Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.044
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000310

RESUMEN

Small nucleolar RNAs (snoRNAs) are earning increasing attention from research communities due to their critical role in the post-transcriptional modification of various RNAs. These snoRNAs, along with their associated proteins, are crucial in regulating the expression of a vast array of genes in different human diseases. Primarily, snoRNAs facilitate modifications such as 2'-O-methylation, N-4-acetylation, and pseudouridylation, which impact not only ribosomal RNA (rRNA) and their synthesis but also different RNAs. Functionally, snoRNAs bind with core proteins to form small nucleolar ribonucleoproteins (snoRNPs). These snoRNAs then direct the protein complex to specific sites on target RNA molecules where modifications are necessary for either standard cellular operations or the regulation of pathological mechanisms. At these targeted sites, the proteins coupled with snoRNPs perform the modification processes that are vital for controlling cellular functions. The unique characteristics of snoRNAs and their involvement in various non-metabolic and metabolic diseases highlight their potential as therapeutic targets. Moreover, the precise targeting capability of snoRNAs might be harnessed as a molecular tool to therapeutically address various disease conditions. This review delves into the role of snoRNAs in health and disease and explores the broad potential of these snoRNAs as therapeutic agents in human pathologies.


Asunto(s)
ARN Nucleolar Pequeño , Ribonucleoproteínas Nucleolares Pequeñas , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Animales , Procesamiento Postranscripcional del ARN , Neoplasias/genética , Neoplasias/metabolismo
2.
Genome Res ; 34(6): 822-836, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39009472

RESUMEN

N 6-Methyladenosine (m6A) is a prevalent and highly regulated RNA modification essential for RNA metabolism and normal brain function. It is particularly important in the hippocampus, where m6A is implicated in neurogenesis and learning. Although extensively studied, its presence in specific cell types remains poorly understood. We investigated m6A in the hippocampus at a single-cell resolution, revealing a comprehensive landscape of m6A modifications within individual cells. Through our analysis, we uncovered transcripts exhibiting a dense m6A profile, notably linked to neurological disorders such as Alzheimer's disease. Our findings suggest a pivotal role of m6A-containing transcripts, particularly in the context of CAMK2A neurons. Overall, this work provides new insights into the molecular mechanisms underlying hippocampal physiology and lays the foundation for future studies investigating the dynamic nature of m6A RNA methylation in the healthy and diseased brain.


Asunto(s)
Adenosina , Hipocampo , Análisis de la Célula Individual , Hipocampo/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Análisis de la Célula Individual/métodos , Ratones , Neuronas/metabolismo , Procesamiento Postranscripcional del ARN , Metilación , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , ARN/metabolismo , ARN/genética , Humanos , Metilación de ARN
3.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946397

RESUMEN

Uterine leiomyoma or fibroids are prevalent noncancerous tumors of the uterine muscle layer, yet their origin and development remain poorly understood. We analyzed RNA expression profiles of 15 epigenetic mediators in uterine fibroids compared to myometrium using publicly available RNA sequencing (RNA-seq) data. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key N6-methyladenosine (m6A) modifiers in fibroids and their matched myometrium, showing no significant differences in concordance with our RNA expression profiles. To determine RNA modification abundance, mRNA and small RNA from fibroids and matched myometrium were analyzed by ultra-high performance liquid chromatography-mass spectrometry identifying prevalent m6A and 11 other known modifiers. However, no aberrant expression in fibroids was detected. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic subtype. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression, and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and diverse patient cohort.


Asunto(s)
Adenosina , Leiomioma , Neoplasias Uterinas , Leiomioma/genética , Leiomioma/metabolismo , Humanos , Femenino , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patología , Miometrio/metabolismo , Miometrio/patología , Persona de Mediana Edad , Adulto , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN/genética , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Epigénesis Genética
4.
Clin Transl Med ; 14(6): e1666, 2024 Jun.
Artículo en Italiano | MEDLINE | ID: mdl-38880983

RESUMEN

Dysregulated RNA modifications, stemming from the aberrant expression and/or malfunction of RNA modification regulators operating through various pathways, play pivotal roles in driving the progression of haematological malignancies. Among RNA modifications, N6-methyladenosine (m6A) RNA modification, the most abundant internal mRNA modification, stands out as the most extensively studied modification. This prominence underscores the crucial role of the layer of epitranscriptomic regulation in controlling haematopoietic cell fate and therefore the development of haematological malignancies. Additionally, other RNA modifications (non-m6A RNA modifications) have gained increasing attention for their essential roles in haematological malignancies. Although the roles of the m6A modification machinery in haematopoietic malignancies have been well reviewed thus far, such reviews are lacking for non-m6A RNA modifications. In this review, we mainly focus on the roles and implications of non-m6A RNA modifications, including N4-acetylcytidine, pseudouridylation, 5-methylcytosine, adenosine to inosine editing, 2'-O-methylation, N1-methyladenosine and N7-methylguanosine in haematopoietic malignancies. We summarise the regulatory enzymes and cellular functions of non-m6A RNA modifications, followed by the discussions of the recent studies on the biological roles and underlying mechanisms of non-m6A RNA modifications in haematological malignancies. We also highlight the potential of therapeutically targeting dysregulated non-m6A modifiers in blood cancer.


Asunto(s)
Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Procesamiento Postranscripcional del ARN/genética , ARN/genética , ARN/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética
5.
Mol Cancer ; 23(1): 130, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902779

RESUMEN

RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.


Asunto(s)
Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Inmunoterapia/métodos , Metilación , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Animales , Procesamiento Postranscripcional del ARN , ARN/genética , ARN/metabolismo , Regulación Neoplásica de la Expresión Génica , Metilación de ARN
6.
Viruses ; 16(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38932237

RESUMEN

The genomes of positive-sense (+) single-stranded RNA (ssRNA) viruses are believed to be subjected to a wide range of RNA modifications. In this study, we focused on the chikungunya virus (CHIKV) as a model (+) ssRNA virus to study the landscape of viral RNA modification in infected human cells. Among the 32 distinct RNA modifications analysed by mass spectrometry, inosine was found enriched in the genomic CHIKV RNA. However, orthogonal validation by Illumina RNA-seq analyses did not identify any inosine modification along the CHIKV RNA genome. Moreover, CHIKV infection did not alter the expression of ADAR1 isoforms, the enzymes that catalyse the adenosine to inosine conversion. Together, this study highlights the importance of a multidisciplinary approach to assess the presence of RNA modifications in viral RNA genomes.


Asunto(s)
Virus Chikungunya , Genoma Viral , Procesamiento Postranscripcional del ARN , ARN Viral , Transcriptoma , Virus Chikungunya/genética , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Fiebre Chikungunya/virología , Inosina/metabolismo , Inosina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Adenosina/metabolismo , Adenosina Desaminasa
7.
Methods Mol Biol ; 2832: 47-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869786

RESUMEN

Recent advancements in detection and mapping methods have enabled researchers to uncover the biological importance of RNA chemical modifications, which play a vital role in post-transcriptional gene regulation. Although numerous types of RNA modifications have been identified in higher eukaryotes, only a few have been extensively studied for their biological functions. Of these, N6-methyladenosine (m6A) is the most prevalent and important mRNA modification that influences various aspects of RNA metabolism, including mRNA stability, degradation, splicing, alternative polyadenylation, export, and localization, as well as translation. Thus, they have implications for a variety of biological processes, including growth, development, and stress responses. The m6A deposition or removal on transcripts is dynamic and is altered in response to internal and external cues. Because this mark can alter gene expression under stress conditions, it is essential to identify the transcripts that can acquire or lose this epitranscriptomic mark upon exposure to stress conditions. Here we describe a step-by-step protocol for identifying stress-responsive transcriptome-wide m6A changes using RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq).


Asunto(s)
Adenosina , Regulación de la Expresión Génica de las Plantas , ARN de Planta , Estrés Fisiológico , Transcriptoma , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Estrés Fisiológico/genética , ARN de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , Análisis de Secuencia de ARN/métodos , Inmunoprecipitación/métodos , Plantas/genética , Plantas/metabolismo , Procesamiento Postranscripcional del ARN
8.
Bull Cancer ; 111(7-8): 782-790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38824069

RESUMEN

A better understanding of the RNA biology and chemistry is necessary to then develop new RNA therapeutic strategies. This review is the synthesis of a series of conferences that took place during the 6th international course on post-transcriptional gene regulation at Institut Curie. This year, the course made a special focus on RNA chemistry.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN , Humanos , Regulación de la Expresión Génica , MicroARNs/uso terapéutico , MicroARNs/metabolismo , ARN/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética
9.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891854

RESUMEN

MicroRNAs (miRNAs) regulate approximately one-third of all human genes. The dysregulation of miRNAs has been implicated in the development of numerous human diseases, including cancers. In our investigation focusing on altering specific miRNA expression in human pancreatic cancer cells, we encountered an interesting finding. While two expression vector designs effectively enhanced miR-708 levels, they were unable to elevate mature forms of miR-29b, -1290, -2467, and -6831 in pancreatic cancer cell lines. This finding was also observed in a panel of other non-pancreatic cancer cell lines, suggesting that miRNA processing efficiency was cell line specific. Using a step-by-step approach in each step of miRNA processing, we ruled out alternative strand selection by the RISC complex and transcriptional interference at the primary miRNA (pri-miRNA) level. DROSHA processing and pri-miRNA export from the nucleus also appeared to be occurring normally. We observed precursor (pre-miRNA) accumulation only in cell lines where mature miRNA expression was not achieved, suggesting that the block was occurring at the pre-miRNA stage. To further confirm this, synthetic pre-miRNA mimics that bypass DICER processing were processed into mature miRNAs in all cases. This study has demonstrated the distinct behaviours of different miRNAs with the same vector in the same cell line, the same miRNA between the two vector designs, and with the same miRNA across different cell lines. We identified a stable vector pre-miRNA processing block. Our findings on the structural and sequence differences between successful and non-successful vector designs could help to inform future chimeric miRNA design strategies and act as a guide to other researchers on the intricate processing dynamics that can impact vector efficiency. Our research confirms the potential of miRNA mimics to surmount some of these complexities.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Procesamiento Postranscripcional del ARN , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Procesamiento Postranscripcional del ARN/genética , Línea Celular Tumoral , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Regulación Neoplásica de la Expresión Génica , Transfección , Precursores del ARN/genética , Precursores del ARN/metabolismo , Animales
10.
Trends Mol Med ; 30(7): 620-632, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824002

RESUMEN

Programmed death ligand-1 (PD-L1) is a key component of tumor immunosuppression. The uneven therapeutic results of PD-L1 therapy have stimulated intensive studies to better understand the mechanisms underlying altered PD-L1 expression in cancer cells, and to determine whether, beyond its immune function, PD-L1 might have intracellular functions promoting tumor progression and resistance to treatments. In this Opinion, we focus on paradigmatic examples highlighting the central role of PD-L1 in post-transcriptional regulation, with PD-L1 being both a target and an effector of molecular mechanisms featured prominently in RNA research, such as RNA methylation, phase separation and RNA G-quadruplex structures, in order to highlight vulnerabilities on which future anti-PD-L1 therapies could be built.


Asunto(s)
Antígeno B7-H1 , Neoplasias , ARN , Humanos , Antígeno B7-H1/metabolismo , ARN/metabolismo , ARN/genética , Animales , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Tolerancia Inmunológica , Terapia de Inmunosupresión , Procesamiento Postranscripcional del ARN , Regulación Neoplásica de la Expresión Génica , G-Cuádruplex
11.
Sci Rep ; 14(1): 12602, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824202

RESUMEN

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patología , Pronóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/genética , Procesamiento Postranscripcional del ARN , Clasificación del Tumor , Mitocondrias/genética , Mitocondrias/metabolismo , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Multiómica
12.
Artículo en Inglés | MEDLINE | ID: mdl-38862431

RESUMEN

Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.


Asunto(s)
Neoplasias , Precursores del ARN , ARN de Transferencia , Ribonucleasa P , Ribonucleasa P/metabolismo , Ribonucleasa P/genética , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/enzimología , Precursores del ARN/metabolismo , Precursores del ARN/genética , Inestabilidad Genómica , Animales , Daño del ADN , Procesamiento Postranscripcional del ARN , Ensamble y Desensamble de Cromatina/genética
13.
Pharmacol Res ; 206: 107280, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914382

RESUMEN

Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.


Asunto(s)
Epigénesis Genética , Humanos , Animales , ARN/genética , ARN/metabolismo , Neoplasias Gastrointestinales/genética , Procesamiento Postranscripcional del ARN , Neoplasias del Sistema Digestivo/genética , Neoplasias del Sistema Digestivo/terapia
14.
ACS Chem Biol ; 19(7): 1616-1625, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38912606

RESUMEN

tRNA modifications help maintain tRNA structure and facilitate translation and stress response. Found in all three kingdoms of life, m1A tRNA modification occurs in the T loop of many tRNAs, stabilizes tertiary tRNA structure, and impacts translation. M1A in the T loop is reversible by three mammalian demethylase enzymes, which bypasses the need of turning over the tRNA molecule to adjust its m1A levels in cells. However, no prokaryotic tRNA demethylase enzyme has been identified that acts on endogenous RNA modifications. Using Streptomyces venezuelae as a model organism, we confirmed the presence and quantitative m1A tRNA signatures using mass spectrometry and high-throughput tRNA sequencing. We identified two RNA demethylases that can remove m1A in tRNA and validated the activity of a previously annotated tRNA m1A writer. Using single-gene knockouts of these erasers and the m1A writer, we found dynamic changes of m1A levels in many tRNAs under stress conditions. Phenotypic characterization highlighted changes in their growth and altered antibiotic production. Our identification of the first prokaryotic tRNA demethylase enzyme paves the way for investigating new mechanisms of translational regulation in bacteria.


Asunto(s)
Adenosina , ARN de Transferencia , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/enzimología , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , ARN Bacteriano/metabolismo , Procesamiento Postranscripcional del ARN
15.
Cell Signal ; 121: 111242, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38851412

RESUMEN

The potential to modify individual nucleotides through chemical means in order to impact the electrostatic charge, hydrophobic properties, and base pairing of RNA molecules is harnessed in the medical application of stable synthetic RNAs like mRNA vaccines and synthetic small RNA molecules. These modifications are used to either increase or decrease the production of therapeutic proteins. Additionally, naturally occurring biochemical alterations of nucleotides play a role in regulating RNA metabolism and function, thereby modulating essential cellular processes. Research elucidating the mechanisms through which RNA modifications govern fundamental cellular functions in multicellular organisms has enhanced our comprehension of how irregular RNA modification profiles can lead to human diseases. Collectively, these fundamental scientific findings have unveiled the molecular and cellular functions of RNA modifications, offering new opportunities for therapeutic intervention and paving the way for a variety of innovative clinical strategies.


Asunto(s)
ARN , Humanos , ARN/metabolismo , Animales , Procesamiento Postranscripcional del ARN
16.
Nucleus ; 15(1): 2360196, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38880976

RESUMEN

The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Biosíntesis de Proteínas , ARN Mensajero , Humanos , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Animales , Transporte de ARN , Procesamiento Postranscripcional del ARN
17.
Mol Cell ; 84(12): 2320-2336.e6, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906115

RESUMEN

2'-O-methylation (Nm) is a prominent RNA modification well known in noncoding RNAs and more recently also found at many mRNA internal sites. However, their function and base-resolution stoichiometry remain underexplored. Here, we investigate the transcriptome-wide effect of internal site Nm on mRNA stability. Combining nanopore sequencing with our developed machine learning method, NanoNm, we identify thousands of Nm sites on mRNAs with a single-base resolution. We observe a positive effect of FBL-mediated Nm modification on mRNA stability and expression level. Elevated FBL expression in cancer cells is associated with increased expression levels for 2'-O-methylated mRNAs of cancer pathways, implying the role of FBL in post-transcriptional regulation. Lastly, we find that FBL-mediated 2'-O-methylation connects to widespread 3' UTR shortening, a mechanism that globally increases RNA stability. Collectively, we demonstrate that FBL-mediated Nm modifications at mRNA internal sites regulate gene expression by enhancing mRNA stability.


Asunto(s)
Regiones no Traducidas 3' , Estabilidad del ARN , ARN Mensajero , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metilación , Procesamiento Postranscripcional del ARN , Secuenciación de Nanoporos/métodos , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Aprendizaje Automático
18.
Eur J Med Chem ; 274: 116526, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38805939

RESUMEN

Epitranscriptomics, the field of post-translational RNA modifications, is a burgeoning domain of research that has recently received significant attention for its role in multiple diseases, including cancer. N6-methyladenosine (m6A) is the most prominent post-translational RNA modification and plays a critical role in RNA transcription, processing, translation, and metabolism. The m6A modification is controlled by three protein classes known as writers (methyltransferases), erasers (demethylases), and readers (m6A-binding proteins). Each class of m6A regulatory proteins has been implicated in cancer initiation and progression. As such, many of these proteins have been identified as potential targets for anti-cancer chemotherapeutics. In this work, we provide an overview of the role m6A-regulating proteins play in cancer and discuss the current state of small molecule therapeutics targeting these proteins.


Asunto(s)
Adenosina , Antineoplásicos , Neoplasias , Bibliotecas de Moléculas Pequeñas , Humanos , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacología , Adenosina/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , ARN/metabolismo , Animales , Estructura Molecular , Procesamiento Postranscripcional del ARN/efectos de los fármacos
19.
Methods ; 228: 30-37, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768930

RESUMEN

With the recent advanced direct RNA sequencing technique that proposed by the Oxford Nanopore Technologies, RNA modifications can be detected and profiled in a simple and straightforward manner. Majority nanopore-based modification studies were devoted to those popular types such as m6A and pseudouridine. To address current limitations on studying the crucial regulator, m1A modification, we conceived this study. We have developed an integrated computational workflow designed for the detection of m1A modifications from direct RNA sequencing data. This workflow comprises a feature extractor responsible for capturing signal characteristics (such as mean, standard deviations, and length of electric signals), a single molecule-level m1A predictor trained with features extracted from the IVT dataset using classical machine learning algorithms, a confident m1A site selector employing the binomial test to identify statistically significant m1A sites, and an m1A modification rate estimator. Our model achieved accurate molecule-level prediction (Average AUC = 0.9689) and reliable m1A site detection and quantification. To show the feasibility of our workflow, we conducted a study on in vivo transcribed human HEK293 cell line, and the results were carefully annotated and compared with other techniques (i.e., Illumina sequencing-based techniques). We believed that this tool will enabling a comprehensive understanding of the m1A modification and its functional mechanisms within cells and organisms.


Asunto(s)
Adenosina , Aprendizaje Automático , ARN , Análisis de Secuencia de ARN , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Células HEK293 , Análisis de Secuencia de ARN/métodos , Metilación , ARN/genética , ARN/metabolismo , Secuenciación de Nanoporos/métodos , Flujo de Trabajo , Algoritmos , Procesamiento Postranscripcional del ARN , Metilación de ARN
20.
Nat Commun ; 15(1): 3899, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724548

RESUMEN

The epitranscriptome embodies many new and largely unexplored functions of RNA. A significant roadblock hindering progress in epitranscriptomics is the identification of more than one modification in individual transcript molecules. We address this with CHEUI (CH3 (methylation) Estimation Using Ionic current). CHEUI predicts N6-methyladenosine (m6A) and 5-methylcytosine (m5C) in individual molecules from the same sample, the stoichiometry at transcript reference sites, and differential methylation between any two conditions. CHEUI processes observed and expected nanopore direct RNA sequencing signals to achieve high single-molecule, transcript-site, and stoichiometry accuracies in multiple tests using synthetic RNA standards and cell line data. CHEUI's capability to identify two modification types in the same sample reveals a co-occurrence of m6A and m5C in individual mRNAs in cell line and tissue transcriptomes. CHEUI provides new avenues to discover and study the function of the epitranscriptome.


Asunto(s)
5-Metilcitosina , Adenosina , Análisis de Secuencia de ARN , Transcriptoma , Adenosina/análogos & derivados , Adenosina/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Humanos , Metilación , Análisis de Secuencia de ARN/métodos , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN/metabolismo , ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA