Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Cells ; 13(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39056752

RESUMEN

Prolyl 4-hydroxylase (P4H) generates hydroxyproline residues in proteins. Two classes of P4H have been found in plants. Type 1 P4H has a signal anchor at the N-terminus, while type 2 P4H has both an N-terminal signal peptide and a C-terminal toxin homology domain (Tox1 domain) with six conserved cysteine residues. We analyzed the localization of tobacco type 2 P4H (NtP4H2.2) in tobacco BY-2 cells. Cell fractionation studies, immunostaining of cells, and GFP fusion study indicated that NtP4H2.2 localizes predominantly to the Golgi apparatus and is a peripheral membrane protein associated with the luminal side of organelles. Expression of the GFP-Tox1 domains of NtP4H2.2 and another tobacco type 2 P4H NtP4H2.1 in BY-2 cells and Arabidopsis epidermal cells indicated that these proteins were targeted to the Golgi. The Tox1 domains from Arabidopsis and rice type 2 P4Hs also directed GFP to the Golgi in tobacco BY-2 cells. The Tox1 domain of NtP4H2.2 increased the membrane association of GFP, and mutation of the cysteine residues in this domain abolished Golgi localization. Furthermore, the catalytic domain of NtP4H2.2 also directed GFP to the Golgi. Thus, the Tox1 domains of plant P4Hs are the Golgi localization domains, and tobacco P4H2.2 localizes to the Golgi by the action of both this domain and the catalytic domain.


Asunto(s)
Arabidopsis , Aparato de Golgi , Nicotiana , Dominios Proteicos , Aparato de Golgi/metabolismo , Nicotiana/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Prolil Hidroxilasas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte de Proteínas , Secuencia de Aminoácidos
2.
Leukemia ; 38(8): 1751-1763, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909089

RESUMEN

Aberrations in the Hedgehog (Hh) signaling pathway are significantly prevailed in various cancers, including B-cell lymphoma. A critical facet of Hh signal transduction involves the dynamic regulation of the suppressor of fused homolog (SUFU)-glioma-associated oncogene homolog (GLI) complex within the kinesin family member 7 (KIF7)-supported ciliary tip compartment. However, the specific post-translational modifications of SUFU-GLI complex within this context have remained largely unexplored. Our study reveals a novel regulatory mechanism involving prolyl 4-hydroxylase 2 (P4HA2), which forms a complex with KIF7 and is essential for signal transduction of Hh pathway. We demonstrate that, upon Hh pathway activation, P4HA2 relocates alongside KIF7 to the ciliary tip. Here, it hydroxylates SUFU to inhibit its function, thus amplifying the Hh signaling. Moreover, the absence of P4HA2 significantly impedes B lymphoma progression. This effect can be attributed to the suppression of Hh signaling in stromal fibroblasts, resulting in decreased growth factors essential for malignant proliferation of B lymphoma cells. Our findings highlight the role of P4HA2-mediated hydroxylation in modulating Hh signaling and propose a novel stromal-targeted therapeutic strategy for B-cell lymphoma.


Asunto(s)
Progresión de la Enfermedad , Proteínas Hedgehog , Linfoma de Células B , Procolágeno-Prolina Dioxigenasa , Proteínas Represoras , Transducción de Señal , Proteínas Hedgehog/metabolismo , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Ratones , Animales , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Hidroxilación , Comunicación Paracrina , Proliferación Celular , Cinesinas/metabolismo , Cinesinas/genética , Línea Celular Tumoral , Prolil Hidroxilasas
3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928200

RESUMEN

Hypoxia-inducible factor 1-alpha (HIF1A) is a key transcription factor aiding tumor cells' adaptation to hypoxia, regulated by the prolyl hydroxylase family (EGLN1-3) by directing toward degradation pathways. DNA methylation potentially influences EGLN and HIF1A levels, impacting cellular responses to hypoxia. We examined 96 HNSCC patients and three cell lines, analyzing gene expression of EGLN1-3, HIF1A, CA9, VEGF, and GLUT1 at the mRNA level and EGLN1 protein levels. Methylation levels of EGLNs and HIF1A were assessed through high-resolution melting analysis. Bioinformatics tools were employed to characterize associations between EGLN1-3 and HIF1A expression and methylation. We found significantly higher mRNA levels of EGLN3, HIF1A, GLUT1, VEGF, and CA9 (p = 0.021; p < 0.0001; p < 0.0001; p = 0.004, and p < 0.0001, respectively) genes in tumor tissues compared to normal ones and downregulation of the EGLN1 mRNA level in tumor tissues (p = 0.0013). In HNSCC patients with hypermethylation of HIF1A in normal tissue, we noted a reduction in HIF1A mRNA levels compared to tumor tissue (p = 0.04). In conclusion, the differential expression of EGLN and HIF1A genes in HNSCC tumors compared to normal tissues influences patients' overall survival, highlighting their role in tumor development. Moreover, DNA methylation could be responsible for HIF1A suppression in the normal tissues of HNSCC patients.


Asunto(s)
Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , Subunidad alfa del Factor 1 Inducible por Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Femenino , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Masculino , Línea Celular Tumoral , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Persona de Mediana Edad , Prolil Hidroxilasas/metabolismo , Prolil Hidroxilasas/genética , Anciano , Carcinogénesis/genética , Adulto
4.
Med Mol Morphol ; 57(3): 167-176, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38522060

RESUMEN

This study aimed to examine the immunohistochemical expression of epithelial-mesenchymal transition biomarkers: P4HA2 and SLUG in colorectal carcinoma (CRC) specimens, then to assess their relation to clinicopathological features including KRAS mutations and patients' survival, and finally to study the correlation between them in CRC. The result of this study showed that SLUG and P4HA2 were significantly higher in association with adverse prognostic factors: presence of lympho-vascular invasion, perineural invasion, higher tumor budding, tumor stage, presence of lymph node metastasis, and presence of distant metastasis. CRC specimens with KRAS mutation were associated with significant higher SLUG and P4HA2 expression. High expression of both SLUG and P4HA2 was significantly unfavorable prognostic indicator as regards overall survival (OS) and disease-free survival (DFS). In KRAS mutated cases, high P4HA2 expression was the only significant poor prognostic indicator as regarding DFS. In conclusions, our data highlight that both SLUG and P4HA2 expression may serve as potentially important poor prognostic biomarkers in CRC and targeting these molecules may be providing a novel therapeutic strategy. In KRAS mutation group, high P4HA2 expression is the only independent prognostic factor for tumor recurrence, so it can be suggested to be a novel target for therapy.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Mutación , Proteínas Proto-Oncogénicas p21(ras) , Factores de Transcripción de la Familia Snail , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/metabolismo , Supervivencia sin Enfermedad , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Pronóstico , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Prolil Hidroxilasas/genética , Prolil Hidroxilasas/metabolismo
5.
J Biochem Mol Toxicol ; 38(4): e23679, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38486411

RESUMEN

Normoxic inactivation of prolyl hydroxylase-2 (PHD-2) in tumour microenvironment paves the way for cancer cells to thrive under the influence of HIF-1α and NF-κB. Henceforth, the present study is aimed to identify small molecule activators of PHD-2. A virtual screening was conducted on a library consisting of 265,242 chemical compounds, with the objective of identifying molecules that exhibit structural similarities to the furan chalcone scaffold. Further, PHD-2 activation potential of screened compound was determined using in vitro 2-oxoglutarate assay. The cytotoxic activity and apoptotic potential of screened compound was determined using various staining techniques, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 4',6-diamidino-2-phenylindole (DAPI), 1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1), and acridine orange/ethidium bromide (AO/EB), against MCF-7 cells. 7,12-Dimethylbenz[a]anthracene (DMBA) model of mammary gland cancer was used to study the in vivo antineoplastic efficacy of screened compound. [(E)-1-(4-fluorophenyl)-3-(furan-2-yl) prop-2-en-1-one] (BBAP-7) was screened and validated as a PHD-2 activator by an in vitro 2-oxo-glutarate assay. The IC50 of BBAP-7 on MCF-7 cells is 18.84 µM. AO/EB and DAPI staining showed nuclear fragmentation, blebbing and condensation in MCF-7 cells following BBAP-7 treatment. The red-to-green intensity ratio of JC-1 stained MCF-7 cells decreased after BBAP-7 treatment, indicating mitochondrial-mediated apoptosis. DMBA caused mammary gland dysplasia, duct hyperplasia and ductal carcinoma in situ. Carmine staining, histopathology, and scanning electron microscopy demonstrated that BBAP-7, alone or with tirapazamine, restored mammary gland surface morphology and structural integrity. Additionally, BBAP-7 therapy significantly reduced oxidative stress and glycolysis. The findings reveal that BBAP-7 activates PHD-2, making it a promising anticancer drug.


Asunto(s)
Antineoplásicos , Bencimidazoles , Carbocianinas , Carcinoma , Chalcona , Chalconas , Humanos , Prolil Hidroxilasas , Chalconas/farmacología , Antineoplásicos/farmacología , Naranja de Acridina , Apoptosis , Microambiente Tumoral
6.
Commun Biol ; 7(1): 240, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418569

RESUMEN

Pacak-Zhuang syndrome is caused by mutations in the EPAS1 gene, which encodes for one of the three hypoxia-inducible factor alpha (HIFα) paralogs HIF2α and is associated with defined but varied phenotypic presentations including neuroendocrine tumors and polycythemia. However, the mechanisms underlying the complex genotype-phenotype correlations remain incompletely understood. Here, we devised a quantitative method for determining the dissociation constant (Kd) of the HIF2α peptides containing disease-associated mutations and the catalytic domain of prolyl-hydroxylase (PHD2) using microscale thermophoresis (MST) and showed that neuroendocrine-associated Class 1 HIF2α mutants have distinctly higher Kd than the exclusively polycythemia-associated Class 2 HIF2α mutants. Based on the co-crystal structure of PHD2/HIF2α peptide complex at 1.8 Å resolution, we showed that the Class 1 mutated residues are localized to the critical interface between HIF2α and PHD2, adjacent to the PHD2 active catalytic site, while Class 2 mutated residues are localized to the more flexible region of HIF2α that makes less contact with PHD2. Concordantly, Class 1 mutations were found to significantly increase HIF2α-mediated transcriptional activation in cellulo compared to Class 2 counterparts. These results reveal a structural mechanism in which the strength of the interaction between HIF2α and PHD2 is at the root of the general genotype-phenotype correlations observed in Pacak-Zhuang syndrome.


Asunto(s)
Policitemia , Prolil Hidroxilasas , Humanos , Prolil Hidroxilasas/genética , Hidroxilación , Policitemia/genética , Mutación , Procolágeno-Prolina Dioxigenasa
7.
Nutrients ; 16(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38398842

RESUMEN

Since zinc is involved in many aspects of the hematopoietic process, zinc supplementation can reduce erythropoiesis-stimulating agents (ESAs) in patients undergoing hemodialysis. However, it remains unclear whether hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) have similar reduction effects. HIF-PHI stabilizes HIF, which promotes hematopoiesis, although HIF-1α levels are downregulated by zinc. This study aimed to investigate the effect of zinc supplementation on the hematopoietic effect of HIF-PHI in patients undergoing hemodialysis. Thirty patients undergoing maintenance hemodialysis who underwent periods of treatment with roxadustat or darbepoetin alfa during the past 3 years were retrospectively observed. Participants who underwent periods with and without zinc supplementation were selected, with nine treated with darbepoetin alfa and nine treated with roxadustat. Similarly to the ESA responsiveness index (ERI), the hematopoietic effect of zinc supplementation was determined by the HIF-PHI responsiveness index (HRI), which was calculated by dividing the HIF-PHI dose (mg/week) by the patient's dry weight (kg) and hemoglobin level (g/L). Zinc supplementation significantly increased ERI (p < 0.05), but no significant change was observed (p = 0.931) in HRI. Although zinc supplementation did not significantly affect HRI, adequate zinc supplementation is required to alleviate concerns such as vascular calcification and increased serum copper during the use of HIF-PHI.


Asunto(s)
Anemia , Hematínicos , Inhibidores de Prolil-Hidroxilasa , Insuficiencia Renal Crónica , Humanos , Hematínicos/farmacología , Hematínicos/uso terapéutico , Anemia/tratamiento farmacológico , Inhibidores de Prolil-Hidroxilasa/farmacología , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Zinc/farmacología , Zinc/uso terapéutico , Eritropoyesis , Prolil Hidroxilasas/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico , Darbepoetina alfa/farmacología , Darbepoetina alfa/uso terapéutico , Estudios Retrospectivos , Glicina/farmacología , Suplementos Dietéticos
8.
J Transl Med ; 22(1): 74, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238754

RESUMEN

BACKGROUND: Angiogenesis is essential for tissue repair in ischemic diseases, relying on glycolysis as its primary energy source. Prolyl 4-hydroxylase subunit alpha 1 (P4HA1), the catalytic subunit of collagen prolyl 4-hydroxylase, is a glycolysis-related gene in cancers. However, its role in glycolysis-induced angiogenesis remains unclear. METHODS: P4HA1 expression was modulated using adenoviruses. Endothelial angiogenesis was evaluated through 5-ethynyl-2'-deoxyuridine incorporation, transwell migration, and tube formation assays in vitro. In vivo experiments measured blood flow and capillary density in the hindlimb ischemia (HLI) model. Glycolytic stress assays, glucose uptake, lactate production, and quantitative reverse transcription-polymerase chain reaction (RT-PCR) were employed to assess glycolytic capacity. Transcriptome sequencing, validated by western blotting and RT-PCR, was utilized to determine underlying mechanisms. RESULTS: P4HA1 was upregulated in endothelial cells under hypoxia and in the HLI model. P4HA1 overexpression promoted angiogenesis in vitro and in vivo, while its knockdown had the opposite effect. P4HA1 overexpression reduced cellular α-ketoglutarate (α-KG) levels by consuming α-KG during collagen hydroxylation. Downregulation of α-KG reduced the protein level of a DNA dioxygenase, ten-eleven translocation 2 (TET2), and its recruitment to the fructose-1,6-biphosphatase (FBP1) promoter, resulting in decreased FBP1 expression. The decrease in FBP1 enhanced glycolytic metabolism, thereby promoting endothelial angiogenesis. CONCLUSIONS: Hypoxia-induced endothelial P4HA1 overexpression enhanced angiogenesis by promoting glycolytic metabolism reprogramming through the P4HA1/α-KG/TET2/FBP1 pathway. The study's findings underscore the significance of P4HA1 in post-ischemic angiogenesis, suggesting its therapeutic potential for post-ischemic tissue repair.


Asunto(s)
Angiogénesis , Células Endoteliales , Animales , Humanos , Células Endoteliales/metabolismo , Colágeno/metabolismo , Hipoxia , Glucólisis , Prolil Hidroxilasas/metabolismo , Isquemia , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo
9.
Medicina (Kaunas) ; 60(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38256345

RESUMEN

Background and Objectives: Hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitors have been approved as an oral drug for treating anemia in chronic kidney disease (CKD). However, the clinical effect of HIF-PH inhibitors in patients with heart failure (HF) is unclear. Thus, this study investigated the effect of HIF-PH inhibitors in patients with HF and CKD. Materials and Methods: Thirteen patients with HF complicated by renal anemia who were started on vadadustat were enrolled. Clinical parameters were compared before and 1 month after vadadustat was started. Results: The mean left ventricular ejection fraction was 49.8 ± 13.9%, and the mean estimated glomerular filtration rate was 29.4 ± 10.6 mL/min/1.73 m2. The hemoglobin level was significantly increased (9.7 ± 1.3 mg/dL vs. 11.3 ± 1.3 mg/dL, p < 0.001), and the N-terminal prohormone of B-type natriuretic peptide was significantly decreased after the introduction of vadadustat [4357 (2651-15182) pg/mL vs. 2367 (1719-9347) pg/mL, p = 0.002]. Furthermore, the number of patients with New York Heart Association functional class ≥ 3 was also decreased after the introduction of vadadustat [8 (61.5%) vs. 1 (7.7%), p = 0.008]. No thromboembolic adverse events or new tumors were observed in any patient during the study period. Conclusions: The introduction of vadadustat in patients with HF complicated by renal anemia led to improvements in anemia and symptoms of HF.


Asunto(s)
Anemia , Insuficiencia Cardíaca , Inhibidores de Prolil-Hidroxilasa , Insuficiencia Renal Crónica , Tromboembolia , Humanos , Prolil Hidroxilasas , Inhibidores de Prolil-Hidroxilasa/farmacología , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Volumen Sistólico , Función Ventricular Izquierda , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/tratamiento farmacológico , Anemia/tratamiento farmacológico , Anemia/etiología , Hipoxia
10.
Int J Oncol ; 64(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37975227

RESUMEN

A variety of malignancies preferentially meet energy demands through the glycolytic pathway. Hypoxia­induced cancer cell adaptations are essential for tumor development. However, in cancerous glycolysis, the functional importance and underlying molecular mechanism of prolyl hydroxylase domain protein 2 (PHD2) have not been fully elucidated. Gain­ and loss­of­function assays were conducted to evaluate PHD2 functions in colon cancer cells. Glucose uptake, lactate production and intracellular adenosine­5'­triphosphate/adenosine diphosphate ratio were measured to determine glycolytic activities. Protein and gene expression levels were measured by western blot analysis and reverse transcription­quantitative PCR, respectively. The human colon cancer xenograft model was used to confirm the role of PHD2 in tumor progression in vivo. Functionally, the data demonstrated that PHD2 knockdown leads to increased glycolysis, while PHD2 overexpression resulted in suppressed glycolysis in colorectal cancer cells. In addition, the glycolytic activity was enhanced without PHD2 and normalized after PHD2 reconstitution. PHD2 was shown to inhibit colorectal tumor growth, suppress cancer cell proliferation and improve tumor­bearing mice survival in vivo. Mechanically, it was found that PHD2 inhibits the expression of critical glycolytic enzymes (glucose transporter 1, hexokinase 2 and phosphoinositide­dependent protein kinase 1). In addition, PHD2 inhibited Ikkß­mediated NF­κB activation in a hypoxia­inducible factor­1α­independent manner. In conclusion, the data demonstrated that PHD2/Ikkß/NF­κB signaling has critical roles in regulating glycolysis and suggests that PHD2 potentially suppresses colorectal cancer.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Glucólisis , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Quinasa I-kappa B/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Prolil Hidroxilasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
11.
Cancer Sci ; 115(2): 439-451, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38100120

RESUMEN

Loss of AT-interacting domain-rich protein 1A (ARID1A) frequently occurs in human malignancies including lung cancer. The biological consequence of ARID1A mutation in lung cancer is not fully understood. This study was designed to determine the effect of ARID1A-depleted lung cancer cells on fibroblast activation. Conditioned media was collected from ARID1A-depleted lung cancer cells and employed to treat lung fibroblasts. The proliferation and migration of lung fibroblasts were investigated. The secretory genes were profiled in lung cancer cells upon ARID1A knockdown. Antibody-based neutralization was utilized to confirm their role in mediating the cross-talk between lung cancer cells and fibroblasts. NOD-SCID-IL2RgammaC-null (NSG) mice received tumor tissues from patients with ARID1A-mutated lung cancer to establish patient-derived xenograft (PDX) models. Notably, ARID1A-depleted lung cancer cells promoted the proliferation and migration of lung fibroblasts. Mechanistically, ARID1A depletion augmented the expression and secretion of prolyl 4-hydroxylase beta (P4HB) in lung cancer cells, which induced the activation of lung fibroblasts through the ß-catenin signaling pathway. P4HB-activated lung fibroblasts promoted the proliferation, invasion, and chemoresistance in lung cancer cells. Neutralizing P4HB hampered the tumor growth and increased cisplatin cytotoxic efficacy in two PDX models. Serum P4HB levels were higher in ARID1A-mutated lung cancer patients than in healthy controls. Moreover, increased serum levels of P4HB were significantly associated with lung cancer metastasis. Together, our work indicates a pivotal role for P4HB in orchestrating the cross-talk between ARID1A-mutated cancer cells and cancer-associated fibroblasts during lung cancer progression. P4HB may represent a promising target for improving lung cancer treatment.


Asunto(s)
Neoplasias Pulmonares , Prolil Hidroxilasas , Proteína Disulfuro Isomerasas , Humanos , Animales , Ratones , Prolil Hidroxilasas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Proliferación Celular , Ratones Endogámicos NOD , Ratones SCID , Transformación Celular Neoplásica , Pulmón/patología , Fibroblastos/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Procolágeno-Prolina Dioxigenasa/farmacología
12.
PLoS One ; 18(12): e0294566, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38039326

RESUMEN

BACKGROUND: For diabetic ulcers, the impaired response to hypoxia is a key feature associated with delayed healing. In the early phase of hypoxia, hypoxic signaling activates the AMPK system through direct phosphorylation of the PHD2 pathway, producing a significant endogenous hypoxic protective effect. METHODS: Twenty Sprague-Dawley (SD) rats were randomly divided into two groups: treatment (sh-PHD2) and control (sh-Control). Using lentiviral encapsulation of PHD2-shRNA and transfection, the silencing efficiency of PHD2 expression was verified in rat dermal fibroblasts (RDF) and in rat aortic endothelial cells (RAECs). Changes in the ability of RDF and RAECs to proliferate, migrate, and in the rate of ATP production were observed and then tested after inhibition of AMPK phosphorylation using dorsomorphin. The lentiviral preparation was injected directly into the wounds of rats and wound healing was recorded periodically to calculate the healing rate. Wounded tissues were excised after 14 days and the efficiency of PHD2 silencing, as well as the expression of growth factors, was examined using molecular biology methods. Histological examination was performed to assess CD31 expression and therefore determine effects on angiogenesis. RESULTS: Lentiviral-encapsulated PHD2-sh-RNA effectively suppressed PHD2 expression and improved the proliferation, migration, and ATP production rate of RDF and RAEC, which were restored to their previous levels after inhibition of AMPK. The rate of wound healing, vascular growth, and expression of growth factors were significantly improved in diabetic-model rats after local silencing of PHD2 expression. CONCLUSION: Silencing of PHD2 promoted wound healing in diabetic-model SD rats by activating AMPK phosphorylation.


Asunto(s)
Diabetes Mellitus , Prolil Hidroxilasas , Ratas , Animales , Proteínas Quinasas Activadas por AMP/genética , Células Endoteliales/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Ratas Sprague-Dawley , Cicatrización de Heridas/genética , Procolágeno-Prolina Dioxigenasa , Hipoxia , Adenosina Trifosfato
13.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1749-1757, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37814811

RESUMEN

Prolyl hydroxylase 3 (PHD3) hydroxylates HIFα in the presence of oxygen, leading to HIFα degradation. PHD3 inhibits tumorigenesis. However, the underlying mechanism is not well understood. Herein, we demonstrate that PHD3 inhibits the metastasis of colon cancer cells through the occludin-p38 MAPK pathway independent of its hydroxylase activity. We find that PHD3 inhibits colon cancer cell metastasis in the presence of the PHD inhibitor DMOG, and prolyl hydroxylase-deficient PHD3(H196A) suppresses cell metastasis as well. PHD3 controls the stability of the tight junction protein occludin in a hydroxylase-independent manner. We further find that PHD3-inhibited colon cancer cell metastasis is rescued by knockdown of occludin and that occludin acts as a negative regulator of cell metastasis, implying that PHD3 suppresses metastasis through occludin. Furthermore, knockdown of occludin induces phosphorylation of p38 MAPK, and the p38 inhibitor SB203580 impedes cell migration and invasion induced by occludin knockdown, indicating that occludin functions through p38. Moreover, knockdown of occludin enhances the expression of MKK3/6, the upstream kinase of p38, while overexpression of occludin decreases its expression. Our results suggest that PHD3 inhibits the metastasis of colon cancer cells through the occludin-p38 pathway independent of its hydroxylase activity. These findings reveal a previously undiscovered mechanism underlying the regulation of cancer cell metastasis by PHD3 and highlight a noncanonical hydroxylase-independent function of PHD3 in the suppression of cancer cells.


Asunto(s)
Neoplasias del Colon , Neoplasias del Recto , Humanos , Prolil Hidroxilasas , Ocludina/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Procolágeno-Prolina Dioxigenasa , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37628932

RESUMEN

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are a new class of medications for managing renal anemia in patients with chronic kidney disease (CKD). In addition to their erythropoietic activity, HIF-PHIs exhibit multifaceted effects on iron and glucose metabolism, mitochondrial metabolism, and angiogenesis through the regulation of a wide range of HIF-responsive gene expressions. However, the systemic biological effects of HIF-PHIs in CKD patients have not been fully explored. In this prospective, single-center study, we comprehensively investigated changes in plasma metabolomic profiles following the switch from an erythropoiesis-stimulating agent (ESA) to an HIF-PHI, daprodustat, in 10 maintenance hemodialysis patients. Plasma metabolites were measured before and three months after the switch from an ESA to an HIF-PHI. Among 106 individual markers detected in plasma, significant changes were found in four compounds (erythrulose, n-butyrylglycine, threonine, and leucine), and notable but non-significant changes were found in another five compounds (inositol, phosphoric acid, lyxose, arabinose, and hydroxylamine). Pathway analysis indicated decreased levels of plasma metabolites, particularly those involved in phosphatidylinositol signaling, ascorbate and aldarate metabolism, and inositol phosphate metabolism. Our results provide detailed insights into the systemic biological effects of HIF-PHIs in hemodialysis patients and are expected to contribute to an evaluation of the potential side effects that may result from long-term use of this class of drugs.


Asunto(s)
Hematínicos , Inhibidores de Prolil-Hidroxilasa , Humanos , Prolil Hidroxilasas , Proyectos Piloto , Inhibidores de Prolil-Hidroxilasa/farmacología , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Hematínicos/farmacología , Hematínicos/uso terapéutico , Eritropoyesis , Estudios Prospectivos , Procolágeno-Prolina Dioxigenasa , Hipoxia
15.
Proteins ; 91(11): 1510-1524, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37449559

RESUMEN

The hypoxia-inducible factor (HIF) prolyl-hydroxylases (human PHD1-3) catalyze prolyl hydroxylation in oxygen-dependent degradation (ODD) domains of HIFα isoforms, modifications that signal for HIFα proteasomal degradation in an oxygen-dependent manner. PHD inhibitors are used for treatment of anemia in kidney disease. Increased erythropoietin (EPO) in patients with familial/idiopathic erythrocytosis and pulmonary hypertension is associated with mutations in EGLN1 (PHD2) and EPAS1 (HIF2α); a drug inhibiting HIF2α activity is used for clear cell renal cell carcinoma (ccRCC) treatment. We report crystal structures of PHD2 complexed with the C-terminal HIF2α-ODD in the presence of its 2-oxoglutarate cosubstrate or N-oxalylglycine inhibitor. Combined with the reported PHD2.HIFα-ODD structures and biochemical studies, the results inform on the different PHD.HIFα-ODD binding modes and the potential effects of clinically observed mutations in HIFα and PHD2 genes. They may help enable new therapeutic avenues, including PHD isoform-selective inhibitors and sequestration of HIF2α by the PHDs for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/química , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Prolil Hidroxilasas , Isoformas de Proteínas
16.
Blood Purif ; 52(7-8): 721-728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37459846

RESUMEN

BACKGROUND: Anemia is a common finding among patients with advanced chronic kidney disease, especially those on dialysis. The recent introduction of hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) has raised some concerns about the cardiovascular and thrombotic complications of this class of drugs. OBJECTIVES: This meta-analysis aimed to assess the safety of HIF-PHIs in patients with end-stage kidney disease (ESKD) versus standard therapy with erythropoiesis-stimulating agents (ESAs). METHODS: Databases were searched on April 2022. Studies that reported incidence of all-cause mortality; major cardiovascular adverse events (MACEs); myocardial infarction (MI); stroke and thrombotic events in the use of HIF-PHIs or ESA on ESKD patients in hemodialysis or peritoneal dialysis were evaluated. Data were extracted from published reports, and quality assessment was performed per Cochrane recommendations. RESULTS: 12,821 patients from ten randomized controlled trials were included in this study. Most patients (83%) were on hemodialysis. 6,461 (50.3%) were using HIF-PHIs, and 6,360 (49.6%) were in the ESA group. The pooled estimated incidence of all-cause mortality was 769 in the HIF-PHIs group (relative-risk ratios (RR): 1.04; confidence interval (CI): 0.95-1.14; p = 0.52; I2 = 0%). There was no difference in the groups regarding the outcomes of MACE in the analysis of the three studies that reported this outcome (RR: 0.95; CI: 0.87-1.04; p = 0.69; I2 = 0%). In addition, there was no statistical difference among the outcomes of MI, stroke, or thrombotic events. CONCLUSIONS: Among patients with ESKD on dialysis, the use of HIF-PHIs was non-inferior regarding the safety outcomes when compared to standard of care therapy.


Asunto(s)
Hematínicos , Fallo Renal Crónico , Inhibidores de Prolil-Hidroxilasa , Insuficiencia Renal Crónica , Accidente Cerebrovascular , Trombosis , Humanos , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Prolil Hidroxilasas , Diálisis Renal/efectos adversos , Hematínicos/uso terapéutico , Insuficiencia Renal Crónica/terapia , Trombosis/complicaciones , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/terapia , Hipoxia/inducido químicamente , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto
17.
Eur J Med Res ; 28(1): 245, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37480146

RESUMEN

BACKGROUND: Prolyl 4-hydroxylase subunit beta (P4HB) has been reported as a suppressor in ferroptosis. However, no known empirical research has focused on exploring relationships between P4HB and prostate cancer (PCa). In this research, we initially examine the function of P4HB in PCa by thorough analysis of numerous databases and proliferation experiment. METHODS: We analyzed the correlations of P4HB expression with prognosis, clinical features, mutation genes, tumor heterogeneity, stemness, tumor immune microenvironment and PCa cells using multiple databases and in vitro experiment with R 3.6.3 software and its suitable packages. RESULTS: P4HB was significantly upregulated in tumor tissues compared to normal tissues and was closely related to biochemical recurrence-free survival. In terms of clinical correlations, we found that higher P4HB expression was significantly related to older age, higher Gleason score, advanced T stage and residual tumor. Surprisingly, P4HB had highly diagnostic accuracy of radiotherapy resistance (AUC 0.938). TGF beta signaling pathway and dorso ventral axis formation were upregulated in the group of low-expression P4HB. For tumor stemness, P4HB expression was positively related to EREG.EXPss and RNAss, but was negatively associated with ENHss and DNAss with statistical significance. For tumor heterogeneity, P4HB expression was positively related to MATH, but was negatively associated with tumor ploidy and microsatellite instability. For the overall assessment of TME, we observed that P4HB expression was negatively associated with all parameters, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score and ESTIMATE score. Spearman analysis showed that P4HB expression was negatively related to TIDE score with statistical significance. In vitro experiment, RT-qPCR and western blot showed that three siRNAs of P4HB were effective on the knockdown of P4HB expression. Furthermore, we observed that the downregulation of P4HB had significant influence on the cell proliferation of six PCa cell lines, including LNCap, C4-2, C4-2B, PC3, DU145 and 22RV1 cells. CONCLUSIONS: In this study, we found that P4HB might serve as a prognostic biomarker and predict radiotherapy resistance for PCa patients. Downregulation of P4HB expression could inhibit the cell proliferation of PCa cells.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Prolil Hidroxilasas , Microambiente Tumoral , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/genética
18.
Int J Toxicol ; 42(6): 489-503, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37480334

RESUMEN

Enarodustat (JTZ-951) is an oral hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitor for the treatment of anemia with chronic kidney disease. Carcinogenicity of enarodustat was evaluated in a 26-week repeated oral dose study in Transgenic rasH2 (Tg.rasH2) mice and a 2-year repeated oral dose study in Sprague-Dawley (SD) rats. The highest dose levels were set at 6 mg/kg in the Tg.rasH2 mouse study and at 1 mg/kg in the SD rat study based on the maximum tolerated doses in the 3-month and 6-month dose-range finding studies, respectively. Enarodustat did not increase the incidence of any tumors or affect survival in these carcinogenicity studies. Pharmacology-related findings including increases in blood RBC parameters were observed at the highest dose levels for each study. The AUC-based exposure margins as protein-unbound drug base are 16.3-/26.0-fold multiple (males/females) for Tg.rasH2 mice and 1.6-/1.1-fold multiple for SD rats when compared with the estimated exposure in human with chronic kidney disease at 8 mg/day (maximum recommended human dose). In conclusion, enarodustat was considered to have no carcinogenic potential at the clinical dose.


Asunto(s)
Inhibidores de Prolil-Hidroxilasa , Insuficiencia Renal Crónica , Ratones , Ratas , Animales , Masculino , Humanos , Femenino , Ratones Transgénicos , Ratas Sprague-Dawley , Prolil Hidroxilasas , Carcinógenos , Inhibidores de Prolil-Hidroxilasa/farmacología , Carcinogénesis , Hipoxia , Pruebas de Carcinogenicidad
19.
Glia ; 71(8): 2024-2044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37140003

RESUMEN

Astrocytes constitute the parenchymal border of the blood-brain barrier (BBB), modulate the exchange of soluble and cellular elements, and are essential for neuronal metabolic support. Thus, astrocytes critically influence neuronal network integrity. In hypoxia, astrocytes upregulate a transcriptional program that has been shown to boost neuroprotection in several models of neurological diseases. We investigated transgenic mice with astrocyte-specific activation of the hypoxia-response program by deleting the oxygen sensors, HIF prolyl-hydroxylase domains 2 and 3 (Phd2/3). We induced astrocytic Phd2/3 deletion after onset of clinical signs in experimental autoimmune encephalomyelitis (EAE) that led to an exacerbation of the disease mediated by massive immune cell infiltration. We found that Phd2/3-ko astrocytes, though expressing a neuroprotective signature, exhibited a gradual loss of gap-junctional Connexin-43 (Cx43), which was induced by vascular endothelial growth factor-alpha (Vegf-a) expression. These results provide mechanistic insights into astrocyte biology, their critical role in hypoxic states, and in chronic inflammatory CNS diseases.


Asunto(s)
Astrocitos , Encefalomielitis Autoinmune Experimental , Animales , Ratones , Astrocitos/metabolismo , Enfermedades Neuroinflamatorias , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Prolil Hidroxilasas/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
20.
Int Immunopharmacol ; 118: 110127, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37030118

RESUMEN

Atopic dermatitis (AD) is an allergic skin disease, triggered by excessive type 2 immune reactions. Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine that induces type 2 immune response through dendritic cell activation. Therefore, TSLP inhibitors may serve as novel antiallergic drugs. Hypoxia-inducible factor (HIF) activation in the epithelia contributes to several homeostatic phenomena, such as re-epithelialization. However, the effects of HIF activation on TSLP production and immune activation in the skin remain unclear. In this study, we found that selective HIF prolyl hydroxylase inhibitors (PHD inhibitors), which induce HIF activation, suppressed TSLP production in a mouse ovalbumin (OVA) sensitization model. PHD inhibitors also suppressed the production of tumor necrosis factor-alpha (TNF-α), which is a major inducer of TSLP production, in this mouse model and in a macrophage cell line. Consistent with these findings, PHD inhibitors suppressed OVA-specific IgE levels in the serum and OVA-induced allergic responses. Furthermore, we found a direct suppressive effect on TSLP expression in a human keratinocyte cell line mediated by HIF activation. Taken together, our findings suggest that PHD inhibitors exert antiallergic effects by suppressing TSLP production. Controlling the HIF activation system has therapeutic potential in AD.


Asunto(s)
Dermatitis Atópica , Inhibidores de Prolil-Hidroxilasa , Animales , Humanos , Ratones , Citocinas/metabolismo , Dermatitis Atópica/tratamiento farmacológico , Hipoxia , Ovalbúmina/uso terapéutico , Prolil Hidroxilasas/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Linfopoyetina del Estroma Tímico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA