Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.411
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Med Mushrooms ; 26(9): 1-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39093398

RESUMEN

Mushrooms produce many metabolites that show biological activity, which can be obtained from their fruiting body, mycelium or recovered from the culture broth when mushrooms are grown in submerged fermentation. Mushrooms are a source of natural pharmaceuticals; they have been reported to have potential inhibitory or preventive activity against some diseases, including different types of cancer. Cancer represents one of the main causes of death worldwide. It is worth mentioning that despite advances in pharmacological treatments, they still present side effects in patients. In this sense, the study of the use of mushrooms in complementary treatments against cancer is of great interest. Based on studies carried out in vitro and, in some cases, using animal models, it has been observed that mushrooms present preventive, corrective, and therapeutic properties against different types of cancer, by stimulating the immune system, due to their antioxidant, antimutagenic, and anti-inflammatory activities, as well as the regulation of the expression of some cellular processes, cell cycle arrest, and apoptosis, etc. Based on the above, this manuscript shows a review of scientific studies that support the anticancer activity of some mushrooms and/or their bioactive compounds.


Asunto(s)
Agaricales , Antineoplásicos , Agaricales/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Animales , Neoplasias/tratamiento farmacológico , Productos Biológicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Antiinflamatorios/farmacología
2.
Metabolomics ; 20(5): 90, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095664

RESUMEN

INTRODUCTION: Fungi biosynthesize chemically diverse secondary metabolites with a wide range of biological activities. Natural product scientists have increasingly turned towards bioinformatics approaches, combining metabolomics and genomics to target secondary metabolites and their biosynthetic machinery. We recently applied an integrated metabologenomics workflow to 110 fungi and identified more than 230 high-confidence linkages between metabolites and their biosynthetic pathways. OBJECTIVES: To prioritize the discovery of bioactive natural products and their biosynthetic pathways from these hundreds of high-confidence linkages, we developed a bioactivity-driven metabologenomics workflow combining quantitative chemical information, antiproliferative bioactivity data, and genome sequences. METHODS: The 110 fungi from our metabologenomics study were tested against multiple cancer cell lines to identify which strains produced antiproliferative natural products. Three strains were selected for further study, fractionated using flash chromatography, and subjected to an additional round of bioactivity testing and mass spectral analysis. Data were overlaid using biochemometrics analysis to predict active constituents early in the fractionation process following which their biosynthetic pathways were identified using metabologenomics. RESULTS: We isolated three new-to-nature stemphone analogs, 19-acetylstemphones G (1), B (2) and E (3), that demonstrated antiproliferative activity ranging from 3 to 5 µM against human melanoma (MDA-MB-435) and ovarian cancer (OVACR3) cells. We proposed a rational biosynthetic pathway for these compounds, highlighting the potential of using bioactivity as a filter for the analysis of integrated-Omics datasets. CONCLUSIONS: This work demonstrates how the incorporation of biochemometrics as a third dimension into the metabologenomics workflow can identify bioactive metabolites and link them to their biosynthetic machinery.


Asunto(s)
Vías Biosintéticas , Hongos , Metabolómica , Familia de Multigenes , Humanos , Metabolómica/métodos , Hongos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo
3.
Front Immunol ; 15: 1410300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050852

RESUMEN

Breast cancer (BC) is the most common malignancy among women and is considered a major global health challenge worldwide due to its high incidence and mortality rates. Treatment strategies for BC is wide-ranging and include surgery, radiotherapy, chemotherapy, targeted hormonal therapy and immunotherapy. Immunotherapy has gained popularity recently and is often integrated as a component of personalized cancer care because it aims to strengthen the immune system and enable it to recognize and eradicate transformed cells. It has fewer side-effects and lower toxicity than other treatment strategies, such as chemotherapy. Many natural products are being investigated for a wide range of therapeutic pharmacological properties, such as immune system modulation and activity against infection, auto-immune disease, and cancer. This review presents an overview of the major immune response-related pathways in BC, followed by detailed explanation of how natural compounds can act as immunomodulatory agents against biomolecular targets. Research has been carried out on many forms of natural products, including extracts, isolated entities, synthetic derivatives, nanoparticles, and combinations of natural compounds. Findings have shown significant regulatory effects on immune cells and immune cytokines that lead to immunogenic cancer cell death, as well as upregulation of macrophages and CD+8 T cells, and increased natural killer cell and dendritic cell activity. Natural products have also been found to inhibit some immuno-suppressive cells such as Treg and myeloid-derived suppressor cells, and to decrease immunosuppressive factors such as TGF-ß and IL-10. Also, some natural compounds have been found to target and hinder immune checkpoints such as PD-L1.


Asunto(s)
Productos Biológicos , Neoplasias de la Mama , Inmunoterapia , Humanos , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Femenino , Inmunoterapia/métodos , Animales , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos
4.
Cells ; 13(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39056768

RESUMEN

Autophagy, an intrinsic catabolic mechanism that eliminates misfolded proteins, dysfunctional organelles, and lipid droplets, plays a vital function in energy balance and cytoplasmic quality control, in addition to maintaining cellular homeostasis. Liver cancer such as hepatocellular carcinoma (HCC) is one of the most common causes of cancer deaths globally and shows resistance to several anticancer drugs. Despite the rising incidence and poor prognosis of malignant HCC, the underlying molecular mechanisms driving this aggressive cancer remain unclear. Several natural compounds, such as phytochemicals of dietary and non-dietary origin, affect hepatocarcinogenesis signaling pathways in vitro and in vivo, which may help prevent and treat HCC cells. Current HCC cells treatments include chemotherapy, radiation, and surgery. However, these standard therapies have substantial side effects, and combination therapy enhances side effects for an acceptable therapeutic benefit. Therefore, there is a need to develop treatment strategies for HCC cells that are more efficacious and have fewer adverse effects. Multiple genetic and epigenetic factors are responsible for the HCC cells to become resistant to standard treatment. Autophagy contributes to maintain cellular homeostasis, which activates autophagy for biosynthesis and mitochondrial regulation and recycling. Therefore, modifying autophagic signaling would present a promising opportunity to identify novel therapies to treat HCC cells resistant to current standard treatments. This comprehensive review illustrates how natural compounds demonstrate their anti-hepatocellular carcinoma function through autophagy.


Asunto(s)
Autofagia , Productos Biológicos , Neoplasias Hepáticas , Humanos , Autofagia/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Animales , Transducción de Señal/efectos de los fármacos
5.
Cells ; 13(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38995002

RESUMEN

Doxorubicin (DOX) is an anthracycline anticancer agent that is highly effective in the treatment of solid tumors. Given the multiplicity of mechanisms involved in doxorubicin-induced cardiotoxicity, it is difficult to identify a precise molecular target for toxicity. The findings of a literature review suggest that natural products may offer cardioprotective benefits against doxorubicin-induced cardiotoxicity, both in vitro and in vivo. However, further confirmatory studies are required to substantiate this claim. It is of the utmost importance to direct greater attention towards the intricate signaling networks that are of paramount importance for the survival and dysfunction of cardiomyocytes. Notwithstanding encouraging progress made in preclinical studies of natural products for the prevention of DOX-induced cardiotoxicity, these have not yet been translated for clinical use. One of the most significant obstacles hindering the development of cardioprotective adjuvants based on natural products is the lack of adequate bioavailability in humans. This review presents an overview of current knowledge on doxorubicin DOX-induced cardiotoxicity, with a focus on the potential benefits of natural compounds and herbal preparations in preventing this adverse effect. As literature search engines, the browsers in the Scopus, PubMed, Web of Science databases and the ClinicalTrials.gov register were used.


Asunto(s)
Antraciclinas , Productos Biológicos , Cardiotoxicidad , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Cardiotoxicidad/prevención & control , Antraciclinas/efectos adversos , Animales , Doxorrubicina/efectos adversos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico
6.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000371

RESUMEN

Cancer is one of the leading causes of morbidity and death worldwide, making it a serious global health concern. Chemotherapy, radiotherapy, and surgical treatment are the most used conventional therapeutic approaches, although they show several side effects that limit their effectiveness. For these reasons, the discovery of new effective alternative therapies still represents an enormous challenge for the treatment of tumour diseases. Recently, anticancer peptides (ACPs) have gained attention for cancer diagnosis and treatment. ACPs are small bioactive molecules which selectively induce cancer cell death through a variety of mechanisms such as apoptosis, membrane disruption, DNA damage, immunomodulation, as well as inhibition of angiogenesis, cell survival, and proliferation pathways. ACPs can also be employed for the targeted delivery of drugs into cancer cells. With over 1000 clinical trials using ACPs, their potential for application in cancer therapy seems promising. Peptides can also be utilized in conjunction with imaging agents and molecular imaging methods, such as MRI, PET, CT, and NIR, improving the detection and the classification of cancer, and monitoring the treatment response. In this review we will provide an overview of the biological activity of some natural and synthetic peptides for the treatment of the most common and malignant tumours affecting people around the world.


Asunto(s)
Antineoplásicos , Neoplasias , Péptidos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Animales , Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/uso terapéutico
7.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998994

RESUMEN

Periodontal diseases, chronic inflammatory conditions affecting oral health, are primarily driven by microbial plaque biofilm and the body's inflammatory response, leading to tissue damage and potential tooth loss. These diseases have significant physical, psychological, social, and economic impacts, necessitating effective management strategies that include early diagnosis, comprehensive treatment, and innovative therapeutic approaches. Recent advancements in biomanufacturing have facilitated the development of natural bioactive compounds, such as polyphenols, terpenoids, alkaloids, saponins, and peptides, which exhibit antimicrobial, anti-inflammatory, and tissue regenerative properties. This review explores the biomanufacturing processes-microbial fermentation, plant cell cultures, and enzymatic synthesis-and their roles in producing these bioactive compounds for managing periodontal diseases. The integration of these natural compounds into periodontal therapy offers promising alternatives to traditional treatments, potentially overcoming issues like antibiotic resistance and the disruption of the natural microbiota, thereby improving patient outcomes.


Asunto(s)
Productos Biológicos , Enfermedades Periodontales , Humanos , Enfermedades Periodontales/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/química , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Polifenoles/uso terapéutico , Polifenoles/farmacología , Polifenoles/química , Antiinfecciosos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/química , Biopelículas/efectos de los fármacos , Animales
8.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999958

RESUMEN

Anticancer peptides (ACPs) are bioactive compounds known for their selective cytotoxicity against tumor cells via various mechanisms. Recent studies have demonstrated that in silico machine learning methods are effective in predicting peptides with anticancer activity. In this study, we collected and analyzed over a thousand experimentally verified ACPs, specifically targeting peptides derived from natural sources. We developed a precise prediction model based on their sequence and structural features, and the model's evaluation results suggest its strong predictive ability for anticancer activity. To enhance reliability, we integrated the results of this model with those from other available methods. In total, we identified 176 potential ACPs, some of which were synthesized and further evaluated using the MTT colorimetric assay. All of these putative ACPs exhibited significant anticancer effects and selective cytotoxicity against specific tumor cells. In summary, we present a strategy for identifying and characterizing natural peptides with selective cytotoxicity against cancer cells, which could serve as novel therapeutic agents. Our prediction model can effectively screen new molecules for potential anticancer activity, and the results from in vitro experiments provide compelling evidence of the candidates' anticancer effects and selective cytotoxicity.


Asunto(s)
Antineoplásicos , Simulación por Computador , Péptidos , Humanos , Péptidos/farmacología , Péptidos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/química , Supervivencia Celular/efectos de los fármacos , Aprendizaje Automático , Ensayos de Selección de Medicamentos Antitumorales
9.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000045

RESUMEN

Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body's resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.


Asunto(s)
Productos Biológicos , Neoplasias , Protectores contra Radiación , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Protectores contra Radiación/uso terapéutico , Protectores contra Radiación/farmacología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Animales
10.
J Mol Model ; 30(8): 267, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012568

RESUMEN

CONTEXT: Cyclin-dependent kinase 9 (CDK9) plays a significant role in gene regulation and RNA polymerase II transcription under basal and stimulated conditions. The upregulation of transcriptional homeostasis by CDK9 leads to various malignant tumors and therefore acts as a valuable drug target in addressing cancer incidences. Ongoing drug development endeavors targeting CDK9 have yielded numerous clinical candidate molecules currently undergoing investigation as potential CDK9 modulators, though none have yet received Food and Drug Administration (FDA) approval. METHODS: In this study, we employ in silico approaches including the molecular docking and molecular dynamics simulations for the virtual screening over the natural compounds library to identify novel promising selective CDK9 inhibitors. The compounds derived from the initial virtual screening were subsequently employed for molecular dynamics simulations and binding free energy calculations to study the compound's stability under virtual physiological conditions. The first-generation CDK inhibitor Flavopiridol was used as a reference to compare with our novel hit compound as a CDK9 antagonist. The 500-ns molecular dynamics simulation and binding free energy calculation showed that two natural compounds showed better binding affinity and interaction mode with CDK9 receptors over the reference Flavopiridol. They also showed reasonable figures in the predicted absorption, distribution, metabolism, excretion, and toxicity (ADMET) calculations as well as in computational cytotoxicity predictions. Therefore, we anticipate that the proposed scaffolds could contribute to developing potential and selective CDK9 inhibitors subjected to further validations.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Quinasa 9 Dependiente de la Ciclina/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Unión Proteica , Productos Biológicos/química , Productos Biológicos/farmacología , Flavonoides/química , Flavonoides/farmacología , Piperidinas
11.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3421-3431, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041114

RESUMEN

DNA G-quadruplex(G4) is a guanine-rich single-stranded DNA sequence that spontaneously folds into a spherical four-stranded DNA secondary structure in oncogene promoter sequences and telomeres. G4s are highly associated with the occurrence and development of cancer and have emerged as promising anticancer targets. Natural products have long been important sources of anticancer drug development. In recent years, significant progress has been made in the discovery of natural drugs targeting DNA G4s, with many DNA G4s have been confirmed as promising targets of natural products, including MYC-G4, KRAS-G4, PDGFR-ß-G4, BCL-2-G4, VEGF-G4, and telomeric G4. This review summarizes the research progress in discovering natural small molecules that target DNA G4s and their binding mechanisms. It also discusses the opportunities of and challenges in developing drugs targeting DNA G4s. This review will serve as a valuable reference for the research on natural products, particularly in the development of novel antitumor medications.


Asunto(s)
Productos Biológicos , G-Cuádruplex , G-Cuádruplex/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , Humanos , Animales , ADN/química , ADN/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/química , Antineoplásicos/farmacología
12.
Chem Rec ; 24(7): e202400044, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976862

RESUMEN

Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.


Asunto(s)
Compuestos de Organoselenio , Compuestos de Organoselenio/química , Compuestos de Organoselenio/síntesis química , Compuestos de Organoselenio/farmacología , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinfecciosos/síntesis química , Antiinflamatorios/química , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Productos Biológicos/química , Productos Biológicos/síntesis química , Productos Biológicos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología
13.
Biomed Pharmacother ; 177: 117099, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981240

RESUMEN

Immunogenic cell death (ICD) can activate adaptive immune response in the host with normal immune system. Some synthetic chemotherapeutic drugs and natural compounds have shown promising results in cancer treatment by triggering the release of damage-associated molecules (DAMPs) to trigger ICD. However, most chemotherapeutic drugs exhibit non-selective cytotoxicity and may also induce and promote metastasis, thereby significantly reducing their clinical efficacy. Among the natural compounds that can induce ICD, plant-derived compounds account for the largest proportion, which are of increasing value in the treatment of cancer. Understanding which plant-derived natural compounds can induce ICD and how they induce ICD is crucial for developing strategies to improve chemotherapy outcomes. In this review, we focus on the recent findings regarding plant-derived natural compounds that induce ICD according to the classification of flavonoids, alkaloids, glycosides, terpenoids and discuss the potential mechanisms including endoplasmic reticulum (ER) stress, DNA damage, apoptosis, necroptosis autophagy, ferroptosis. In addition, plant-derived natural compounds that can enhance the ICD induction ability of conventional therapies for cancer treatment is also elaborated. The rational use of plant-derived natural compounds to induce ICD is helpful for the development of new cancer treatment methods.


Asunto(s)
Muerte Celular Inmunogénica , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Muerte Celular Inmunogénica/efectos de los fármacos , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos
14.
J Environ Pathol Toxicol Oncol ; 43(4): 65-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39016142

RESUMEN

MicroRNAs are short non-coding RNAs that inhibit gene expression at the post-transcriptional level. Abnormal microRNA expression has been associated with different human diseases, including cancer. Epigenetic changes, mutation, transcriptional deregulation, DNA copy number abnormalities, and defects in the biogenesis machinery play an important role in abnormal microRNA expression. Modulation of microRNAs by natural agents has emerged to enhance the efficacy of conventional chemotherapy through combinatorial therapeutic approach. This review summarizes the current understanding of abnormal microRNA expression in cancer, the different cellular mechanisms of microRNA, and their prevention by natural compounds. Understanding microRNA expression patterns during cancer development may help to identify stage-specific molecular markers. Natural compounds that exert regulatory effects by modulating microRNAs can be used in better cancer chemopreventive strategies by directly targeting microRNAs or as a way to increase sensitivity to existing chemotherapy regimens.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Neoplasias/prevención & control , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Quimioprevención , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Animales
15.
Biomed Pharmacother ; 177: 117112, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018869

RESUMEN

Ferroptosis is a novel form of cell demise characterized primarily by the reduction of trivalent iron to divalent iron, leading to the release of reactive oxygen species (ROS) and consequent induction of intense oxidative stress. In atherosclerosis (AS), highly accumulated lipids are modified by ROS to promote the formation of lipid peroxides, further amplifying cellular oxidative stress damage to influence all stages of atherosclerotic development. Macrophages are regarded as pivotal executors in the progression of AS and the handling of iron, thus targeting macrophage iron metabolism holds significant guiding implications for exploring potential therapeutic strategies against AS. In this comprehensive review, we elucidate the potential interplay among iron overload, inflammation, and lipid dysregulation, summarizing the potential mechanisms underlying the suppression of AS by alleviating iron overload. Furthermore, the application of Traditional Chinese Medicine (TCM) is increasingly widespread. Based on extant research and the pharmacological foundations of active compounds of TCM, we propose alternative therapeutic agents for AS in the context of iron overload, aiming to diversify the therapeutic avenues.


Asunto(s)
Aterosclerosis , Sobrecarga de Hierro , Estrés Oxidativo , Estrés Oxidativo/efectos de los fármacos , Humanos , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Ferroptosis/efectos de los fármacos , Hierro/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Medicina Tradicional China/métodos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
16.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062777

RESUMEN

Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.


Asunto(s)
Envejecimiento , Productos Biológicos , Neoplasias , Humanos , Neoplasias/prevención & control , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Envejecimiento/efectos de los fármacos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Animales , Relojes Circadianos/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
17.
Yale J Biol Med ; 97(2): 205-224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947104

RESUMEN

Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aß formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.


Asunto(s)
Enfermedad de Alzheimer , Microalgas , Algas Marinas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Microalgas/química , Microalgas/metabolismo , Algas Marinas/química , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/aislamiento & purificación , Antioxidantes/farmacología
18.
Sci Rep ; 14(1): 17426, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075176

RESUMEN

Rhinoviruses (RVs) cause upper respiratory tract infections and pneumonia in children and adults. These non-enveloped viruses contain viral coats of four capsid proteins: VP1, VP2, VP3, and VP4. The canyon on VP1 used cell surface receptor ICAM-1 as the site of attachment and for the internalization of viruses. To date, there has been no drug or vaccine available against RVs. In this study, bioactive natural compounds of rosemary (Salvia rosmarinus L.), which are known for their pharmacological potential, were considered to target the VP1 protein. A total of 30 bioactive natural compounds of rosemary were taken as ligands to target viral proteins. The PkCSM tool was used to detect their adherence to Lipinski's rule of five and the ADMET properties of the selected ligands. Further, the CB-Dock tool was used for molecular docking studies between the VP1 protein and ligands. Based on the molecular docking and ADMET profiling results, phenethyl amine (4 methoxy benzyl) was selected as the lead compound. A comparative study was performed between the lead compound and two antiviral drugs, Placonaril and Nitazoxanide, to investigate the higher potential of natural compounds over synthetic drugs. Placonaril also targets VP1 but failed in clinical trials while Nitazoxanide was examined in clinical trials against rhinoviruses. It was discovered from this study that the (4 methoxy benzyl) phenethyl amine exhibited less toxicity in comparison to other tested drugs against RVs. More research is needed to determine its potential and make it a good medication against RVs.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Aceites Volátiles , Extractos Vegetales , Rhinovirus , Antivirales/farmacología , Antivirales/química , Rhinovirus/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Rosmarinus/química , Simulación por Computador , Productos Biológicos/farmacología , Productos Biológicos/química , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Ligandos
19.
Int Immunopharmacol ; 138: 112613, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38959542

RESUMEN

Cancer stem cells (CSCs) significantly interfere with immunotherapy, leading to challenges such as low response rates and acquired resistance. PD-L1 expression is associated with the CSC population's overexpression of CD44. Mounting evidence suggests that the breast cancer stem cell (BCSC) marker CD44 and the immune checkpoint PD-L1 contribute to treatment failure through their networks. Natural compounds can overcome therapy resistance in breast cancer by targeting mechanisms underlying resistance in BCSCs. This review provides an updated insight into the CD44 and PD-L1 networks of BCSCs in mediating metastasis and immune evasion. The review critically examines existing literature, providing a comprehensive understanding of the topic and emphasizing the impact of natural flavones on the signaling pathways of BCSCs. Additionally, the review discusses the potential of natural compounds in targeting CD44 and PD-L1 in breast cancer (BC). Natural compounds consistently show potential in targeting regulatory mechanisms of BCSCs, inducing loss of stemness, and promoting differentiation. They offer a promising approach for developing alternative therapeutic strategies to manage breast cancer.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama , Resistencia a Antineoplásicos , Receptores de Hialuranos , Evasión Inmune , Células Madre Neoplásicas , Humanos , Receptores de Hialuranos/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/inmunología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Antígeno B7-H1/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Transducción de Señal/efectos de los fármacos
20.
Mar Drugs ; 22(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057397

RESUMEN

The prevention and treatment of liver disease, a class of disease that seriously threatens human health, has always been a hot topic of medical research. In recent years, with the in-depth exploration of marine resources, marine natural products have shown great potential and value in the field of liver disease treatment. Compounds extracted and isolated from marine natural products have a variety of biological activities such as significant antiviral properties, showing potential in the management of alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), protection of the liver from fibrosis, protection from liver injury and inhibition of the growth of hepatocellular carcinoma (HCC). This paper summarizes the progress of research on marine natural products for the treatment of liver diseases in the past decade, including the structural types of active substances from different natural products and the mechanisms underlying the modulation of different liver diseases and reviews their future prospects.


Asunto(s)
Organismos Acuáticos , Productos Biológicos , Hepatopatías , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/química , Humanos , Animales , Hepatopatías/tratamiento farmacológico , Antivirales/farmacología , Antivirales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA