Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
Mol Genet Genomics ; 299(1): 68, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980531

RESUMEN

The P-type ATPase superfamily genes are the cation and phospholipid pumps that transport ions across the membranes by hydrolyzing ATP. They are involved in a diverse range of functions, including fundamental cellular events that occur during the growth of plants, especially in the reproductive organs. The present work has been undertaken to understand and characterize the P-type ATPases in the pigeonpea genome and their potential role in anther development and pollen fertility. A total of 59 P-type ATPases were predicted in the pigeonpea genome. The phylogenetic analysis classified the ATPases into five subfamilies: eleven P1B, eighteen P2A/B, fourteen P3A, fifteen P4, and one P5. Twenty-three pairs of P-type ATPases were tandemly duplicated, resulting in their expansion in the pigeonpea genome during evolution. The orthologs of the reported anther development-related genes were searched in the pigeonpea genome, and the expression profiling studies of specific genes via qRT-PCR in the pre- and post-meiotic anther stages of AKCMS11A (male sterile), AKCMS11B (maintainer) and AKPR303 (fertility restorer) lines of pigeonpea was done. Compared to the restorer and maintainer lines, the down-regulation of CcP-typeATPase22 in the post-meiotic anthers of the male sterile line might have played a role in pollen sterility. Furthermore, the strong expression of CcP-typeATPase2 in the post-meiotic anthers of restorer line and CcP-typeATPase46, CcP-typeATPase51, and CcP-typeATPase52 in the maintainer lines, respectively, compared to the male sterile line, clearly indicates their potential role in developing male reproductive organs in pigeonpea.


Asunto(s)
Cajanus , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Polen , Polen/genética , Polen/crecimiento & desarrollo , Cajanus/genética , Cajanus/crecimiento & desarrollo , Cajanus/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPasas Tipo P/genética , ATPasas Tipo P/metabolismo , Fertilidad/genética , Flores/genética , Flores/crecimiento & desarrollo , Infertilidad Vegetal/genética , Perfilación de la Expresión Génica , Genoma de Planta
2.
New Phytol ; 242(6): 2832-2844, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581189

RESUMEN

Nicotiana attenuata styles preferentially select pollen from among accessions with corresponding expression patterns of NaS-like-RNases (SLRs), and the postpollination ethylene burst (PPEB) is an accurate predictor of seed siring success. However, the ecological consequences of mate selection, its effect on the progeny, and the role of SLRs in the control of ethylene signaling remain unknown. We explored the link between the magnitude of the ethylene burst and expression of the SLRs in a set of recombinant inbred lines (RILs), dissected the genetic underpinnings of mate selection through genome-wide association study (GWAS), and examined its outcome for phenotypes in the next generation. We found that high levels of PPEB are associated with the absence of SLR2 in most of the tested RILs. We identified candidate genes potentially involved in the control of mate selection and showed that pollination of maternal genotypes with their favored pollen donors produces offspring with longer roots. When the maternal genotypes are only able to select against nonfavored pollen donors, the selection for such positive traits is abolished. We conclude that plants' ability of mate choice contributes to measurable changes in progeny phenotypes and is thus likely a target of selection.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fenotipo , Polen , Ribonucleasas , Polen/genética , Polen/fisiología , Ribonucleasas/genética , Ribonucleasas/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinización , Estudio de Asociación del Genoma Completo , Cigoto/metabolismo , Genotipo , Endogamia
3.
Plant Physiol ; 195(3): 1981-1994, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38507615

RESUMEN

Polyploid hybrid rice (Oryza sativa) has great potential for increasing yields. However, hybrid rice depends on male fertility and its regulation, which is less well studied in polyploid rice than in diploid rice. We previously identified an MYB transcription factor, MORE FLORET1 (MOF1), whose mutation causes male sterility in neo-tetraploid rice. MOF1 expression in anthers peaks at anther Stage 7 (S7) and progressively decreases to low levels at S10. However, it remains unclear how the dynamics of MOF1 expression contribute to male fertility. Here, we carefully examined anther development in both diploid and tetraploid mof1 rice mutants, as well as lines ectopically expressing MOF1 in a temporal manner. MOF1 mutations caused delayed degeneration of the tapetum and middle layer of anthers and aberrant pollen wall organization. Ectopic MOF1 expression at later stages of anther development led to retarded cytoplasmic reorganization of tapetal cells. In both cases, pollen grains were aborted and seed production was abolished, indicating that precise control of MOF1 expression is essential for male reproduction. We demonstrated that 5 key tapetal genes, CYP703A3 (CYTOCHROME P450 HYDROXYLASE 703A3), OsABCG26 (O. sativa ATP BINDING CASSETTE G26), PTC1 (PERSISTENT TAPETAL CELL1), PKS2 (POLYKETIDE SYNTHASE 2), and OsABCG15 (O. sativa ATP BINDING CASSETTE G15), exhibit expression patterns opposite to those of MOF1 and are negatively regulated by MOF1. Moreover, DNA affinity purification sequencing (DAP-seq), luciferase activity assays, and electrophoretic mobility shift assays indicated that MOF1 binds directly to the PKS2 promoter for transcriptional repression. Our results provide a mechanistic basis for the regulation of male reproduction by MOF1 in both diploid and tetraploid rice. This study will facilitate the development of polyploid male sterile lines, which are useful for breeding of polyploid hybrid rice.


Asunto(s)
Diploidia , Flores , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Polen , Tetraploidía , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Polen/genética , Polen/crecimiento & desarrollo , Mutación/genética , Genes de Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 195(3): 1775-1795, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38530638

RESUMEN

In flowering plants, male gametes are immotile and carried by dry pollen grains to the female organ. Dehydrated pollen is thought to withstand abiotic stress when grains are dispersed from the anther to the pistil, after which sperm cells are delivered via pollen tube growth for fertilization and seed set. Yet, the underlying molecular changes accompanying dehydration and the impact on pollen development are poorly understood. To gain a systems perspective, we analyzed published transcriptomes and proteomes of developing Arabidopsis thaliana pollen. Waves of transcripts are evident as microspores develop to bicellular, tricellular, and mature pollen. Between the "early"- and "late"-pollen-expressed genes, an unrecognized cluster of transcripts accumulated, including those encoding late-embryogenesis abundant (LEA), desiccation-related protein, transporters, lipid-droplet associated proteins, pectin modifiers, cysteine-rich proteins, and mRNA-binding proteins. Results suggest dehydration onset initiates after bicellular pollen is formed. Proteins accumulating in mature pollen like ribosomal proteins, initiation factors, and chaperones are likely components of mRNA-protein condensates resembling "stress" granules. Our analysis has revealed many new transcripts and proteins that accompany dehydration in developing pollen. Together with published functional studies, our results point to multiple processes, including (1) protect developing pollen from hyperosmotic stress, (2) remodel the endomembrane system and walls, (3) maintain energy metabolism, (4) stabilize presynthesized mRNA and proteins in condensates of dry pollen, and (5) equip pollen for compatibility determination at the stigma and for recovery at rehydration. These findings offer novel models and molecular candidates to further determine the mechanistic basis of dehydration and desiccation tolerance in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Polen , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Deshidratación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética , Perfilación de la Expresión Génica
5.
Theor Appl Genet ; 137(4): 79, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472376

RESUMEN

KEY MESSAGE: Multiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported. Besides their evolutionary important role in sexual polyploidisation, unreduced gametes also have a practical value for potato breeding as a bridge between diploid and tetraploid germplasm. Although early articles argued for a monogenic recessive inheritance, the genetic basis of unreduced pollen production in potato has remained elusive. Here, three diploid full-sib populations were genotyped with an amplicon sequencing approach and phenotyped for unreduced pollen production across two growing seasons. We identified two minor-effect and three major-effect QTLs regulating this trait. The two QTLs with the largest effect displayed a recessive inheritance and an additive interaction. Both QTLs co-localised with genes encoding for putative AtJAS homologs, a key regulator of meiosis II spindle orientation in Arabidopsis thaliana. The function of these candidate genes is consistent with the cytological phenotype of mis-oriented metaphase II plates observed in the parental clones. The alleles associated with elevated levels of unreduced pollen showed deleterious mutation events: an exonic transposon insert causing a premature stop, and an amino acid change within a highly conserved domain. Taken together, our findings shed light on the natural variation underlying unreduced pollen production in potato and will facilitate interploidy breeding by enabling marker-assisted selection for this trait.


Asunto(s)
Arabidopsis , Solanum tuberosum , Fitomejoramiento , Polen/genética , Genotipo , Arabidopsis/genética , Meiosis
6.
Planta ; 259(3): 64, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329576

RESUMEN

MAIN CONCLUSION: The loss of TaMYB305 function down-regulated the expression of jasmonic acid synthesis pathway genes, which may disturb the jasmonic acid synthesis, resulting in abnormal pollen development and reduced fertility. The MYB family, as one of the largest transcription factor families found in plants, regulates plant development, especially the development of anthers. Therefore, it is important to identify potential MYB transcription factors associated with pollen development and to study its role in pollen development. Here, the transcripts of an R2R3 MYB gene TaMYB305 from KTM3315A, a thermo-sensitive cytoplasmic male-sterility line with Aegilops kotschyi cytoplasm (K-TCMS) wheat, was isolated. Quantitative real-time PCR (qRT-PCR) and promoter activity analysis revealed that TaMYB305 was primarily expressed in anthers. The TaMYB305 protein was localized in the nucleus, as determined by subcellular localization analysis. Our data demonstrated that silencing of TaMYB305 was related to abnormal development of stamen, including anther indehiscence and pollen abortion in KAM3315A plants. In addition, TaMYB305-silenced plants exhibited alterations in the transcriptional levels of genes involved in the synthesis of jasmonic acid (JA), indicating that TaMYB305 may regulate the expression of genes related to JA synthesis and play an important role during anther and pollen development of KTM3315A. These results provide novel insight into the function and molecular mechanism of R2R3-MYB genes in pollen development.


Asunto(s)
Aegilops , Infertilidad , Oxilipinas , Ciclopentanos , Citoplasma/genética , Genes myb , Polen/genética , Triticum
7.
Plant Sci ; 340: 111974, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199385

RESUMEN

The AGL6 (AGMOUSE LIKE 6) gene is a member of the SEP subfamily and functions as an E-class floral homeotic gene in the development of floral organs. In this study, we cloned IiAGL6, the orthologous gene of AGL6 in Isatis indigotica. The constitutive expression of IiAGL6 in Arabidopsis thaliana resulted in a late-flowering phenotype and the development of curly leaves during the vegetative growth period. Abnormal changes in floral organ development were observed during the reproductive stage. In woad plants, suppression of IiAGL6 using TRV-VIGS (tobacco rattle virus-mediated virus-induced gene silencing) decreased the number of stamens and led to the formation of aberrant anthers. Similar changes in stamen development were also observed in miRNA-AGL6 transgenic Arabidopsis plants. Yeast two-hybrid and BiFC tests showed that IiAGL6 can interact with other MADS-box proteins in woad; thus, playing a key role in defining the identities of floral organs, particularly during stamen formation. These findings might provide novel insights and help investigate the biological roles of MADS transcription factors in I. indigotica.


Asunto(s)
Arabidopsis , Isatis , Isatis/genética , Isatis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Flores , Arabidopsis/metabolismo , Polen/genética , Polen/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Filogenia
8.
J Exp Bot ; 75(8): 2372-2384, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38206130

RESUMEN

Charged multivesicular protein 1 (CHMP1) is a member of the endosomal sorting complex required for transport-III (ESCRT-III) complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and eventually to the lysosome for degradation. Although CHMP1 plays roles in various plant growth and development processes, little is known about its function in wheat. In this study, we systematically analysed the members of the ESCRT-III complex in wheat (Triticum aestivum) and found that their orthologs were highly conserved in eukaryotic evolution. We identified CHMP1 homologous genes, TaSAL1s, and found that they were constitutively expressed in wheat tissues and essential for plant reproduction. Subcellular localization assays showed these proteins aggregated with and closely associated with the endoplasmic reticulum when ectopically expressed in tobacco leaves. We also found these proteins were toxic and caused leaf death. A genetic and reciprocal cross analysis revealed that TaSAL1 leads to defects in male gametophyte biogenesis. Moreover, phenotypic and metabolomic analysis showed that TaSAL1 may regulate tillering and heading date through phytohormone pathways. Overall, our results highlight the role of CHMP1 in wheat, particularly in male gametophyte biogenesis, with implications for improving plant growth and developing new strategies for plant breeding and genetic engineering.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Triticum , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Triticum/genética , Fitomejoramiento , Endosomas/metabolismo , Polen/genética
9.
Trends Plant Sci ; 29(4): 394-396, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38104032

RESUMEN

Pollen-pistil interactions ensure genetic diversity and shape the reproductive success of plants. Lan et al. recently revealed that the interaction among various receptor-like kinases, cell-wall proteins, and stigmatic RALF peptides (sRALFs) or pollen RALF peptides (pRALFs) on the stigma surface govern the penetration of pollen tubes in members of the Brassicaceae.


Asunto(s)
Brassicaceae , Polen/genética , Polen/metabolismo , Tubo Polínico , Reproducción , Péptidos/metabolismo , Flores/genética , Flores/metabolismo
10.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834462

RESUMEN

Autophagy is an evolutionarily conserved mechanism for degrading and recycling various cellular components, functioning in both normal development and stress conditions. This process is tightly regulated by a set of autophagy-related (ATG) proteins, including ATG2 in the ATG9 cycling system and ATG5 in the ATG12 conjugation system. Our recent research demonstrated that autophagy-mediated compartmental cytoplasmic deletion is essential for pollen germination. However, the precise mechanisms through which autophagy regulates pollen germination, ensuring its fertility, remain largely unknown. Here, we applied multi-omics analyses, including transcriptomic and metabolomic approaches, to investigate the downstream pathways of autophagy in the process of pollen germination. Although ATG2 and ATG5 play similar roles in regulating pollen germination, high-throughput transcriptomic analysis reveals that silencing ATG5 has a greater impact on the transcriptome than silencing ATG2. Cross-comparisons of transcriptome and proteome analysis reveal that gene expression at the mRNA level and protein level is differentially affected by autophagy. Furthermore, high-throughput metabolomics analysis demonstrates that pathways related to amino acid metabolism and aminoacyl-tRNA biosynthesis were affected by both ATG2 and ATG5 silencing. Collectively, our multi-omics analyses reveal the central role of autophagy in cellular metabolism, which is critical for initiating pollen germination and ensuring pollen fertility.


Asunto(s)
Autofagia , Multiómica , Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Proteína 12 Relacionada con la Autofagia/genética , Polen/genética , Polen/metabolismo , Germinación/genética
11.
BMC Plant Biol ; 23(1): 434, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723448

RESUMEN

BACKGROUND: Neo-tetraploid rice lines exhibit high fertility and strong heterosis and harbor novel specific alleles, which are useful germplasm for polyploid rice breeding. However, the mechanism of the fertility associated with miRNAs remains unknown. In this study, a neo-tetraploid rice line, termed Huaduo21 (H21), was used. Cytological observation and RNA-sequencing were employed to identify the fertility-related miRNAs in neo-tetraploid rice. RESULTS: H21 showed high pollen fertility (88.08%), a lower percentage of the pollen mother cell (PMC) abnormalities, and lower abnormalities during double fertilization and embryogenesis compared with autotetraploid rice. A total of 166 non-additive miRNAs and 3108 non-additive genes were detected between H21 and its parents. GO and KEGG analysis of non-additive genes revealed significant enrichments in the DNA replication, Chromosome and associated proteins, and Replication and repair pathways. Comprehensive multi-omics analysis identified 32 pairs of miRNA/target that were associated with the fertility in H21. Of these, osa-miR408-3p and osa-miR528-5p displayed high expression patterns, targeted the phytocyanin genes, and were associated with high pollen fertility. Suppression of osa-miR528-5p in Huaduo1 resulted in a low seed set and a decrease in the number of grains. Moreover, transgenic analysis implied that osa-MIR397b-p3, osa-miR5492, and osa-MIR5495-p5 might participate in the fertility of H21. CONCLUSION: Taken together, the regulation network of fertility-related miRNAs-targets pairs might contribute to the high seed setting in neo-tetraploid rice. These findings enhance our understanding of the regulatory mechanisms of pollen fertility associated with miRNAs in neo-tetraploid rice.


Asunto(s)
MicroARNs , Oryza , Oryza/genética , Tetraploidía , Fitomejoramiento , Fertilidad/genética , Polen/genética , RNA-Seq , MicroARNs/genética
12.
Plant Commun ; 4(6): 100682, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37691288

RESUMEN

Sporopollenin in the pollen cell wall protects male gametophytes from stresses. Phenylpropanoid derivatives, including guaiacyl (G) lignin units, are known to be structural components of sporopollenin, but the exact composition of sporopollenin remains to be fully resolved. We analyzed the phenylpropanoid derivatives in sporopollenin from maize and Arabidopsis by thioacidolysis coupled with nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The NMR and GC-MS results confirmed the presence of p-hydroxyphenyl (H), G, and syringyl (S) lignin units in sporopollenin from maize and Arabidopsis. Strikingly, H units account for the majority of lignin monomers in sporopollenin from these species. We next performed a genome-wide association study to explore the genetic basis of maize sporopollenin composition and identified a vesicle-associated membrane protein (ZmVAMP726) that is strongly associated with lignin monomer composition of maize sporopollenin. Genetic manipulation of VAMP726 affected not only lignin monomer composition in sporopollenin but also pollen resistance to heat and UV radiation in maize and Arabidopsis, indicating that VAMP726 is functionally conserved in monocot and dicot plants. Our work provides new insight into the lignin monomers that serve as structural components of sporopollenin and characterizes VAMP726, which affects sporopollenin composition and stress resistance in pollen.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo , Calor , Lignina/química , Lignina/genética , Lignina/metabolismo , Polen/genética , Polen/metabolismo , Rayos Ultravioleta , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Cells ; 12(11)2023 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-37296662

RESUMEN

In plants, the timely degeneration of tapetal cells is essential for providing nutrients and other substances to support pollen development. Rapid alkalinization factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth, as well as defense against biotic and abiotic stresses. However, the functions of most of them remain unknown, while no RALF has been reported to involve tapetum degeneration. In this study, we demonstrated that a novel cysteine-rich peptide, EaF82, isolated from shy-flowering 'Golden Pothos' (Epipremnum aureum) plants, is a RALF-like peptide and displays alkalinizing activity. Its heterologous expression in Arabidopsis delayed tapetum degeneration and reduced pollen production and seed yields. RNAseq, RT-qPCR, and biochemical analyses showed that overexpression of EaF82 downregulated a group of genes involved in pH changes, cell wall modifications, tapetum degeneration, and pollen maturation, as well as seven endogenous Arabidopsis RALF genes, and decreased proteasome activity and ATP levels. Yeast two-hybrid screening identified AKIN10, a subunit of energy-sensing SnRK1 kinase, as its interacting partner. Our study reveals a possible regulatory role for RALF peptide in tapetum degeneration and suggests that EaF82 action may be mediated through AKIN10 leading to the alteration of transcriptome and energy metabolism, thereby causing ATP deficiency and impairing pollen development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cisteína/metabolismo , Flores , Polen/genética , Péptidos/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
14.
J Integr Plant Biol ; 65(9): 2218-2236, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37195059

RESUMEN

Pollen tube growth is essential for successful double fertilization, which is critical for grain yield in crop plants. Rapid alkalinization factors (RALFs) function as ligands for signal transduction during fertilization. However, functional studies on RALF in monocot plants are lacking. Herein, we functionally characterized two pollen-specific RALFs in rice (Oryza sativa) using multiple clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-induced loss-of-function mutants, peptide treatment, expression analyses, and tag reporter lines. Among the 41 RALF members in rice, OsRALF17 was specifically expressed at the highest level in pollen and pollen tubes. Exogenously applied OsRALF17 or OsRALF19 peptide inhibited pollen tube germination and elongation at high concentrations but enhanced tube elongation at low concentrations, indicating growth regulation. Double mutants of OsRALF17 and OsRALF19 (ralf17/19) exhibited almost full male sterility with defects in pollen hydration, germination, and tube elongation, which was partially recovered by exogenous treatment with OsRALF17 peptide. This study revealed that two partially functionally redundant OsRALF17 and OsRALF19 bind to Oryza sativa male-gene transfer defective 2 (OsMTD2) and transmit reactive oxygen species signals for pollen tube germination and integrity maintenance in rice. Transcriptomic analysis confirmed their common downstream genes, in osmtd2 and ralf17/19. This study provides new insights into the role of RALF, expanding our knowledge of the biological role of RALF in regulating rice fertilization.


Asunto(s)
Oryza , Tubo Polínico , Tubo Polínico/genética , Polen/genética , Transducción de Señal , Péptidos
15.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108569

RESUMEN

Cysteine proteases (CPs) are vital proteolytic enzymes that play critical roles in various plant processes. However, the particular functions of CPs in maize remain largely unknown. We recently identified a pollen-specific CP (named PCP), which highly accumulated on the surface of maize pollen. Here, we reported that PCP played an important role in pollen germination and drought response in maize. Overexpression of PCP inhibited pollen germination, while mutation of PCP promoted pollen germination to some extent. Furthermore, we observed that germinal apertures of pollen grains in the PCP-overexpression transgenic lines were excessively covered, whereas this phenomenon was not observed in the wild type (WT), suggesting that PCP regulated pollen germination by affecting the germinal aperture structure. In addition, overexpression of PCP enhanced drought tolerance in maize plants, along with the increased activities of the antioxidant enzymes and the decreased numbers of the root cortical cells. Conversely, mutation of PCP significantly impaired drought tolerance. These results may aid in clarifying the precise functions of CPs in maize and contribute to the development of drought-tolerant maize materials.


Asunto(s)
Germinación , Zea mays , Germinación/genética , Zea mays/metabolismo , Resistencia a la Sequía , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polen/genética , Polen/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
16.
Genes Genomics ; 45(7): 921-934, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37004590

RESUMEN

BACKGROUND: The plant-specific valine-glutamine (VQ) motif containing proteins tightly regulate plant growth, development, and stress responses. However, the genome-wide identification and functional analysis of Brassica oleracea (B. oleracea) VQ genes have not been reported. OBJECTIVE: To identify the VQ gene family in B. oleracea and analyze the function of Bo25-1 in pollen germination. METHODS: The Hidden Markov Model (HMM) of VQ family was used to query the BoVQ genes in the B. oleracea genome. The BoVQ genes preferentially expressed in anthers were screened by qRT-PCR. Subcellular localization of VQ25-1 was observed in Nicotiana benthamiana (N. benthamiana) leaves. To analysis the role of BoVQ25-1 in pollen germination, the expression of BoVQ25-1 was suppressed using antisense-oligonucleotides (AS-ODN). RESULTS: A total of 64 BoVQ genes were identified in the B. oleracea genome. BoVQ25-1 was found to be preferentially expressed in the B. oleracea anthers. BoVQ25-1 was cloned from the anthers of the B. oleracea cultivar 'Fast Cycle'. BoVQ25-1 is localized to the nucleus. The pollen germination rate significantly decreased after AS-ODN treatment. CONCLUSION: Sixty-four BoVQ genes were identified in the B. oleracea genome, of which BoVQ25-1 plays an important role in pollen germination.


Asunto(s)
Brassica , Glutamina , Glutamina/metabolismo , Valina/metabolismo , Germinación/genética , Brassica/metabolismo , Polen/genética
17.
Plant Signal Behav ; 18(1): 2163339, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36630727

RESUMEN

Although flavonoids play multiple roles in plant growth and development, the involvement in plant self-incompatibility (SI) have not been reported. In this research, the fertility of transgenic tobacco plants overexpressing the Ginkgo biloba dihydroflavonol 4-reductase gene, GbDFR6, were investigated. To explore the possible physiological defects leading to the failure of embryo development in transgenic tobacco plants, functions of pistils and pollen grains were examined. Transgenic pistils pollinated with pollen grains from another tobacco plants (either transgenic or wild-type), developed full of well-developed seeds. In contrast, in self-pollinated transgenic tobacco plants, pollen-tube growth was arrested in the upper part of the style, and small abnormal seeds developed without fertilization. Although the mechanism remains unclear, our research may provide a valuable method to create SI tobacco plants for breeding.


Asunto(s)
Ginkgo biloba , Nicotiana , Ginkgo biloba/genética , Nicotiana/fisiología , Polen/genética , Polinización/genética , Fenotipo
18.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674672

RESUMEN

The commercial application of genetically modified plants has been seriously impeded by public concern surrounding the potential risks posed by such plants to the ecosystem and human health. Previously, we have developed a 'pollen- and seed-specific Gene Deletor' system that automatically excised all transgenes from the pollen and seeds of greenhouse-grown transgenic Nicotiana tabacum. In this study, we conducted seven field experiments over three consecutive years to evaluate the stability of transgene excision under field conditions. Our results showed that transgenes were stably excised from transgenic Nicotiana tabacum under field conditions with 100% efficiency. The stability of transgene excision was confirmed based on PCR, as well as the GUS staining patterns of various organs (roots, leaves, petiole, stem, flower, fruit, and seeds) from transgenic N. tabacum. In six transgenic lines (D4, D10, D31, D56, and D43), the transgenes were stably deleted in the T0 and T1 generations. Thus, the 'Gene Deletor' system is an efficient and reliable method to reduce pollen- and seed-mediated unintentional gene flow. This system might help to alleviate the food safety concerns associated with transgenic crops.


Asunto(s)
Ecosistema , Nicotiana , Humanos , Plantas Modificadas Genéticamente/genética , Nicotiana/genética , Transgenes , Polen/genética , Semillas/genética
19.
Plant Physiol ; 191(1): 96-109, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36282529

RESUMEN

Degradation of starch accumulated in pollen provides energy and cellular materials for pollen germination and pollen tube elongation. Little is known about the function of cytosolic disproportionating enzyme2 (DPE2) in rice (Oryza sativa). Here, we obtained several DPE2 knockout mutant (dpe2) lines via genomic editing and found that the mutants grew and developed normally but with greatly reduced seed-setting rates. Reciprocal crosses between dpe2 and wild-type plants demonstrated that the mutant was male sterile. In vitro and in vivo examinations revealed that the pollen of the dpe2 mutant developed and matured normally but was defective in germination and elongation. DPE2 deficiency increased maltose content in pollen, whereas it reduced the levels of starch, glucose, fructose, and adenosine triphosphate (ATP). Exogenous supply of glucose or ATP to the germination medium partially rescued the pollen germination defects of dpe2. The expression of cytosolic phosphorylase2 (Pho2) increased significantly in dpe2 pollen. Knockout of Pho2 resulted in a semi-sterile phenotype. We failed to obtain homozygous dpe2 pho2 double mutant lines. Our results demonstrate that maltose catalyzed by DPE2 to glucose is the main energy source for pollen germination and pollen tube elongation, while Pho2 might partially compensate for deficiency of DPE2.


Asunto(s)
Arabidopsis , Oryza , Tubo Polínico/genética , Tubo Polínico/metabolismo , Oryza/genética , Oryza/metabolismo , Arabidopsis/genética , Maltosa/metabolismo , Polen/genética , Polen/metabolismo , Glucosa/metabolismo , Almidón/metabolismo , Germinación/genética
20.
New Phytol ; 237(4): 1179-1187, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36089829

RESUMEN

Polyploidy, the presence of more than two sets of chromosomes within a cell, is a widespread phenomenon in plants. The main route to polyploidy is considered through the production of unreduced gametes that are formed as a consequence of meiotic defects. Nevertheless, for reasons poorly understood, the frequency of unreduced gamete formation differs substantially among different plant species. The previously identified meiotic mutant jason (jas) in Arabidopsis thaliana forms about 60% diploid (2n) pollen. JAS is required to maintain an organelle band as a physical barrier between the two meiotic spindles, preventing previously separated chromosome groups from uniting into a single cell. In this study, we characterized the jas suppressor mutant telamon (tel) that restored the production of haploid pollen in the jas background. The tel mutant did not restore the organelle band, but enlarged the size of male jas tel meiocytes, suggesting that enlarged meiocytes can bypass the requirement of the organelle band. Consistently, enlarged meiocytes generated by a tetraploid jas mutant formed reduced gametes. The results reveal that meiocyte size impacts chromosome segregation in meiosis II, suggesting an alternative way to maintain the ploidy stability in meiosis during evolution.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Polen/genética , Células Germinativas , Poliploidía , Meiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA