Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
BMC Cancer ; 24(1): 1038, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174928

RESUMEN

PURPOSE: Prostate cancer (PCa) is a common malignancy in men, with an escalating mortality rate attributed to Recurrence and metastasis. Recent studies have illuminated collagen's critical regulatory role within the tumor microenvironment, significantly influencing tumor progression. Accordingly, this investigation is dedicated to examining the relationship between genes linked to collagen and the prognosis of PCa, with the objective of uncovering any possible associations between them. METHODS: Gene expression data for individuals with prostate cancer were obtained from the TCGA repository. Collagen-related genes were identified, leading to the development of a risk score model associated with biochemical recurrence-free survival (BRFS). A prognostic nomogram integrating the risk score with essential clinical factors was crafted and evaluated for efficacy. The influence of key collagen-related genes on cellular behavior was confirmed through various assays, including CCK8, invasion, migration, cell cloning, and wound healing. Immunohistochemical detection was used to evaluate PLOD3 expression in prostate cancer tissue samples. RESULTS: Our study identified four key collagen-associated genes (PLOD3, COL1A1, MMP11, FMOD) as significant. Survival analysis revealed that low-risk groups, based on the risk scoring model, had significantly improved prognoses. The risk score was strongly associated with prostate cancer prognosis. Researchers then created a nomogram, which demonstrated robust predictive efficacy and substantial clinical applicability.Remarkably, the suppression of PLOD3 expression notably impeded the proliferation, invasion, migration, and colony formation capabilities of PCa cells. CONCLUSION: The risk score, derived from four collagen-associated genes, could potentially act as a precise prognostic indicator for BRFS of patients. Simultaneously, our research has identified potential therapeutic targets related to collagen. Notably, PLOD3 was differentially expressed in cancer and para-cancer tissues in clinical specimens and it also was validated through in vitro studies and shown to suppress PCa tumorigenesis following its silencing.


Asunto(s)
Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo I , Nomogramas , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad , Pronóstico , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Metaloproteinasa 11 de la Matriz/genética , Metaloproteinasa 11 de la Matriz/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Colágeno/metabolismo , Colágeno/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral/genética , Anciano , Proliferación Celular/genética , Movimiento Celular/genética
2.
Aging (Albany NY) ; 16(14): 11434-11445, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39068670

RESUMEN

BACKGROUND: The expression patterns and prognostic value of Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) family genes in breast cancer remain to be elucidated. METHODS: The expression levels, prognostic value, and biological function of PLODs were determined using Oncomine, cBioPortal, GEPIA, Timer, UALCAN, PrognoScan, GeneMANIA, Metascape, and breast cancer tissue microarrays. RESULTS: The expressions of PLOD1 and PLOD3 were upregulated in breast cancer tissues, indicating worse clinical stages. High expression levels of PLOD family genes were associated with worse disease-free survival and distant metastasis-free survival, while high expression levels of PLOD1 and PLOD3 were related to worse overall survival in all breast cancer patients. The levels of PLOD family genes were all significantly higher in the age ≤51 y group, HR-negative patients, and triple negative breast cancer (TNBC) patients. They are associated with tumor-infiltrating immune cells (TIICs), including CD4+ T cells, CD8+ T cells, B cells, macrophages, neutrophils, and dendritic cells. According to co-expression gene analysis and functional enrichment, they are associated with protein hydroxylation, collagen biosynthesis and modifying enzymes, collagen metabolism, RNA splicing, extracellular matrix organization, VEGFA-VEGFR2 signaling pathway, and skeletal system development. Immunohistochemistry showed that the expressions of all PLOD family genes were significantly elevated in breast cancer tissues. PLOD1 expression was positively correlated with ER, TNBC status, and tumor grade. PLOD2 expression was positively connected with Ki-67 status. PLOD3 expression was positively related with age and tumor grade. CONCLUSIONS: PLOD family genes are novel potential prognostic biomarkers for breast cancer, and targeting PLOD inhibitors might be an effective strategy for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Humanos , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
3.
Cancer Genet ; 284-285: 48-57, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729078

RESUMEN

Although lncRNAs are recognized to contribute to the development of oral squamous-cell carcinoma (OSCC), their exact function in invasion and cell migration is not clear. In this research, we explored the molecular and cellular mechanisms of FOXD2-AS1 in OSCC. Prognostic and bioinformatics analyses were used to test for the differential expression of FOXD2-AS1-PLOD1. Following FOXD2-AS1 suppression or overexpression, changes in cell viability were measured using the CCK-8 test; changes in cell migration and invasion abilities were measured using the migration and the Transwell assay. The expression of associated genes and proteins was found using Western blot and RT-qPCR. Analysis of luciferase reporter genes was done to look for regulatory connections between various molecules. The FOXD2-AS1-PLOD1 pair, which was highly expressed in OSCC, was analyzed and experimentally verified to be closely related to the prognosis of OSCC, and a nomogram model and correction curve were constructed. The inhibition of FOXD2-AS1 resulted in the reduction of cell activity, migration, invasion ability and changes in genes related to invasion and migration. In vivo validation showed that inhibition of FOXD2-AS1 expression slowed tumor growth, and related proteins changed accordingly. The experiments verified that FOXD2-AS1 negatively regulated miR-185-5 p and that miR-185-5 p negatively regulated PLOD1. In addition, it was found that the expression of PLOD1, p-Akt and p-mTOR proteins in OSCC cells was reduced by the inhibition of FOXD2-AS1, and FOXD2-AS1 and PLOD1 were closely related to the Akt/mTOR pathway. Increased expression of FOXD2-AS1 promotes OSCC growth, invasion and migration, which is important in part by targeting miR-185-5 p/PLOD1/Akt/mTOR pathway activity.


Asunto(s)
Movimiento Celular , Proliferación Celular , MicroARNs , Neoplasias de la Boca , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-akt , ARN Largo no Codificante , Serina-Treonina Quinasas TOR , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Movimiento Celular/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Proliferación Celular/genética , Ratones , Animales , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Línea Celular Tumoral , Transducción de Señal/genética , Regulación Neoplásica de la Expresión Génica , Femenino , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Masculino , Pronóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Ratones Desnudos
4.
Stem Cell Res Ther ; 15(1): 70, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454524

RESUMEN

BACKGROUND: Initially discovered for its ability to regenerate ear holes, the Murphy Roth Large (MRL) mouse has been the subject of multiple research studies aimed at evaluating its ability to regenerate other body tissues and at deciphering the mechanisms underlying it. These enhanced abilities to regenerate, retained during adulthood, protect the MRL mouse from degenerative diseases such as osteoarthritis (OA). Here, we hypothesized that mesenchymal stromal/stem cells (MSC) derived from the regenerative MRL mouse could be involved in their regenerative potential through the release of pro-regenerative mediators. METHOD: To address this hypothesis, we compared the secretome of MRL and BL6 MSC and identified several candidate molecules expressed at significantly higher levels by MRL MSC than by BL6 MSC. We selected one candidate, Plod2, and performed functional in vitro assays to evaluate its role on MRL MSC properties including metabolic profile, migration, and chondroprotective effects. To assess its contribution to MRL protection against OA, we used an experimental model for osteoarthritis induced by collagenase (CiOA). RESULTS: Among the candidate molecules highly expressed by MRL MSC, we focused our attention on procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2). Plod2 silencing induced a decrease in the glycolytic function of MRL MSC, resulting in the alteration of their migratory and chondroprotective abilities in vitro. In vivo, we showed that Plod2 silencing in MRL MSC significantly impaired their capacity to protect mouse from developing OA. CONCLUSION: Our results demonstrate that the chondroprotective and therapeutic properties of MRL MSC in the CiOA experimental model are in part mediated by PLOD2.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Animales , Ratones , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo
5.
Cell Death Dis ; 15(1): 62, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233403

RESUMEN

N6-methyladenosine (m6A) is the most prevalent reversible modification in eukaryotic mRNA, and it plays a critical role in tumor progression. The purpose of this study was to investigate the function and regulatory mechanisms of the methyltransferase METTL3 in renal cell carcinoma (RCC). METTL3 expression was upregulated and predicted a poor prognosis in patients with advanced RCC. METTL3 facilitated the proliferation, migration, and invasion of RCC cells, depending on its methylase activity. METTL3 positively regulated the expression of PLOD2, and both genes were triggered under prolonged hypoxia. Mechanistically, hypoxia-induced the binding of HIF-1α to the METTL3 promoter, which enhanced its transcriptional activity. METTL3-mediated m6A modifications of PLOD2 mRNA at 3'UTR region, promoting the translation of PLOD2 protein. Furthermore, silencing METTL3 impaired RCC progression in vitro. In vivo, administration of highly potent and selective METTL3 inhibitor STM2457 showed anti-tumor effects, whereas AAV9-mediated re-transduction of PLOD2 largely abolished the above phenomenon in a subcutaneous mouse model. These findings reveal that hypoxia and HIF-driven METTL3 transcription promote RCC progression by increasing PLOD2 expression in an m6A-dependent manner, suggesting that METTL3 may serve as a novel pharmaceutical intervention for RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Ratones , Animales , Humanos , Carcinoma de Células Renales/genética , Metiltransferasas/metabolismo , Metilación , Neoplasias Renales/genética , Hipoxia/genética , ARN Mensajero/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo
6.
Aging Cell ; 23(2): e14031, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37936548

RESUMEN

SIRT6 is a key member of the mammalian sirtuin family of conserved nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylases. Previous studies have shown that SIRT6 can regulate metabolism, DNA damage repair and aging. Ovarian aging process usually share similar mechanisms with general aging, which is characterized by decreases in both numbers of ovarian follicles and the quality of oocytes. It is reported that the expression level of SIRT6 was significantly decreased in the ovaries of aged mice, and the level of SIRT6 was positively correlated with ovarian reserve, indicating that SIRT6 may be potential markers of ovarian aging. However, its biological roles in follicular development are still unclear. Here, we explored the effect of SIRT6 on follicular development and found that ovarian development was interrupted in SIRT6 knockout (KO) mice, leading to disruptions of puberty and the estrus cycle, significant decreases in numbers of secondary and antral follicles, and decreased collagen in the ovarian stroma. Plod1, a lysyl hydroxylase that is vital for collagen crosslinking and deposition, was decreased at both the mRNA and protein levels in SIRT6-deficient ovaries and granulosa cells (GCs). Additionally, we found abnormal estrogen levels in both SIRT6 KO mice and SIRT6 KD GCs, accompanied by decreases in the levels of the estrogen biosynthesis genes Cyp11a1, Cyp19a1, Mgarp, and increases in the levels of TNF-α and NF-κB. These results confirmed the effect of SIRT6 on follicular development and revealed a possible molecular mechanism for SIRT6 involvement in follicular development via effects on estrogen biosynthesis and collagen formation.


Asunto(s)
Ovario , Sirtuinas , Animales , Femenino , Ratones , Estrógenos/metabolismo , Mamíferos/metabolismo , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo
7.
Eur J Pharmacol ; 961: 176192, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37981258

RESUMEN

Osteogenic differentiation, proliferation, and/or apoptosis of bone marrow mesenchymal stem cells (BMSCs) are involved in the progression of postmenopausal osteoporosis (PMO). However, circular RNA (circRNA)-mediated changes in the cellular function of BMSCs in PMO are still unclear. This study revealed the excellent ability of circ-Plod2 to promote osteogenic differentiation of BMSCs and its molecular mechanisms. In this study, ovariectomized (OVX) rats and control (Sham) rats were used to simulate PMO. Initially, we found that the expression of circ-Plod2 in OVX BMSCs is down-regulated and the expression of the Mpo gene is up-regulated by sequencing and verification. Further, we confirmed that circ-Plod2 is located in the cytoplasm and belongs to exon-type circRNA. Interestingly, circ-Plod2 promotes Mpo-dependent osteogenic differentiation of BMSCs without affecting proliferation, apoptosis, adipogenic differentiation, or chondrogenic differentiation of BMSCs. Mechanistically, we demonstrated that circ-Plod2 specifically binds IGF2BP2 to form an RNA-protein complex that destabilizes Mpo mRNA. Overexpression of circ-Plod2 in the bone marrow cavity effectively alleviated osteoporosis in OVX rats and inhibited the expression of MPO in BMSCs. Together, this study reveals that circ-Plod2 destabilizes Mpo mRNA by binding to IGF2BP2 to promote osteogenic differentiation of BMSCs to alleviate osteoporosis. The findings of this study may provide biomarkers for the diagnosis of PMO, and may also provide potential strategies for the clinical treatment of PMO.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteoporosis Posmenopáusica , Osteoporosis , Peroxidasa , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Animales , Femenino , Humanos , Ratas , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , MicroARNs/genética , Osteogénesis/genética , Osteoporosis/tratamiento farmacológico , Osteoporosis Posmenopáusica/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Peroxidasa/metabolismo
8.
Mol Neurobiol ; 60(11): 6715-6730, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37477767

RESUMEN

Humans exhibit a rich intestinal microbiome that contain high levels of bacteria capable of producing 3-oxo-lithocholic acid (3-oxoLCA) and other secondary bile acids (BAs). The molecular mechanism mediating the role of 3-oxoLCA in cerebral ischemia-reperfusion (I/R) injury remains unclear. We investigated the role of 3-oxoLCA in a rat cerebral I/R injury model. We found that the concentrations of 3-oxoLCA within the cerebrospinal fluid were increased following I/R. In the in vitro oxygen-glucose deprivation (OGD) model, the levels of intraneuronal 3-oxoLCA was elevated following OGD insult. We showed that the increase of membrane ASBT (apical sodium-dependent bile acid transporter) contributed to OGD-induced elevation of intraneuronal 3-oxoLCA. Increasing intraneuronal 3-oxoLCA promoted ischemia-induced neuronal death, whereas reducing 3-oxoLCA levels were neuroprotective. Our results revealed that PLOD2 (procollagen-lysine, 2-oxoglutarate 5-dioxygenases 2) functioned upstream of PTEN (the phosphatase and tensin homolog deleted on chromosome 10) and downstream of 3-oxoLCA to promote OGD-induced neuronal injury. We further demonstrated that direct-current stimulation (DCS) decreased the levels of intraneuronal 3-oxoLCA and membrane ASBT in OGD-insulted neurons, while bilateral transcranial DCS (tDCS) reduced brain infarct volume following I/R by inhibiting ASBT. Together, these data suggest that increased expression of ASBT promotes neuronal death via 3-oxoLCA-PLOD2-PTEN signaling pathway. Importantly, bilateral tDCS suppresses ischemia-induced increase of ASBT, thereby conferring neuroprotection after cerebral I/R injury.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Estimulación Transcraneal de Corriente Directa , Humanos , Ratas , Animales , Neuroprotección , Transducción de Señal , Isquemia Encefálica/metabolismo , Oxígeno/metabolismo , Infarto Cerebral , Glucosa/metabolismo , Daño por Reperfusión/metabolismo , Apoptosis , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Fosfohidrolasa PTEN/metabolismo
9.
PLoS Pathog ; 19(6): e1010478, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37262099

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that is causally associated with various malignancies and autoimmune disease. Epstein-Barr Nuclear Antigen 1 (EBNA1) is the viral-encoded DNA binding protein required for viral episome maintenance and DNA replication during latent infection in proliferating cells. EBNA1 is known to be a highly stable protein, but the mechanisms regulating protein stability and how this may be linked to EBNA1 function is not fully understood. Proteomic analysis of EBNA1 revealed interaction with Procollagen Lysine-2 Oxoglutarate 5 Dioxygenase (PLOD) family of proteins. Depletion of PLOD1 by shRNA or inhibition with small molecule inhibitors 2,-2' dipyridyl resulted in the loss of EBNA1 protein levels, along with a selective growth inhibition of EBV-positive lymphoid cells. PLOD1 depletion also caused a loss of EBV episomes from latently infected cells and inhibited oriP-dependent DNA replication. Mass spectrometry identified EBNA1 peptides with lysine hydroxylation at K460 or K461. Mutation of K460, but not K461 abrogates EBNA1-driven DNA replication of oriP, but did not significantly affect EBNA1 DNA binding. Mutations in both K460 and K461 perturbed interactions with PLOD1, as well as decreased EBNA1 protein stability. These findings suggest that PLOD1 is a novel interaction partner of EBNA1 that regulates EBNA1 protein stability and function in viral plasmid replication, episome maintenance and host cell survival.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Humanos , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Lisina/genética , Proteómica , Replicación del ADN , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Replicación Viral , Estabilidad Proteica , Plásmidos , Origen de Réplica
10.
Proc Natl Acad Sci U S A ; 120(20): e2214942120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155842

RESUMEN

Aberrant accumulation of succinate has been detected in many cancers. However, the cellular function and regulation of succinate in cancer progression is not completely understood. Using stable isotope-resolved metabolomics analysis, we showed that the epithelial mesenchymal transition (EMT) was associated with profound changes in metabolites, including elevation of cytoplasmic succinate levels. The treatment with cell-permeable succinate induced mesenchymal phenotypes in mammary epithelial cells and enhanced cancer cell stemness. Chromatin immunoprecipitation and sequence analysis showed that elevated cytoplasmic succinate levels were sufficient to reduce global 5-hydroxymethylcytosinene (5hmC) accumulation and induce transcriptional repression of EMT-related genes. We showed that expression of procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) was associated with elevation of cytoplasmic succinate during the EMT process. Silencing of PLOD2 expression in breast cancer cells reduced succinate levels and inhibited cancer cell mesenchymal phenotypes and stemness, which was accompanied by elevated 5hmC levels in chromatin. Importantly, exogenous succinate rescued cancer cell stemness and 5hmC levels in PLOD2-silenced cells, suggesting that PLOD2 promotes cancer progression at least partially through succinate. These results reveal the previously unidentified function of succinate in enhancing cancer cell plasticity and stemness.


Asunto(s)
Neoplasias , Ácido Succínico , Línea Celular Tumoral , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Succinatos , Humanos
11.
Cancer Sci ; 114(8): 3190-3202, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37227305

RESUMEN

Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) has been reported as an oncogenic gene, affecting various malignant tumors, including endometrial carcinoma, osteosarcoma, and gastric cancer. These effects are mostly due to the enhanced deposition of collagen precursors. However, more studies need to be conducted on how its lysyl hydroxylase function affects cancers like colorectal carcinoma (CRC). Our present results showed that PLOD2 expression was elevated in CRC, and its higher expression was associated with poorer survival. Overexpression of PLOD2 also facilitated CRC proliferation, invasion, and metastasis in vitro and in vivo. In addition, PLOD2 interacted with USP15 by stabilizing it in the cytoplasm and then activated the phosphorylation of AKT/mTOR, thereby promoting CRC progression. Meanwhile, minoxidil was demonstrated to downregulate the expression of PLOD2 and suppress USP15, and the phosphorylation of AKT/mTOR. Our study reveals that PLOD2 plays an oncogenic role in colorectal carcinoma, upregulating USP15 and subsequently activating the AKT/mTOR pathway.


Asunto(s)
Neoplasias Óseas , Neoplasias Colorrectales , Neoplasias Endometriales , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Colorrectales/genética , Línea Celular Tumoral , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
12.
Int J Biol Sci ; 19(2): 412-425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632453

RESUMEN

Osteosarcoma is a highly mortal bone tumor, with a high metastatic potential, promoted in part by the enzyme procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2). Increasing level of PLOD2 in osteosarcoma tissue correlates with lymphatic and distant metastasis. The adipokine apelin (APLN) is also found in different cancers and APLN upregulation promotes angiogenesis and metastasis, but its effects on osteosarcoma metastasis are uncertain. We explored APLN functioning in metastatic osteosarcoma. An analysis of records from the Gene Expression Omnibus (GEO) database showed higher levels of APLN expression in osteosarcoma tissue than in normal tissue. Similarly, levels of APLN and PLOD2 mRNA synthesis were upregulated in osteosarcoma tissue. Levels of APLN and PLOD2 protein correlated positively with osteosarcoma clinical stages. APLN increased PLOD2 expression in human osteosarcoma cell lines and cell migration via the mammalian Sterile 20-like kinase 1 (MST1), monopolar spindle-one-binder protein (MOB)1, and YAP cascades, and through hsa_circ_0000004 functioning as a sponge of miR-1303. We also found that knockdown of APLN antagonized lung metastasis in mice with osteosarcoma. APLN may be a therapeutic target in osteosarcoma metastasis.


Asunto(s)
Apelina , Neoplasias Óseas , Vía de Señalización Hippo , MicroARNs , Osteosarcoma , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , ARN Circular , Animales , Humanos , Ratones , Apelina/genética , Apelina/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Osteosarcoma/genética , Osteosarcoma/patología , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , ARN Circular/metabolismo
13.
World Neurosurg ; 169: e147-e156, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36415014

RESUMEN

BACKGROUND: Circular RNAs are closed endogenous RNAs that are involved in the progression of diverse tumors. Even with the most advanced combined treatments, patients with glioblastoma multiforme have a median survival time of <15 months. This study aimed to investigate the roles of circular PLOD2 (circPLOD2) in glioma tumorigenesis and tumor development and to clarify its tumor-promoting effects by bioinformatics analysis and molecular experiments. METHODS: To determine the characteristics of circPLOD2 expression, quantitative real-time polymerase chain reaction was conducted. Stable knockdown of circPLOD2 was implemented for functional assays. Cell Counting Kit-8 and colony formation assays were used to measure cell proliferation. Transwell assays and tube formation assays were used to evaluate cell invasion and angiogenesis abilities, respectively. An intracranial xenograft model was established to determine the function of circPLOD2 in vivo. Further biochemical and Western blot analyses were conducted to evaluate proteins associated with circPLOD2. RESULTS: circPLOD2 was upregulated in glioma tissues and cells. High expression of circPLOD2 was significantly associated with tumor size, World Health Organization grade, and molecular characteristics of glioma. circPLOD2 deregulation affected glioblastoma multiforme cell proliferation, invasion, and angiogenesis. Knockdown of circPLOD2 inhibited tumorigenesis in vivo. Further biochemical analysis showed that circPLOD2 was involved in oncogenic pathways and correlated with the expression of proteins related to proliferation, invasion, and angiogenesis. CONCLUSIONS: Our data indicate that circPLOD2 promotes glioma tumorigenesis and tumor development in vitro and in vivo and that suppressing circPLOD2 could be a novel therapeutic strategy for glioma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroARNs , Humanos , Glioblastoma/patología , MicroARNs/metabolismo , Neoplasias Encefálicas/patología , Glioma/patología , Proliferación Celular/genética , Carcinogénesis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Movimiento Celular/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo
14.
Cell Cycle ; 21(23): 2484-2498, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36071678

RESUMEN

Increasing evidence has proved that circRNAs might act as potential biomarkers for tumor diagnosis and prognosis. However, the functions and mechanisms of multiple circRNAs in colon cancer remains unclear. Here, we found circPLOD2 was dramatically upregulated in colon cancer tissue and cell lines. In vitro CCK-8, colony formation and transwell assays, and in vivo tumor transplantation assay were performed and explored that circPLOD2 might promote tumor proliferation, migration and invasion in vitro and in vivo. Moreover, based on the analysis of RNA pull-down, RNA immunoprecipitation, luciferase and rescued assays, we confirmed that the interactions between circPLOD2, miR-513a-5p and SIX1. It suggested that circPLOD2 acted as a sponge of miR-513a-5p to regulate the activation of the target gene SIX1. In addition, as a key transcription factor of Warburg effect related genes, SIX1 was proved to enhance the transcriptional expression of LDHA by chromatin immunoprecipitation assay, thereby regulating glycolysis in colon cancer cells. Therefore, we identified that circPLOD2 promoted colon cancer progression through miR-513a-5p/SIX1/LDHA axis, and acted as a new biomarker for colon cancer prognosis and treatment.


Asunto(s)
Neoplasias del Colon , MicroARNs , Humanos , ARN Circular/genética , MicroARNs/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Línea Celular Tumoral , Neoplasias del Colon/patología , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Proliferación Celular/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Proteínas de Homeodominio/metabolismo
15.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682709

RESUMEN

This study aimed to investigate the role of Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) in glioblastoma (GBM) pathophysiology. To this end, PLOD2 protein expression was assessed by immunohistochemistry in two independent cohorts of patients with primary GBM (n1 = 204 and n2 = 203, respectively). Association with the outcome was tested by Kaplan−Meier, log-rank and multivariate Cox regression analysis in patients with confirmed IDH wild-type status. The biological effects and downstream mechanisms of PLOD2 were assessed in stable PLOD2 knock-down GBM cell lines. High levels of PLOD2 significantly associated with (p1 = 0.020; p2< 0.001; log-rank) and predicted (cohort 1: HR = 1.401, CI [95%] = 1.009−1.946, p1 = 0.044; cohort 2: HR = 1.493; CI [95%] = 1.042−2.140, p2 = 0.029; Cox regression) the poor overall survival of GBM patients. PLOD2 knock-down inhibited tumor proliferation, invasion and anchorage-independent growth. MT1-MMP, CD44, CD99, Catenin D1 and MMP2 were downstream of PLOD2 in GBM cells. GBM cells produced soluble factors via PLOD2, which subsequently induced neutrophils to acquire a pro-tumor phenotype characterized by prolonged survival and the release of MMP9. Importantly, GBM patients with synchronous high levels of PLOD2 and neutrophil infiltration had significantly worse overall survival (p < 0.001; log-rank) compared to the other groups of GBM patients. These findings indicate that PLOD2 promotes GBM progression and might be a useful therapeutic target in this type of cancer.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Inmunohistoquímica , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Pronóstico , Microambiente Tumoral
16.
Clin Transl Oncol ; 24(8): 1524-1532, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35149972

RESUMEN

PURPOSE: The prolyl 3-hydroxylase family member 4 gene (P3H4) is involved in the development of human cancers. The association of P3H4 with bladder cancer (BC) prognosis is unclear. This study aimed to analyze the association of P3H4 with BC prognosis. METHODS: RNA-Seq data were downloaded from The Cancer Genome Atlas project and BC microarray datasets (GSE13507, GSE31684, and GSE32548) were downloaded from the Gene Expression Omnibus database. We analyzed the differences in P3H4 expression levels between BC tumors and non-tumor tissues and between samples with different clinical information. The association of P3H4 and P3H4-related genes with BC prognosis and the possibility of using P3H4 expression as a prognostic biomarker in BC patients were also analyzed. RevMan was used to perform the meta-analysis. RESULTS: P3H4 was upregulated in BC tissues compared with the adjacent non-tumor tissues (p = 4.06e-08). Univariate Cox regression analysis and meta-analysis showed that high P3H4 expression level contributed to a poor BC prognosis (Hazard ratio, HR = 1.348, 95% CI 1.140-1.594, p = 4.89e-04; meta-analysis: HR = 1.45, 95% CI 1.10-1.91; p = 9.00e-03). Among the genes related to P3H4, the PLOD1 gene was closely associated with P3H4 expression (r = 0.620, p = 2.49e-44). Also, a meta-analysis showed that PLOD1 expression was associated with a poor prognosis in BC patients (HR = 1.77, 95% CI 1.31-2.38; p = 2.00e-04). CONCLUSIONS: The P3H4 and PLOD1 genes might be used as reliable prognostic biomarkers for BC.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Autoantígenos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Pronóstico , Neoplasias de la Vejiga Urinaria/patología
17.
Lab Invest ; 102(4): 440-451, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35039611

RESUMEN

Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3) is a crucial oncogene in human lung cancer, whereas protein kinase C δ (PKCδ) acts as a tumor suppressor. In this study, we aimed to explore the regulation by PLOD3 on the expression of YAP1 to affect the progression of non-small cell lung cancer (NSCLC) via the PKCδ/CDK1/LIMD1 signaling pathway. We found that PLOD3, CDK1, and YAP1 were highly expressed, while LIMD1 was poorly expressed in NSCLC tissues. Mechanistic investigation demonstrated that silencing PLOD3 promoted the cleavage of PKCδ in a caspase-dependent manner to generate a catalytically active fragment cleaved PKCδ, enhanced phosphorylation levels of CDK1, and LIMD1 but suppressed nuclear translocation of YAP1. Furthermore, functional experimental results suggested that loss of PLOD3 led to increased phosphorylation levels of CDK1 and LIMD1 and downregulated YAP1, thereby suppressing the proliferation, colony formation, cell cycle entry, and resistance to apoptosis of NSCLC cells in vitro and inhibiting tumor growth in vivo. Taken together, these results show that PLOD3 silencing activates the PKCδ/CDK1/LIMD1 signaling pathway to prevent the progression of NSCLC, thus providing novel insight into molecular targets for treating NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Apoptosis , Proteína Quinasa CDC2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM , Neoplasias Pulmonares/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAP
18.
Mol Cell Biochem ; 477(2): 549-557, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34845571

RESUMEN

Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) is a collagen-related lysyl hydroxylase and its prognostic value in glioma patients was verified. However, its biological function in glioma has yet to be fully investigated. The PLOD1 mRNA status and clinical significance in gliomas were assessed via the GEPIA database. Overexpression or targeted depletion of PLOD1 was carried out in the human glioma cell line U87 and verified by western blotting. CCK8 and colony formation assays were implemented to examine the impact of PLOD1 on the proliferative and colony-forming phenotypes of U87 cells. Luciferase reporter assays and HSF1-specific pharmacologic inhibitors (KRIBB11) were employed to determine the regulatory relationship between PLOD1 and heat shock factor 1 (HSF1). High expression of PLOD1 was observed in tissue samples of glioblastoma multiforme (GBM) and brain lower-grade glioma (LGG). GEPIA overall survival further demonstrated that both GBM and LGG patients with high PLOD1 displayed worse clinical outcomes compared with those with low PLOD1. Overexpression and targeted depletion of PLOD1 enhanced and suppressed U87 cell proliferation and colony formation, respectively. Luciferase reporter assays showed that PLOD1 significantly enhanced the transcriptional activity of HSF1 in HEK293T cells. PLOD1 deficiency in U87 cells inhibited HSF1-induced survivin accumulation, whereas KRIBB11 also blocked the PLOD1-overexpressing induced survivin expression. An inhibitor of HSF1 signaling events abolished the increased clonogenic potential caused by PLOD1 overexpression in U87 cells. High expression of PLOD1 can increase the proliferation and colony formation of U87 cells by activating the HSF1 signaling pathway. This study suggested PLOD1/HSF1 as an effective therapeutic target for gliomas.


Asunto(s)
Glioma/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas Oncogénicas/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Transducción de Señal , Línea Celular Tumoral , Glioma/genética , Células HEK293 , Factores de Transcripción del Choque Térmico/genética , Humanos , Proteínas Oncogénicas/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética
19.
Biomolecules ; 11(12)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34944486

RESUMEN

BACKGROUND: Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), a key enzyme that catalyzes the hydroxylation of lysine, plays a crucial role in the progression of several solid tumors. However, its spatial expression profile and prognostic significance in oral squamous cell carcinoma (OSCC) have not been revealed. MATERIALS: Mass spectrometry was used to explore amino acid perturbations between OSCC tumor tissues and paired normal tissues of 28 patients. Then, PLOD2 mRNA and protein levels were assessed using several public databases and 18 pairs of OSCC patients' tissues. Additionally, PLOD2 spatial expression profiles were investigated in 100 OSCC patients by immunohistochemistry and its diagnostic and prognostic values were also evaluated. Lastly, gene set enrichment analysis (GSEA) was used to investigate the potential functions of PLOD2 in OSCC. RESULTS: Lysine was significantly elevated in OSCC tissues and could effectively distinguish tumor from normal tissues (AUC = 0.859, p = 0.0035). PLOD2 mRNA and protein levels were highly increased in tumor tissues of head and neck squamous cell carcinoma (HNSCC) (p < 0.001) and OSCC compared with those in nontumor tissues (p < 0.001). Histopathologically, PLOD2 was ubiquitously expressed in tumor cells (TCs) and fibroblast-like cells (FLCs) of OSCC patients but absent in tumor-infiltrating lymphocytes (TILs). Patients with highly expressed PLOD2 in TCs (PLOD2TCs) and FLCs (PLOD2FLCs) showed poor differentiation, a worse pattern of invasion (WPOI) and more lymph node metastasis (LNM), contributing to higher postoperative metastasis risk and poor survival time. However, PLOD2FLCs rather than PLOD2TCs was an independent risk factor for survival outcomes in OSCC patients. Molecularly, GSEA demonstrated highly expressed PLOD2 was mainly enriched in epithelial-mesenchymal transformation (EMT), TGF-beta signaling and hypoxia pathway, which are associated with poor clinical outcomes of OSCC patients. CONCLUSIONS: PLOD2 was a poor prognostic biomarker for OSCC patients and may affect the metastasis of OSCC through EMT pathway. These findings might shed novel sights for future research in PLOD2 targeted OSCC therapy.


Asunto(s)
Carcinoma de Células Escamosas/patología , Lisina/metabolismo , Neoplasias de la Boca/patología , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Regulación hacia Arriba , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Supervivencia sin Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Espectrometría de Masas , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Estadificación de Neoplasias , Pronóstico
20.
Theranostics ; 11(19): 9587-9604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646388

RESUMEN

Rationale: The progressive disruption of extracellular matrix (ECM) proteins, particularly early elastin fragmentation followed by abnormalities in collagen fibril organization, are key pathological processes that contribute to dissecting abdominal aortic aneurysm (AAA) pathogenesis. Lysyl hydroxylase 1 (LH1) is essential for type I/III collagen intermolecular crosslinking and stabilization. However, its function in dissecting AAA has not been explored. Here, we investigated whether LH1 is significantly implicated in dissecting AAA progression and therapeutic intervention. Methods and Results: Sixteen-week-old male LH1-deficient and wild-type (WT) mice on the C57Bl/6NCrl background were infused with angiotensin II (Ang II, 1000 ng/kg per minute) via subcutaneously implanted osmotic pumps for 4 weeks. Ang II increased LH1 levels in the abdominal aortas of WT mice, whereas mice lacking LH1 developed dissecting AAA. To evaluate the related mechanism, we performed whole-transcriptomic analysis, which demonstrated that LH1 deficiency aggravated gene transcription alterations; in particular, the expression of thrombospondin-1 was markedly upregulated in the aortas of LH1-deficient mice. Furthermore, targeting thrombospondin-1 with TAX2 strongly inhibited the proinflammatory process, matrix metalloproteinase (MMP) activity and vascular smooth muscle cells (VSMCs) apoptosis, ultimately decreasing the incidence of dissecting AAA. Restoration of LH1 protein expression in LH1-deficient mice by intraperitoneal injection of an adeno-associated virus normalized thrombospondin-1 levels, subsequently alleviating dissecting AAA formation and preserving aortic structure and function. Consistently, in human AAA specimens, decreased LH1 expression was associated with increased thrombospondin-1 levels. Conclusions: LH1 deficiency contributes to dissecting AAA pathogenesis, at least in part, by upregulating thrombospondin-1 expression, which subsequently enables proinflammatory processes, MMP activation and VSMCs apoptosis. Our study provides evidence that LH1 is a potential critical therapeutic target for AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/metabolismo , Disección Aórtica/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Angiotensina II/farmacología , Animales , Aorta/metabolismo , Apolipoproteínas E/genética , Apoptosis/efectos de los fármacos , Colágeno/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/fisiología , Expresión Génica/genética , Inflamación/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/deficiencia , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Trombospondina 1/genética , Trombospondina 1/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA