia coli and a Salmonella Typhimurium strain, respectively. In cell culture experiments with colon carcinoma HT29 cells, the probiotic SF68 was also able to strain-specifically inhibit adhesion and/or invasion of enterococcal and L. monocytogenes strains, while such adhesion and invasion inhibition effects were less pronounced for E. coli and Salmonella strains. This study therefore provides novel data on the taxonomy and functional properties of SF68, which can be reclassified as Enterococcus lactis SF68, thereby enhancing the understanding of its probiotic nature.


Asunto(s)
Bacteriocinas , Enterococcus faecium , Filogenia , Probióticos , Enterococcus faecium/genética , Enterococcus faecium/clasificación , Enterococcus faecium/fisiología , Bacteriocinas/genética , Bacteriocinas/metabolismo , Humanos , Antibiosis , Plásmidos/genética , Familia de Multigenes , Células HT29
17.
Ecotoxicol Environ Saf ; 276: 116288, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581909

RESUMEN

Cylindrospermopsin (CYN), a cyanobacterial toxin, has been detected in the global water environment. However, information concerning the potential environmental risk of CYN is limited, since the majority of previous studies have mainly focused on the adverse health effects of CYN through contaminated drinking water. The present study reported that CYN at environmentally relevant levels (0.1-100 µg/L) can significantly enhance the conjugative transfer of RP4 plasmid in Escherichia coli genera, wherein application of 10 µg/L of CYN led to maximum fold change of ∼6.5- fold at 16 h of exposure. Meanwhile, evaluation of underlying mechanisms revealed that environmental concentration of CYN exposure could increase oxidative stress in the bacterial cells, resulting in ROS overproduction. In turn, this led to an upregulation of antioxidant enzyme-related genes to avoid ROS attack. Further, inhibition of the synthesis of glutathione (GSH) was also detected, which led to the rapid depletion of GSH in cells and thus triggered the SOS response and promoted the conjugative transfer process. Increase in cell membrane permeability, upregulation of expression of genes related to pilus generation, ATP synthesis, and RP4 gene expression were also observed. These results highlight the potential impact on the spread of antimicrobial resistance in water environments.


Asunto(s)
Alcaloides , Toxinas Bacterianas , Toxinas de Cianobacterias , Escherichia coli , Glutatión , Plásmidos , Uracilo , Plásmidos/genética , Glutatión/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Toxinas Bacterianas/toxicidad , Uracilo/análogos & derivados , Uracilo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Conjugación Genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética
18.
J Vet Med Sci ; 86(6): 600-605, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631887

RESUMEN

To investigate the etiological role of vapB-positive Rhodococcus equi in pigs, R. equi was isolated from the submaxillary lymph nodes with or without macroscopically detectable lesions of apparently healthy growing-finishing pigs at a slaughterhouse in Toyama Prefecture, Japan. R. equi was isolated from 57 (24.6%) of 232 pigs with macroscopically detectable lymph node lesions, and 56 (98.2%) of the 57 isolates were vapB-positive. R. equi was isolated from 10 (2.4%) of 420 pigs without lymph node lesions, and six (60%) of the 10 isolates were vapB-positive. Plasmid DNA was isolated from the 62 vapB-positive isolates and digested with EcoRI and NsiI to obtain the plasmid profile. Fifty-two (83.9%), three (4.8%), and four (6.5%) isolates contained pVAPB subtypes 1, 2, and 3, respectively, while the remaining three isolates were of pVAPB subtypes 9, 13, and 14, respectively. Twelve specimens from lymph nodes with macroscopically detectable lesions were randomly selected for histopathological staining. Granulomatous lesions resembling tuberculosis were found in 11 of the 12 specimens, and the remaining specimen showed typical foci of malakoplakia in the lymph node. The isolation rates of R. equi and vapB-positive R. equi from lymph nodes with macroscopically detectable lesions were significantly higher (P<0.05) than those of lymph nodes without lesions, suggesting an etiologic association between vapB-positive R. equi and macroscopically detectable granulomatous lesions in porcine submaxillary lymph nodes. Previous reports on the prevalence of vapB-positive R. equi in pigs are reviewed and discussed.


Asunto(s)
Infecciones por Actinomycetales , Ganglios Linfáticos , Rhodococcus equi , Enfermedades de los Porcinos , Animales , Rhodococcus equi/aislamiento & purificación , Rhodococcus equi/genética , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/patología , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/patología , Porcinos , Japón/epidemiología , Infecciones por Actinomycetales/veterinaria , Infecciones por Actinomycetales/microbiología , Infecciones por Actinomycetales/patología , Proteínas Bacterianas/genética , Plásmidos , Granuloma/veterinaria , Granuloma/microbiología , Granuloma/patología
19.
J Radiat Res ; 65(3): 279-290, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38682896

RESUMEN

Combined radiation-trauma skin injury represents a severe and intractable condition that urgently requires effective therapeutic interventions. In this context, hepatocyte growth factor (HGF), a multifunctional growth factor with regulating cell survival, angiogenesis, anti-inflammation and antioxidation, may be valuable for the treatment of combined radiation-trauma injury. This study investigated the protective effects of a recombinant plasmid encoding human HGF (pHGF) on irradiated human immortalized keratinocytes (HaCaT) cells in vitro, and its capability to promote the healing of combined radiation-trauma injuries in mice. The pHGF radioprotection on irradiated HaCaT cells in vitro was assessed by cell viability, the expression of Nrf2, Bcl-2 and Bax, as well as the secretion of inflammatory cytokines. In vivo therapeutic treatment, the irradiated mice with full-thickness skin wounds received pHGF local injection. The injuries were appraised based on relative wound area, pathology, immunohistochemical detection, terminal deoxynucleotidyl transferase dUTP nick end labelling assay and cytokine content. The transfection of pHGF increased the cell viability and Nrf2 expression in irradiated HaCaT cells. pHGF also significantly upregulated Bcl-2 expression, decreased the Bax/Bcl-2 ratio and inhibited the expression of interleukin-1ß and tumor necrosis factor-α in irradiated cells. Local pHGF injection in vivo caused high HGF protein expression and noticeable accelerated healing of combined radiation-trauma injury. Moreover, pHGF administration upregulated Nrf2, vascular endothelial growth factor, Bcl-2 expression, downregulated Bax expression and mitigated inflammatory response. In conclusion, the protective effect of pHGF may be related to inhibiting apoptosis and inflammation involving by upregulating Nrf2. Local pHGF injection distinctly promoted the healing of combined radiation-trauma injury and demonstrates potential as a gene therapy intervention for combined radiation-trauma injury in clinic.


Asunto(s)
Factor de Crecimiento de Hepatocito , Factor 2 Relacionado con NF-E2 , Plásmidos , Transducción de Señal , Piel , Cicatrización de Heridas , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Factor de Crecimiento de Hepatocito/genética , Cicatrización de Heridas/efectos de los fármacos , Piel/patología , Piel/efectos de la radiación , Ratones , Traumatismos por Radiación , Apoptosis , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Citocinas/metabolismo , Células HaCaT , Masculino , Queratinocitos/efectos de la radiación
20.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652748

RESUMEN

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Asunto(s)
Escherichia coli , Plásmidos , Plásmidos/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Segregación Cromosómica , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA