Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.163
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2321545121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713621

RESUMEN

The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Humanos , Ratones , Microambiente Tumoral/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Línea Celular Tumoral , Oxígeno Singlete/metabolismo , Porfirinas/farmacología , Porfirinas/química , Unión Proteica , Nanopartículas/química
2.
Sci Rep ; 14(1): 12359, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811670

RESUMEN

Atherosclerosis is the build-up of fatty plaques within blood vessel walls, which can occlude the vessels and cause strokes or heart attacks. It gives rise to both structural and biomolecular changes in the vessel walls. Current single-modality imaging techniques each measure one of these two aspects but fail to provide insight into the combined changes. To address this, our team has developed a dual-modality imaging system which combines optical coherence tomography (OCT) and fluorescence imaging that is optimized for a porphyrin lipid nanoparticle that emits fluorescence and targets atherosclerotic plaques. Atherosclerosis-prone apolipoprotein (Apo)e-/- mice were fed a high cholesterol diet to promote plaque development in descending thoracic aortas. Following infusion of porphyrin lipid nanoparticles in atherosclerotic mice, the fiber-optic probe was inserted into the aorta for imaging, and we were able to robustly detect a porphyrin lipid-specific fluorescence signal that was not present in saline-infused control mice. We observed that the nanoparticle fluorescence colocalized in areas of CD68+ macrophages. These results demonstrate that our system can detect the fluorescence from nanoparticles, providing complementary biological information to the structural information obtained from simultaneously acquired OCT.


Asunto(s)
Nanopartículas , Placa Aterosclerótica , Porfirinas , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Animales , Placa Aterosclerótica/diagnóstico por imagen , Nanopartículas/química , Ratones , Porfirinas/química , Imagen Óptica/métodos , Modelos Animales de Enfermedad , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Aterosclerosis/patología , Macrófagos/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/química
3.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791462

RESUMEN

Small interfering RNA (siRNA) has significant potential as a treatment for cancer by targeting specific genes or molecular pathways involved in cancer development and progression. The addition of siRNA to other therapeutic strategies, like photodynamic therapy (PDT), can enhance the anticancer effects, providing synergistic benefits. Nevertheless, the effective delivery of siRNA into target cells remains an obstacle in cancer therapy. Herein, supramolecular nanoparticles were fabricated via the co-assembly of natural histone and hyaluronic acid for the co-delivery of HMGB1-siRNA and the photosensitizer chlorin e6 (Ce6) into the MCF-7 cell. The produced siRNA-Ce6 nanoparticles (siRNA-Ce6 NPs) have a spherical morphology and exhibit uniform distribution. In vitro experiments demonstrate that the siRNA-Ce6 NPs display good biocompatibility, enhanced cellular uptake, and improved cytotoxicity. These outcomes indicate that the nanoparticles constructed by the co-assembly of histone and hyaluronic acid hold enormous promise as a means of siRNA and photosensitizer co-delivery towards synergetic therapy.


Asunto(s)
Histonas , Ácido Hialurónico , Nanopartículas , Fármacos Fotosensibilizantes , ARN Interferente Pequeño , Ácido Hialurónico/química , Humanos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Nanopartículas/química , Histonas/metabolismo , Células MCF-7 , Fotoquimioterapia/métodos , Porfirinas/química , Porfirinas/farmacología , Clorofilidas , Supervivencia Celular/efectos de los fármacos
4.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792086

RESUMEN

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system. AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with PS molecules in an aqueous solution. The applied method of synthesis allows precise control of the size and architecture of polymer nanoparticles as well as the concentration of the components. Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality. Here, we report on the optical properties of the system and detailed mechanisms of the observed enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and anionic polyacrylamide arms allows better local integration of the components and targeted delivery of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite to be a promising PDT system for application to other types of cancer.


Asunto(s)
Resinas Acrílicas , Oro , Nanopartículas del Metal , Fotoquimioterapia , Fármacos Fotosensibilizantes , Oro/química , Fotoquimioterapia/métodos , Nanopartículas del Metal/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Resinas Acrílicas/química , Línea Celular Tumoral , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Porfirinas/química , Porfirinas/farmacología , Supervivencia Celular/efectos de los fármacos , Polímeros/química , Antineoplásicos/farmacología , Antineoplásicos/química
5.
ACS Appl Mater Interfaces ; 16(21): 27139-27150, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752591

RESUMEN

Diagnosing of lymph node metastasis is challenging sometimes, and multimodal imaging offers a promising method to improve the accuracy. This work developed porphyrin-based nanoparticles (68Ga-F127-TAPP/TCPP(Mn) NPs) as PET/MR dual-modal probes for lymph node metastasis imaging by a simple self-assembly method. Compared with F127-TCPP(Mn) NPs, F127-TAPP/TCPP(Mn) NPs synthesized by amino-porphyrins (TAPP) doping can not only construct PET/MR bimodal probes but also improve the T1 relaxivity (up to 456%). Moreover, T1 relaxivity can be adjusted by altering the molar ratio of TAPP/TCPP(Mn) and the concentration of F127. However, a similar increase in T1 relaxivity was not observed in the F127-TCPP/TCPP(Mn) NPs, which were synthesized using carboxy-porphyrins (TCPP) doping. In a breast cancer lymph node metastasis mice model, subcutaneous injection of 68Ga-F127-TAPP/TCPP(Mn) NPs through the hind foot pad, the normal lymph nodes and metastatic lymph nodes were successfully distinguished based on the difference of PET standard uptake values and MR signal intensities. Furthermore, the dark brown F127-TAPP/TCPP(Mn) NPs demonstrated the potential for staining and mapping lymph nodes. This study provides valuable insights into developing and applying PET/MR probes for lymph node metastasis imaging.


Asunto(s)
Metástasis Linfática , Imagen por Resonancia Magnética , Nanopartículas , Porfirinas , Tomografía de Emisión de Positrones , Ganglio Linfático Centinela , Animales , Porfirinas/química , Nanopartículas/química , Ratones , Metástasis Linfática/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Femenino , Ganglio Linfático Centinela/diagnóstico por imagen , Ganglio Linfático Centinela/patología , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Ratones Endogámicos BALB C , Línea Celular Tumoral
6.
Anal Chem ; 96(21): 8740-8746, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38722256

RESUMEN

Pressure and temperature, as common physical parameters, are important for monitoring human health. In contrast, single-mode monitoring is prone to causing experimental errors. Herein, we innovatively designed a dual-mode flexible sensing platform based on a platinum/zinc-meso-tetrakis(4-carboxyphenyl)porphyrin (Pt/Zn-TCPP) nanozyme for the quantitative monitoring of carcinoembryonic antigen (CEA) in biological fluids with pressure and temperature readouts. The Pt/Zn-TCPP nanozyme with catalytic and photothermal efficiencies was synthesized by means of integrating photosensitizers into porous materials. The flexible sensing system after the antigen-antibody reaction recognized the pressure using a flexible skin-like pressure sensor with a digital multimeter readout, whereas the temperature was acquired via the photoheat conversion system of the Pt/Zn-TCPP nanozyme under 808 nm near-infrared (NIR) irradiation using a portable NIR imaging camera on a smartphone. Meanwhile, the dual-mode flexible sensing system was carried out on a homemade three-dimensional (3D)-printed device. Results revealed that the developed dual-mode immunosensing platform could exhibit good pressure and temperature responses within the dynamic range of 0.5-100 ng mL-1 CEA with the detection limits of 0.24 and 0.13 ng mL-1, respectively. In addition, the pressure and temperature were sensed simultaneously without crosstalk interference. Importantly, the dual-mode flexible immunosensing system can effectively avoid false alarms during the measurement, thus providing great potential for simple and low-cost development for point-of-care testing.


Asunto(s)
Antígeno Carcinoembrionario , Platino (Metal) , Presión , Temperatura , Zinc , Platino (Metal)/química , Inmunoensayo/métodos , Zinc/química , Antígeno Carcinoembrionario/análisis , Humanos , Porfirinas/química , Nanoestructuras/química , Límite de Detección
7.
Colloids Surf B Biointerfaces ; 239: 113965, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772084

RESUMEN

Photodynamic therapy (PDT) has become a promising approach and non-invasive modality for cancer treatment, however the therapeutic effect of PDT is limited in tumor metastasis and local recurrence. Herein, a tumor targeted nanomedicine (designated as PCN@HA) is constructed for enhanced PDT against tumors. By modified with hyaluronic acid (HA), which could target the CD44 receptor that expressed on the cancer cells, the targeting ability of PCN@HA has been enhanced. Under light irradiation, PCN@HA can produce cytotoxic singlet oxygen (1O2) and kill cancer cells, then eliminate tumors. Furthermore, PCN@HA exhibits fluorescence (FL)/ photoacoustic (PA) effects for multimodal imaging-guided cancer treatment. And PCN@HA-mediated PDT also can induce immunogenic cell death (ICD) and stimulate adaptive immune responses by releasing of tumor antigens. By combining with anti-PD-L1 checkpoint blockade therapy, it can not only effectively suppress the growth of primary tumor, but also inhibit the metastatic tumor growth.


Asunto(s)
Ácido Hialurónico , Inmunoterapia , Estructuras Metalorgánicas , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Inmunoterapia/métodos , Porfirinas/química , Porfirinas/farmacología , Animales , Humanos , Ratones , Ácido Hialurónico/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Ratones Endogámicos BALB C , Oxígeno Singlete/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Tamaño de la Partícula , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/química
8.
Int J Nanomedicine ; 19: 3737-3751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699684

RESUMEN

Background: Chemo-photodynamic combination therapy has demonstrated significant potential in the treatment of cancer. Triptolide (TPL), a naturally derived anticancer agent, when combined with the photosensitizer Chlorin e6 (Ce6), has shown to provide enhanced anti-tumor benefits. However, the development of stimuli-responsive nanovehicles for the co-delivery of TPL and Ce6 could further enhance the efficacy of this combination therapy. Methods: In this study, we synthesized a pH/ROS dual-responsive mPEG-TK-PBAE copolymer, which contains a pH-sensitive PBAE moiety and a ROS-sensitive thioketal (TK) linkage. Through a self-assembly process, TPL and Ce6 were successfully co-loaded into mPEG-TK-PBAE nanoparticles, hereafter referred to as TPL/Ce6 NPs. We evaluated the pH- and ROS-sensitive drug release and particle size changes. Furthermore, we investigated both the in vitro suppression of cellular proliferation and induction of apoptosis in HepG2 cells, as well as the in vivo anti-tumor efficacy of TPL/Ce6 NPs in H22 xenograft nude mice. Results: The mPEG-TK-PBAE copolymer was synthesized through a one-pot Michael-addition reaction and successfully co-encapsulated both TPL and Ce6 by self-assembly. Upon exposure to acid pH values and high ROS levels, the payloads in TPL/Ce6 NPs were rapidly released. Notably, the abundant ROS generated by the released Ce6 under laser irradiation further accelerated the degradation of the nanosystem, thereby amplifying the tumor microenvironment-responsive drug release and enhancing anticancer efficacy. Consequently, TPL/Ce6 NPs significantly increased PDT-induced oxidative stress and augmented TPL-induced apoptosis in HepG2 cells, leading to synergistic anticancer effects in vitro. Moreover, administering TPL/Ce6 NPs (containing 0.3 mg/kg of TPL and 4 mg/kg of Ce6) seven times, accompanied by 650 nm laser irradiation, efficiently inhibited tumor growth in H22 tumor-bearing mice, while exhibiting lower systemic toxicity. Conclusion: Overall, we have developed a tumor microenvironment-responsive nanosystem for the co-delivery of TPL and Ce6, demonstrating amplified synergistic effects of chemo-photodynamic therapy (chemo-PDT) for hepatocellular carcinoma (HCC) treatment.


Asunto(s)
Apoptosis , Clorofilidas , Diterpenos , Neoplasias Hepáticas , Ratones Desnudos , Fenantrenos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Especies Reactivas de Oxígeno , Animales , Humanos , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Células Hep G2 , Neoplasias Hepáticas/tratamiento farmacológico , Porfirinas/química , Porfirinas/farmacología , Porfirinas/administración & dosificación , Porfirinas/farmacocinética , Diterpenos/química , Diterpenos/farmacología , Diterpenos/farmacocinética , Diterpenos/administración & dosificación , Concentración de Iones de Hidrógeno , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Apoptosis/efectos de los fármacos , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Compuestos Epoxi/química , Compuestos Epoxi/farmacología , Compuestos Epoxi/administración & dosificación , Nanopartículas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Liberación de Fármacos , Proliferación Celular/efectos de los fármacos , Polietilenglicoles/química , Terapia Combinada
9.
Mikrochim Acta ; 191(5): 296, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702534

RESUMEN

A covalent organic framework-based strategy was designed for label-free colorimetric detection of pesticides. Covalent organic framework-based nanoenzyme with excellent oxidase-like catalytic activity was synthesized. Unlike other artificial enzymes, porphyrin-based covalent organic framework (p-COF) as the oxidase mimic showed highly catalytic chromogenic activity and good affinity toward TMB without the presence of H2O2, which can be used as substitute for peroxidase mimics and H2O2 system in the colorimetric reaction. Based on the fact that the pesticide-aptamer complex can inhibit the oxidase activity of p-COF and reduced the absorbance at 650 nm in UV-Vis spectrum, a label-free and facile colorimetric detection of pesticides was designed and fabricated. Under the optimized conditions, the COF-based colorimetric probe for pesticide detection displayed high sensitivity and selectivity. Taking fipronil for example the limit of detection was 2.7 ng/mL and the linear range was 5 -500,000 ng/mL. The strategy was successfully applied to the detection of pesticides with good recovery , which was in accordance with that of HPLC-MS/MS. The COF-based colorimetric detection was free of complicated modification H2O2, which guaranteed the accuracy and reliability of measurements. The COF-based sensing strategy is a potential candidate for the sensitive detection of pesticides of interests.


Asunto(s)
Colorimetría , Límite de Detección , Estructuras Metalorgánicas , Plaguicidas , Porfirinas , Colorimetría/métodos , Plaguicidas/análisis , Estructuras Metalorgánicas/química , Porfirinas/química , Peróxido de Hidrógeno/química , Oxidorreductasas/química , Aptámeros de Nucleótidos/química
10.
J Photochem Photobiol B ; 254: 112904, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579534

RESUMEN

The fluorescence lifetime of a porphyrinic photosensitizer (PS) is an important parameter to assess the aggregation state of the PS even in complex biological environments. Aggregation-induced quenching of the PS can significantly reduce the yield of singlet oxygen generation and thus its efficiency as a medical drug in photodynamic therapy (PDT) of diseased tissues. Hydrophobicity and the tendency to form aggregates pose challenges on the development of efficient PSs and often require carrier systems. A systematic study was performed to probe the impact of PS structure and encapsulation into polymeric carriers on the fluorescence lifetime in solution and in the intracellular environment. Five different porphyrinic PSs including chlorin e6 (Ce6) derivatives and tetrakis(m-hydroxyphenyl)-porphyrin and -chlorin were studied in free form and combined with polyvinylpyrrolidone (PVP) or micelles composed of triblock-copolymers or Cremophor. Following incubation of HeLa cells with these systems, fluorescence lifetime imaging combined with phasor analysis and image segmentation was applied to study the lifetime distribution in the intracellular surrounding. The data suggest that for free PSs, the structure-dependent cell uptake pathways determine their state and emission lifetimes. PS localization in the plasma membrane yielded mostly monomers with long fluorescence lifetimes whereas the endocytic pathway with subsequent lysosomal deposition adds a short-lived component for hydrophilic anionic PSs. Prolonged incubation times led to increasing contributions from short-lived components that derive from aggregates mainly localized in the cytoplasm. Encapsulation of PSs into polymeric carriers led to monomerization and mostly fluorescence emission decays with long fluorescence lifetimes in solution. However, the efficiency depended on the binding strength that was most pronounced for PVP. In the cellular environment, PVP was able to maintain monomeric long-lived species over prolonged incubation times. This was most pronounced for Ce6 derivatives with a logP value around 4.5. Micellar encapsulation led to faster release of the PSs resulting in multiple components with long and short fluorescence lifetimes. The hydrophilic hardly aggregating PS exhibited a mostly stable invariant lifetime distribution over time with both carriers. The presented data are expected to contribute to optimized PDT treatment protocols and improved PS-carrier design for preventing intracellular fluorescence quenching. In conclusion, amphiphilic and concurrent hydrophobic PSs with high membrane affinity as well as strong binding to the carrier have best prospects to maintain their photophysical properties in vivo and serve thus as efficient photodynamic diagnosis and PDT drugs.


Asunto(s)
Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/química , Células HeLa , Polímeros/química , Porfirinas/química , Povidona/química , Micelas , Línea Celular Tumoral
11.
Biomolecules ; 14(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38672448

RESUMEN

In cancer therapy, photodynamic therapy (PDT) has attracted significant attention due to its high potential for tumor-selective treatment. However, PDT agents often exhibit poor physicochemical properties, including solubility, necessitating the development of nanoformulations. In this study, we developed two cationic peptide-based self-assembled nanomaterials by using a PDT agent, chlorin e6 (Ce6). To manufacture biocompatible nanoparticles based on peptides, we used the cationic poly-L-lysine peptide, which is rich in primary amines. We prepared low- and high-molecular-weight poly-L-lysine, and then evaluated the formation and performance of nanoparticles after chemical conjugation with Ce6. The results showed that both molecules formed self-assembled nanoparticles by themselves in saline. Interestingly, the high-molecular-weight poly-L-lysine and Ce6 conjugates (HPLCe6) exhibited better self-assembly and PDT performance than low-molecular-weight poly-L-lysine and Ce6 conjugates (LPLCe6). Moreover, the HPLCe6 conjugates showed superior cellular uptake and exhibited stronger cytotoxicity in cell toxicity experiments. Therefore, it is functionally beneficial to use high-molecular-weight poly-L-lysine in the manufacturing of poly-L-lysine-based self-assembling biocompatible PDT nanoconjugates.


Asunto(s)
Clorofilidas , Peso Molecular , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Polilisina , Porfirinas , Polilisina/química , Porfirinas/química , Porfirinas/farmacología , Humanos , Nanopartículas/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Supervivencia Celular/efectos de los fármacos
12.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673807

RESUMEN

Fluorescence lifetime imaging (FLIM) and confocal fluorescence studies of a porphyrin-based photosensitiser (meso-tetraphenylporphine disulfonate: TPPS2a) were evaluated in 2D monolayer cultures and 3D compressed collagen constructs of a human ovarian cancer cell line (HEY). TPPS2a is known to be an effective model photosensitiser for both Photodynamic Therapy (PDT) and Photochemical Internalisation (PCI). This microspectrofluorimetric study aimed firstly to investigate the uptake and subcellular localisation of TPPS2a, and evaluate the photo-oxidative mechanism using reactive oxygen species (ROS) and lipid peroxidation probes combined with appropriate ROS scavengers. Light-induced intracellular redistribution of TPPS2a was observed, consistent with rupture of endolysosomes where the porphyrin localises. Using the same range of light doses, time-lapse confocal imaging permitted observation of PDT-induced generation of ROS in both 2D and 3D cancer models using fluorescence-based ROS together with specific ROS inhibitors. In addition, the use of red light excitation of the photosensitiser to minimise auto-oxidation of the probes was investigated. In the second part of the study, the photophysical properties of TPPS2a in cells were studied using a time-domain FLIM system with time-correlated single photon counting detection. Owing to the high sensitivity and spatial resolution of this system, we acquired FLIM images that enabled the fluorescence lifetime determination of the porphyrin within the endolysosomal vesicles. Changes in the lifetime dynamics upon prolonged illumination were revealed as the vesicles degraded within the cells.


Asunto(s)
Fármacos Fotosensibilizantes , Porfirinas , Especies Reactivas de Oxígeno , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Porfirinas/farmacología , Porfirinas/química , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Fotoquimioterapia/métodos , Imagen Óptica/métodos , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico
13.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673875

RESUMEN

Photodynamic therapy is expected to be a less invasive treatment, and strategies for targeting mitochondria, the main sources of singlet oxygen, are attracting attention to increase the efficacy of photodynamic therapy and reduce its side effects. To date, we have succeeded in encapsulating the photosensitizer rTPA into MITO-Porter (MP), a mitochondria-targeted Drug Delivery System (DDS), aimed at mitochondrial delivery of the photosensitizer while maintaining its activity. In this study, we report the results of our studies to alleviate rTPA aggregation in an effort to improve drug efficacy and assess the usefulness of modifying the rTPA side chain to improve the mitochondrial retention of MITO-Porter, which exhibits high therapeutic efficacy. Conventional rTPA with anionic side chains and two rTPA analogs with side chains that were converted to neutral or cationic side chains were encapsulated into MITO-Porter. Low-MP (MITO-Porter with Low Drug/Lipid) exhibited high drug efficacy for all three types of rTPA, and in Low-MP, charged rTPA-encapsulated MP exhibited high drug efficacy. The cellular uptake and mitochondrial translocation capacities were similar for all particles, suggesting that differences in aggregation rates during the incorporation of rTPA into MITO-Porter resulted in differences in drug efficacy.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Mitocondrias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , Fotoquimioterapia/métodos , Porfirinas/química , Porfirinas/farmacología , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química
14.
Microbiol Spectr ; 12(5): e0000624, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38619253

RESUMEN

Mycobacterium abscessus is increasingly recognized as an emerging opportunistic pathogen causing severe lung diseases and cutaneous infections. However, treatment of M. abscessus infections remains particularly challenging, largely due to intrinsic resistance to a wide panel of antimicrobial agents. New therapeutic alternatives are urgently needed. Herein, we show that, upon limited irradiation with a blue-light source, newly developed porphyrin-peptide cage-type photosensitizers exert a strong bactericidal activity against smooth and rough variants of M. abscessus in planktonic cultures and in biofilms, at low concentrations. Atomic force microscopy unraveled important morphological alterations that include a wrinkled and irregular bacterial surface. The potential of these compounds for a photo-therapeutic use to treat M. abscessus skin infections requires further evaluations.IMPORTANCEMycobacterium abscessus causes persistent infections and is extremely difficult to eradicate. Despite intensive chemotherapy, treatment success rates remain very low. Thus, given the unsatisfactory performances of the current regimens, more effective therapeutic alternatives are needed. In this study, we evaluated the activity of newly described porphyrin-peptide cage-type conjugates in the context of photodynamic therapy. We show that upon light irradiation, these compounds were highly bactericidal against M. abscessus in vitro, thus qualifying these compounds for future studies dedicated to photo-therapeutic applications against M. abscessus skin infections.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Fármacos Fotosensibilizantes , Porfirinas , Mycobacterium abscessus/efectos de los fármacos , Porfirinas/farmacología , Porfirinas/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Humanos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Péptidos/farmacología , Péptidos/química , Fotoquimioterapia/métodos , Luz
15.
J Photochem Photobiol B ; 255: 112919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677261

RESUMEN

Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.


Asunto(s)
Autofagia , Lisosomas , Fármacos Fotosensibilizantes , Humanos , Células HT29 , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Catepsinas/metabolismo , Catepsinas/antagonistas & inhibidores , Luz , Porfirinas/farmacología , Porfirinas/química , Catepsina D/metabolismo , Catepsina B/metabolismo
16.
Nanotechnology ; 35(29)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38593752

RESUMEN

Melanoma is one of the most aggressive and lethal types of cancer owing to its metastatic propensity and chemoresistance property. An alternative therapeutic option is photodynamic and photothermal therapies (PDT/PTT), which employ near-infrared (NIR) light to generate heat and reactive oxygen species (ROS). As per previous reports, Melanin (Mel), and its synthetic analogs (i.e. polydopamine nanoparticles) can induce NIR light-mediated heat energy, thereby selectively targeting and ameliorating cancer cells. Similarly, chlorin e6 (Ce6) also has high ROS generation ability and antitumor activity against various types of cancer. Based on this tenet, In the current study, we have encapsulated Mel-Ce6 in a polydopamine (PDA) nanocarrier (MCP NPs) synthesized by the oxidation polymerization method. The hydrodynamic diameter of the synthesized spherical MCP NPs was 139 ± 10 nm. The MCP NPs, upon irradiation with NIR 690 nm laser for 6 min, showed photothermal efficacy of more than 50 °C. Moreover, the red fluorescence in the MCP NPs due to Ce6 can be leveraged for diagnostic purposes. Further, the MCP NPs exhibited considerable biocompatibility with the L929 cell line and exerted nearly 70% ROS-mediated cytotoxicity on the B16 melanoma cell line after the laser irradiation. Thus, the prepared MCP NPs could be a promising theranostic agent for treating the B16 melanoma cancer.


Asunto(s)
Clorofilidas , Indoles , Melaninas , Melanoma Experimental , Nanopartículas , Polímeros , Porfirinas , Indoles/química , Indoles/farmacología , Polímeros/química , Polímeros/farmacología , Nanopartículas/química , Animales , Ratones , Melanoma Experimental/patología , Melanoma Experimental/terapia , Línea Celular Tumoral , Porfirinas/química , Porfirinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Fototerapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Terapia Fototérmica
17.
Mol Pharm ; 21(5): 2365-2374, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38620059

RESUMEN

Antimicrobial resistance has emerged as a global threat to the treatment of infectious diseases. Antibacterial photodynamic therapy (aPDT) is a promising alternative approach and is highly suitable for the treatment of cutaneous bacterial infections through topical applications. aPDT relies on light-responsive compounds called photosensitizer (PS) dyes, which generate reactive oxygen species (ROS) when induced by light, thereby killing bacterial cells. Despite several previous studies in this area, the molecular details of targeting and cell death mediated by PS dyes are poorly understood. In this study, we further investigate the antibacterial properties of two water-soluble Sn(IV) tetrapyridylporphyrins that were quaternized with methyl and hexyl groups (1 and 2). In this follow-up study, we demonstrate that Sn(IV)-porphyrins can be photoexcited by blue light (a 427 nm LED) and exhibit various levels of bactericidal activity against both Gram-(+) and Gram-(-) strains of bacteria. Using localization studies through fluorescence microscopy, we show that 2 targets the bacterial membrane more effectively than 1 and exhibits comparatively higher aPDT activity. Using multiple fluorescence reporters, we demonstrate that photoactivation of 1 and 2 results in extensive collateral damage to the bacterial cells including DNA cleavage, membrane damage, and delocalization of central systems necessary for bacterial growth and division. In summary, this investigation provides deep insights into the mechanism of bacterial killing mediated by the Sn(IV)-porphyrins. Moreover, our approach offers a new method for evaluating the activity of PS, which may inspire the discovery of new PS with enhanced aPDT activity.


Asunto(s)
Antibacterianos , Luz , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Antibacterianos/farmacología , Antibacterianos/química , Porfirinas/farmacología , Porfirinas/química , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Sensibilidad Microbiana , Humanos , Agua/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Estaño/química
18.
Mol Pharm ; 21(5): 2441-2455, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38623055

RESUMEN

Folate receptors including folate receptor α (FRα) are overexpressed in up to 90% of ovarian cancers. Ovarian cancers overexpressing FRα often exhibit high degrees of drug resistance and poor outcomes. A porphyrin chassis has been developed that is readily customizable according to the desired targeting properties. Thus, compound O5 includes a free base porphyrin, two water-solubilizing groups that project above and below the macrocycle plane, and a folate targeting moiety. Compound O5 was synthesized (>95% purity) and exhibited aqueous solubility of at least 0.48 mM (1 mg/mL). Radiolabeling of O5 with 64Cu in HEPES buffer at 37 °C gave a molar activity of 1000 µCi/µg (88 MBq/nmol). [64Cu]Cu-O5 was stable in human serum for 24 h. Cell uptake studies showed 535 ± 12% bound/mg [64Cu]Cu-O5 in FRα-positive IGROV1 cells when incubated at 0.04 nM. Subcellular fractionation showed that most radioactivity was associated with the cytoplasmic (39.4 ± 2.7%) and chromatin-bound nuclear (53.0 ± 4.2%) fractions. In mice bearing IGROV1 xenografts, PET imaging studies showed clear tumor uptake of [64Cu]Cu-O5 from 1 to 24 h post injection with a low degree of liver uptake. The tumor standardized uptake value at 24 h post injection was 0.34 ± 0.16 versus 0.06 ± 0.07 in the blocking group. In summary, [64Cu]Cu-O5 was synthesized at high molar activity, was stable in serum, exhibited high binding to FRα-overexpressing cells with high nuclear translocation, and gave uptake that was clearly visible in mouse tumor xenografts.


Asunto(s)
Radioisótopos de Cobre , Neoplasias Ováricas , Tomografía de Emisión de Positrones , Animales , Humanos , Ratones , Femenino , Radioisótopos de Cobre/química , Tomografía de Emisión de Positrones/métodos , Línea Celular Tumoral , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/metabolismo , Porfirinas/química , Receptor 1 de Folato/metabolismo , Distribución Tisular , Ratones Desnudos , Radiofármacos/farmacocinética , Radiofármacos/química , Ácido Fólico/química , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Int J Biol Macromol ; 266(Pt 2): 131195, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565363

RESUMEN

We fabricated hybrid nanoparticles consisting of organic semiconducting material with peptide sequence to reflect the target protein interaction. A phosphorescent OLED material, platinum octaethylporphyrin (PtOEP) was self-assembled by reprecipitation with the A17 peptide (YCAYYSPRHKTTF) selected as a probe ligand in order to recognize heat shock protein 70 (HSP70). The phosphorescence intensity of the PtOEP-A17 assembly was enhanced by 125 % after treatment with HSP70. The specificity of the protein interaction was confirmed in both solution and solid states of the PtOEP-A17 assembly against to BSA and nucleolin. We figured out that the phosphorescence lifetime of PtOEP-A17 assembly after exposed to HSP70 increased significantly to 153 ns from initial 115 ns. These simultaneous enhancements in phosphorescence and lifetime triggered by the specific protein interaction would open new applications of PtOEP, a representative material of light-emitting device fields.


Asunto(s)
Péptidos , Péptidos/química , Unión Proteica , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/química , Mediciones Luminiscentes , Porfirinas/química , Platino (Metal)/química , Albúmina Sérica Bovina/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Nucleolina , Animales
20.
Toxicology ; 504: 153793, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574843

RESUMEN

Photodynamic therapy (PDT) utilizes the potential of photosensitizing substances to absorb light energy and produce reactive oxygen species. Tetra-cationic porphyrins, which have organic or coordination compounds attached to their periphery, are heterocyclic derivatives with well-described antimicrobial and antitumoral properties. This is due to their ability to produce reactive oxygen species and their photobiological properties in solution. Consequently, these molecules are promising candidates as new and more effective photosensitizers with biomedical, environmental, and other biomedical applications. Prior to human exposure, it is essential to establish the toxicological profile of these molecules using in vivo models. In this study, we used Caenorhabditis elegans, a small free-living nematode, as a model for assessing toxic effects and predicting toxicity in preclinical research. We evaluated the toxic effects of porphyrins (neutral and tetra-cationic) on nematodes under dark/light conditions. Our findings demonstrate that tetra-methylated porphyrins (3TMeP and 4TMeP) at a concentration of 3.3 µg/mL (1.36 and 0.93 µM) exhibit high toxicity (as evidenced by reduced survival, development, and locomotion) under dark conditions. Moreover, photoactivated tetra-methylated porphyrins induce higher ROS levels compared to neutral (3TPyP and 4TPyP), tetra-palladated (3PdTPyP and 4PdTPyP), and tetra-platinated (3PtTPyP and 4PtTPyP) porphyrins, which may be responsible for the observed toxic effects.


Asunto(s)
Caenorhabditis elegans , Luz , Fármacos Fotosensibilizantes , Porfirinas , Animales , Caenorhabditis elegans/efectos de los fármacos , Porfirinas/toxicidad , Porfirinas/química , Fármacos Fotosensibilizantes/toxicidad , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Fotoquimioterapia/métodos , Cationes/toxicidad , Relación Dosis-Respuesta a Droga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA