Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Front Immunol ; 15: 1385190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711523

RESUMEN

The discovery of Suppressor of Cytokine Signaling 1 (SOCS1) in 1997 marked a significant milestone in understanding the regulation of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling pathways. Subsequent research deciphered its cellular functions, and recent insights into SOCS1 deficiencies in humans underscored its critical role in immune regulation. In humans, SOCS-haploinsufficiency (SOCS1-HI) presents a diverse clinical spectrum, encompassing autoimmune diseases, infection susceptibility, and cancer. Variability in disease manifestation, even within families sharing the same genetic variant, raises questions about clinical penetrance and the need for individualized treatments. Current therapeutic strategies include JAK inhibition, with promising results in controlling inflammation in SOCS1-HI patients. Hematopoietic stem cell transplantation and gene therapy emerge as promising avenues for curative treatments. The evolving landscape of SOCS1 research, emphasizes the need for a nuanced understanding of genetic variants and their functional consequences.


Asunto(s)
Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas , Humanos , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Animales , Quinasas Janus/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Haploinsuficiencia , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/genética , Terapia Genética
2.
Int J Med Sci ; 21(6): 1176-1186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774752

RESUMEN

Background: To uncover the potential significance of JAK-STAT-SOCS1 axis in penile cancer, our study was the pioneer in exploring the altered expression processes of JAK-STAT-SOCS1 axis in tumorigenesis, malignant progression and lymphatic metastasis of penile cancer. Methods: In current study, the comprehensive analysis of JAK-STAT-SOCS1 axis in penile cancer was analyzed via multiple analysis approaches based on GSE196978 data, single-cell data (6 cancer samples) and bulk RNA data (7 cancer samples and 7 metastasis lymph nodes). Results: Our study observed an altered molecular expression of JAK-STAT-SOCS1 axis during three different stages of penile cancer, from tumorigenesis to malignant progression to lymphatic metastasis. STAT4 was an important dominant molecule in penile cancer, which mediated the immunosuppressive tumor microenvironment by driving the apoptosis of cytotoxic T cell and was also a valuable biomarker of immune checkpoint inhibitor treatment response. Conclusions: Our findings revealed that the complexity of JAK-STAT-SOCS1 axis and the predominant role of STAT4 in penile cancer, which can mediate tumorigenesis, malignant progression, and lymphatic metastasis. This insight provided valuable information for developing precise treatment strategies for patients with penile cancer.


Asunto(s)
Progresión de la Enfermedad , Quinasas Janus , Metástasis Linfática , Neoplasias del Pene , Factor de Transcripción STAT4 , Proteína 1 Supresora de la Señalización de Citocinas , Humanos , Masculino , Neoplasias del Pene/patología , Neoplasias del Pene/genética , Neoplasias del Pene/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Metástasis Linfática/patología , Metástasis Linfática/genética , Quinasas Janus/metabolismo , Factor de Transcripción STAT4/metabolismo , Factor de Transcripción STAT4/genética , Regulación Neoplásica de la Expresión Génica , Carcinogénesis/genética , Carcinogénesis/patología , Transducción de Señal , Microambiente Tumoral/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología
3.
Redox Biol ; 71: 103100, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484644

RESUMEN

Th2-high asthma is characterized by elevated levels of type 2 cytokines, such as interleukin 13 (IL-13), and its prevalence has been increasing worldwide. Ferroptosis, a recently discovered type of programmed cell death, is involved in the pathological process of Th2-high asthma; however, the underlying mechanisms remain incompletely understood. In this study, we demonstrated that the serum level of malondialdehyde (MDA), an index of lipid peroxidation, positively correlated with IL-13 level and negatively correlated with the predicted forced expiratory volume in 1 s (FEV1%) in asthmatics. Furthermore, we showed that IL-13 facilitates ferroptosis by upregulating of suppressor of cytokine signaling 1 (SOCS1) through analyzing immortalized airway epithelial cells, human airway organoids, and the ovalbumin (OVA)-challenged asthma model. We identified that signal transducer and activator of transcription 6 (STAT6) promotes the transcription of SOCS1 upon IL-13 stimulation. Moreover, SOCS1, an E3 ubiquitin ligase, was found to bind to solute carrier family 7 member 11 (SLC7A11) and catalyze its ubiquitinated degradation, thereby promoting ferroptosis in airway epithelial cells. Last, we found that inhibiting SOCS1 can decrease ferroptosis in airway epithelial cells and alleviate airway hyperresponsiveness (AHR) in OVA-challenged wide-type mice, while SOCS1 overexpression exacerbated the above in OVA-challenged IL-13-knockout mice. Our findings reveal that the IL-13/STAT6/SOCS1/SLC7A11 pathway is a novel molecular mechanism for ferroptosis in Th2-high asthma, confirming that targeting ferroptosis in airway epithelial cells is a potential therapeutic strategy for Th2-high asthma.


Asunto(s)
Asma , Interleucina-13 , Animales , Humanos , Ratones , Sistema de Transporte de Aminoácidos y+ , Asma/genética , Asma/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Pulmón/metabolismo , Ratones Endogámicos BALB C , Ovalbúmina/metabolismo , Ovalbúmina/uso terapéutico , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/uso terapéutico , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Células Th2/metabolismo , Células Th2/patología
4.
Front Immunol ; 15: 1362224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415248

RESUMEN

Suppressor of cytokine signaling 1 (SOCS1) is a potent regulator immune cell responses and a proven tumor suppressor. Inhibition of SOCS1 in T cells can boost antitumor immunity, whereas its loss in tumor cells increases tumor aggressivity. Investigations into the tumor suppression mechanisms so far focused on tumor cell-intrinsic functions of SOCS1. However, it is possible that SOCS1 expression in tumor cells also regulate antitumor immune responses in a cell-extrinsic manner via direct and indirect mechanisms. Here, we discuss the evidence supporting the latter, and its implications for antitumor immunity.


Asunto(s)
Neoplasias , Proteínas Supresoras de la Señalización de Citocinas , Humanos , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Linfocitos T/metabolismo
5.
Cell Signal ; 115: 111031, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38168631

RESUMEN

Tumor-associated macrophages (TAMs) mainly exhibit the characteristics of M2-type macrophages, and the regulation of TAM polarization is a new target for cancer therapy, among which lncRNAs are key regulatory molecules. This study aimed to explore the effects of lncRNA-HOXC-AS2 on non-small cell lung cancer (NSCLC) by regulating TAM polarization. THP-1 cells were used to differentiate into macrophages, and TAMs were obtained by coculture with A549 cells. The M1/M2 cell phenotype and HOXC-AS2 expression were detected, and A549-derived exosomes (A549-exo) were used to elucidate the effects of A549 on macrophage polarization and HOXC-AS2 expression. Then, by interfering with HOXC-AS2 or STAT1, the effects of HOXC-AS2 regulation of STAT1 on the TAM phenotype and STAT1/SOCS1 and STAT1/CIITA pathways were analyzed, and the proliferation and metastasis of NSCLC cells in the coculture system were also detected. Results showed that HOXC-AS2 expression in M2 macrophages and TAMs was significantly higher than that in M1 macrophages, and A549-exo promoted HOXC-AS2 expression and M2 polarization. Intervention HOXC-AS2 resulted in increased M1 marker expression, decreased M2 marker expression, and activation of STAT1/SOCS1 and STAT1/CIITA pathways in TAMs. In addition, HOXC-AS2 was mainly expressed in the cytoplasm of TAMs and could bind to STAT1. Further experiments confirmed that intervention HOXC-AS2 promoted the M1 polarization of TAMs by targeting STAT1 and weakened the promoting effects of TAMs on the proliferation and metastasis of NSCLC. In conclusion, HOXC-AS2 inhibited the activation of STAT1/SOCS1 and STAT1/CIITA pathways and promoted M2 polarization of TAMs by binding with STAT1, thus promoting NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Macrófagos/metabolismo , Línea Celular Tumoral , Microambiente Tumoral , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Factor de Transcripción STAT1/metabolismo
6.
J Cosmet Dermatol ; 23(4): 1404-1416, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288516

RESUMEN

BACKGROUND: Keloid represents a benign skin tumor with many cancer-like features. Extracellular vesicles (EVs) derived from human adipose-derived stem cells (hADSCs) play a role in cell migration of multiple diseases. AIMS: This study aimed to investigate the impact of hADSC-EVs on human keloid fibroblasts (HKFs). METHODS: hADSCs were cultured to the 3rd generation, and subsequently assessed for their osteogenic, adipogenic, and chondrogenic differentiative abilities using flow cytometry, alizarin red, oil red O, and alcian blue staining techniques. hADSC-EVs were isolated through ultracentrifugation and subsequently identified. HKFs at the 3rd generation were subjected to treatment with hADSC-EVs to observe their endocytosis of EVs by immunofluorescence. CCK-8, wound healing, and Transwell assays were performed to test HKF proliferation and migration. The levels of autophagy proteins, collagens, and Janus kinase 2 (JAK2) and Signal Transducer and Activator of Transcription 3 (STAT3) were determined through Western blot analysis. Suppressor of cytokine signaling 1 (SOCS1) expression was determined by RT-qPCR and Western blot. RESULTS: hADSC-EVs were successfully isolated from hADSCs. PKH67-labeled hADSC-EVs were observed to be endocytosed by HKFs, resulting the inhibition of HKF proliferation, migration, as well as a reduction in collagen deposition. hADSC-EVs carried SOCS1 into HKFs to suppress HKF autophagy. SOCS1 downregulation in hADSC-EVs partially nullified the inhibitory effect of hADSC-EVs on HKFs. hADSC-EV-carried SOCS1 inhibited the activation of the JAK2/STAT3 pathway. JAK2/STAT3 pathway activation partially abrogated the suppression of hADSC-EVs on the proliferation, migration, and collagen deposition of HKF. CONCLUSION: hADSC-EVs carried SOCS1 into HKFs and suppressed HKF autophagy, proliferation, migration, and collagen deposition by inactivating the JAK2/STAT3 pathway.


Asunto(s)
Vesículas Extracelulares , Queloide , Humanos , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo
7.
Int Urol Nephrol ; 56(4): 1449-1463, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37815664

RESUMEN

OBJECTIVE: The etiopathogenesis of diabetes nephropathy (DN) has not yet been fully clarified. Finding effective treatments to prevent renal failure in DN patients has become the main focus of research in recent years. Circular RNA (circRNA) has been shown to play a momentous role in DN progression. Based on this, we aimed to investigate the potential mechanism by which urine-derived stem cell (USC)-derived exosome circRNA ATG7 (Exo-ATG7) mediates DN progression. METHODS: Exosomes from USCs were isolated and identified. The DN rat model was established by intraperitoneally injecting 60 mg/kg streptozotocin. The protein expression levels were measured by Western blot and immunofluorescence. HE and Masson staining were used to evaluate renal injury, and the expression of related genes was detected by RT-qPCR. RESULTS: CircRNA ATG7 was significantly downregulated in the DN rat model, and the extracellular vesicles of USCs improved renal function and reduced inflammation in DN rats. However, after knocking down the USCs-derived exosome circRNA ATG7, improvement and therapeutic effect on renal function in DN rats were lost. In addition, overexpression of ATG7 facilitated the switching of macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype both in vivo and in vitro. Mechanistically, upregulation of circRNA ATG7 expression can alleviate renal damage in DN rats. Importantly, the USCs-derived exosome circRNA ATG7 promotes macrophage M2 polarization by regulating the SOCS1/STAT3 signaling pathway through miR-4500. In addition, animal experiments also confirmed that after knocking down ATG7 in USC cells, the extracted exosome-treated DN rats could weaken the therapeutic effect of USC exosomes. CONCLUSION: Our research results indicate that USC-derived exosomal circRNA ATG7 facilitates macrophage phenotype switching from M1 to M2 through the SOCS1/STAT3 signaling pathway mediated by miR-4500, thereby inhibiting DN progression.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Exosomas , MicroARNs , Animales , Humanos , Ratas , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/metabolismo , Exosomas/metabolismo , Macrófagos , MicroARNs/genética , ARN Circular/genética , ARN Circular/metabolismo , ARN Circular/farmacología , Transducción de Señal , Factor de Transcripción STAT3 , Células Madre/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/farmacología
8.
Microbes Infect ; 26(3): 105282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38135025

RESUMEN

Mycobacterium tuberculosis (Mtb) infection leads to upregulation of Suppressors of Cytokine signaling (SOCS) expression in host macrophages (Mϕ). SOCS proteins inhibit cytokine signaling by negatively regulating JAK/STAT. We investigated this host-pathogen dialectic at the level of transcription. We used phorbol-differentiated THP-1 Mϕ infected with Mtb to investigate preferential upregulation of some SOCS isoforms that are known to inhibit signaling by IFN-γ, IL-12, and IL-6. We examined time kinetics of likely transcription factors and signaling molecules upstream of SOCS transcription, and survival of intracellular Mtb following SOCS upregulation. Our results suggest a plausible mechanism that involves PGE2 secretion during infection to induce the PKA/CREB axis, culminating in nuclear translocation of C/EBPß to induce expression of SOCS1. Mtb-infected Mϕ secreted IL-10, suggesting a mechanism of induction of STAT3, which may subsequently induce SOCS3. We provide evidence of temporal variation in SOCS isoform exspression and decay. Small-interfering RNA-mediated knockdown of SOCS1 and SOCS3 restored the pro-inflammatory milieu and reduced Mtb viability. In mice infected with Mtb, SOCS isoforms persisted across Days 28-85 post infection. Our results suggest that differential temporal regulation of SOCS isoforms by Mtb drives the host immune response towards a phenotype that facilitates the pathogen's survival.


Asunto(s)
Mycobacterium tuberculosis , Humanos , Animales , Ratones , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Macrófagos/microbiología , Interleucina-12 , Isoformas de Proteínas/metabolismo
9.
J Clin Invest ; 133(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099496

RESUMEN

Cell therapies such as tumor-infiltrating lymphocyte (TIL) therapy have shown promise in the treatment of patients with refractory solid tumors, with improvement in response rates and durability of responses nevertheless sought. To identify targets capable of enhancing the antitumor activity of T cell therapies, large-scale in vitro and in vivo clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens were performed, with the SOCS1 gene identified as a top T cell-enhancing target. In murine CD8+ T cell-therapy models, SOCS1 served as a critical checkpoint in restraining the accumulation of central memory T cells in lymphoid organs as well as intermediate (Texint) and effector (Texeff) exhausted T cell subsets derived from progenitor exhausted T cells (Texprog) in tumors. A comprehensive CRISPR tiling screen of the SOCS1-coding region identified sgRNAs targeting the SH2 domain of SOCS1 as the most potent, with an sgRNA with minimal off-target cut sites used to manufacture KSQ-001, an engineered TIL therapy with SOCS1 inactivated by CRISPR/Cas9. KSQ-001 possessed increased responsiveness to cytokine signals and enhanced in vivo antitumor function in mouse models. These data demonstrate the use of CRISPR/Cas9 screens in the rational design of T cell therapies.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Animales , Ratones , ARN Guía de Sistemas CRISPR-Cas , Linfocitos Infiltrantes de Tumor , Inmunoterapia Adoptiva , Neoplasias/genética , Edición Génica , Proteína 1 Supresora de la Señalización de Citocinas/genética
10.
Angew Chem Int Ed Engl ; 62(49): e202312603, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37847126

RESUMEN

Immunotherapies have shed light on the treatment of many cancers, but have not improved the outcomes of glioma (GBM). Here, we demonstrated that suppressor of cytokine signaling 1 (SOCS1) was associated with the GBM-associated immunosuppression and developed a multifunctional nanomedicine, which silenced SOCS1 in the tumor microenvironment (TME) of GBM and triggered strong antitumor immunity against GBM. Synthetic high-density lipoprotein (sHDL) was selected as the nanocarrier and a peptide was used to facilitate the blood-brain-barrier (BBB) penetration. The nanocarrier was loaded with a small interfering RNA (siRNA), a peptide, and an adjuvant to trigger antitumor immunity. The nanomedicine concentrated on the TME in vivo, further promoting dendritic cell maturation and T cell proliferation, triggering strong cytotoxic T lymphocyte responses, and inhibiting tumor growth. Our work provides an alternative strategy to simultaneously target and modulate the TME in GBM patients and points to an avenue for enhancing the efficacy of immunotherapeutics.


Asunto(s)
Glioma , Microambiente Tumoral , Humanos , Proteína 1 Supresora de la Señalización de Citocinas/genética , Lipoproteínas HDL , Nanomedicina , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Glioma/terapia , ARN Interferente Pequeño/genética , Línea Celular Tumoral
11.
Carcinogenesis ; 44(8-9): 708-715, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-37665951

RESUMEN

OBJECTIVES: Ferroptosis is involved in many types of cancers, including triple-negative breast cancer (TNBC). Suppressor of cytokine signaling 1 (SOCS1) has recently been implicated as a regulator of ferroptosis. We aim to explore whether targeting SOCS1 is a potential therapeutic strategy for TNBC therapy. METHODS: Stable cell lines were constructed using lentivirus transfection. Cell viability was determined using CCK-8 and cell colony formation assays, respectively. Assays including lactate dehydrogenase release, lipid peroxidation and malondialdehyde assays were conducted to evaluate ferroptosis. Real-time quantitative polymerase chain reaction and western blotting were performed to evaluate mRNA and protein expression, respectively. A xenograft animal model was established by subcutaneous injection of cells into the flank. RESULTS: Our results showed that SOCS1 overexpression inhibited cell proliferation and induced ferroptosis in TNBC cells, while SOCS1 knockdown promoted cell proliferation and reduced ferroptosis. We also found that SOCS1 regulated ferroptosis by modulating GPX4 expression. Furthermore, SOCS1 regulated cisplatin resistance in TNBC cells by promoting ferroptosis. Our in vivo data suggested that SOCS1 regulated tumor growth and cisplatin resistance in vivo. CONCLUSIONS: SOCS1 inhibits the progression and chemotherapy resistance of TNBC by regulating GPX4 expression.


Asunto(s)
Ferroptosis , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Ferroptosis/genética , Cisplatino/farmacología , Proliferación Celular/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo
12.
Front Immunol ; 14: 1228458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720228

RESUMEN

Objective: Triple-negative breast cancer (TNBC) is a very aggressive form of cancer that grows and spreads very fast and generally relapses. Therapeutic options of TNBC are limited and still need to be explored completely. Gold nanoparticles conjugated with citrate (citrate-AuNPs) are reported to have anticancer potential; however, their role in regulating microRNAs (miRNAs) in TNBC has never been investigated. This study investigated the potential of citrate-AuNPs against tumorigenic inflammation via modulation of miRNAs in TNBC cells. Methods: Gold nanoparticles were chemically synthesized using the trisodium-citrate method and were characterized by UV-Vis spectrophotometry and dynamic light scattering studies. Targetscan bioinformatics was used to analyze miRNA target genes. Levels of miRNA and mRNA were quantified using TaqMan assays. The pairing of miRNA in 3'untranslated region (3'UTR) of mRNA was validated by luciferase reporter clone, containing the entire 3'UTR of mRNA, and findings were further re-validated via transfection with miRNA inhibitors. Results: Newly synthesized citrate-AuNPs were highly stable, with a mean size was 28.3 nm. The data determined that hsa-miR155-5p is a direct regulator of SOCS1 (suppressor-of-cytokine-signaling) expression and citrate-AuNPs inhibits SOCS1 mRNA/protein expression via modulating hsa-miR155-5p expression. Transfection of TNBC MDA-MB-231 cells with anti-miR155-5p markedly increased SOCS1 expression (p<0.001), while citrate-AuNPs treatment significantly inhibited anti-miR155-5p transfection-induced SOCS1 expression (p<0.05). These findings were validated by IFN-γ-stimulated MDA-MB-231 cells. Moreover, the data also determined that citrate-AuNPs also inhibit IFN-γ-induced NF-κB p65/p50 activation in MDA-MB-231 cells transfected with anti-hsa-miR155-5p. Conclusion: Newly generated citrate-AuNPs were stable and non-toxic to TNBC cells. Citrate-AuNPs inhibit IFN-γ-induced SOCS1 mRNA/protein expression and deactivate NF-κB p65/50 activity via negative regulation of hsa-miR155-5p. These novel pharmacological actions of citrate-AuNPs on IFN-γ-stimulated TNBC cells provide insights that AuNPs inhibit IFN-γ induced inflammation in TNBC cells by modulating the expression of microRNAs.


Asunto(s)
Nanopartículas del Metal , MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Interferón gamma/farmacología , Oro , Neoplasias de la Mama Triple Negativas/genética , FN-kappa B , Regiones no Traducidas 3' , Recurrencia Local de Neoplasia , Citratos , Ácido Cítrico , Proteínas Supresoras de la Señalización de Citocinas , Proteína 1 Supresora de la Señalización de Citocinas/genética , MicroARNs/genética
13.
Breast Cancer Res Treat ; 202(2): 389-395, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37526791

RESUMEN

PURPOSE: This project aimed to evaluate the relationship between the suppressor of cytokine signaling-1 (SOCS1) - 1478 CA > del genetic variation and breast cancer susceptibility. Moreover, we investigated the SOCS1 mRNA expression level in cancerous tissues. METHODS: A total of 100 patients with breast cancer and 120 healthy individuals were selected. Genomic DNA was extracted from blood. SOCS1 genotyping and relative gene expression were performed using ARMS-PCR (Amplification-Refractory Mutation System-Polymerase Chain Reaction) and real-time PCR, respectively. RESULTS: In breast cancer patients, the prevalence of genotype frequencies of SOCS1 (- 1478 CA > del) CA/CA, CA/del, and del/del was 52, 31, and 17%, respectively. Among controls, the distribution of CA/CA, CA/del, and del/del was 63, 15, and 22%, respectively. The chi-square test reported that a significant difference was observed in the genotypic distribution of SOCS1 (- 1478 CA > del) polymorphism between cases and controls (χ2 = 8.08, P = 0.01). In addition, the presence of the CA/del genotype was associated with an elevated risk of breast cancer (in the codominant model: OR 2.51; 95% CI 1.27-4.96, P = 0.007 and in the over dominant model: OR 2.54; 95% CI 1.32-4.90, P = 0.005). However, there was no significant difference in allelic distributions between the groups (P > 0.05). There was no significant difference in the breast cancer risk associated with the dominant and recessive genetic models when the reference was CA/CA and CA/CA + CA/del genotype, respectively (P = 0.09 and P = 0.38). Moreover, the expression of SOCS1 decreased in cancerous tissues as compared to the adjacent non-cancerous tissues (P < 0.0001). CONCLUSION: In conclusion, a functional SOCS1 promoter polymorphism (- 1478 CA > del) may affect breast cancer susceptibility.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Irán/epidemiología , Polimorfismo Genético , Genotipo , Predisposición Genética a la Enfermedad , Proteína 1 Supresora de la Señalización de Citocinas/genética
14.
Mol Biol Rep ; 50(9): 7445-7456, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37479878

RESUMEN

BACKGROUND: This study aims to determine the role of long non-coding RNA (LncRNA) MIR22HG in small cell lung cancer (SCLC), and to explore its relevant mechanism. METHODS AND RESULTS: The expressions of genes and proteins in SCLC cells were examined applying qRT-PCR and western blot. Cell proliferation estimation was implemented utilizing cell counting kit-8 (CCK-8) and colony formation assays; the assessment of cell migration and invasion was operated employing Wound healing and Transwell; apoptosis evaluation was conducted adopting flow cytometric assay. Binding relationships was confirmed by luciferase reporter assay. Moreover, SCLC animal model was established to explore the role of MIR22HG in vivo. It was found that MIR22HG was declined and miR-9-3p was elevated in five SCLC cell lines (NCI-H446, NCI-H69, SHP-77, DMS79 and NCI-H345) in comparison with normal human bronchial epithelial cell line (NHBE). More interestingly, overexpression of MIR22HG resulted in decreased cell viability, declined colony formation, diminished capacities of cell migration and invasion in NCI-H446 and NCI-H345 cells but induced more apoptotic cells. However, these impacts were reversed by miR-9-3p upregulation. Meanwhile, MIR22HG could bind to miR-9-3p and negatively regulate its expression in SCLC. What's more, LncRNA MIR22HG overexpression was also testified to elevate SOCS1 via downregulating miR-9-3p expression. Furthermore, in vivo study further confirmed the role of MIR22HG/miR-9-3p in tumor regulation of SCLC. CONCLUSIONS: In conclusion, MIR22HG in SCLC was found to modulate miR-9-3p level and might act as a possible biomarker for SCLC treatment.


Asunto(s)
Neoplasias Pulmonares , ARN Largo no Codificante , Carcinoma Pulmonar de Células Pequeñas , Animales , Humanos , Apoptosis/genética , Proliferación Celular/genética , Neoplasias Pulmonares/genética , ARN Largo no Codificante/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Proteína 1 Supresora de la Señalización de Citocinas/genética
15.
Int Immunopharmacol ; 119: 110263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37156031

RESUMEN

OBJECTIVE: Helicobacter pylori (H. pylori) is a major risk factor for the stomach adenocarcinoma (STAD). This study aimed to investigate the potential role of a H. pylori infection-related gene, SOCS1, in STAD. MATERIALS AND METHODS: Online available databases were analyzed to determine the expression, correlations with clinicopathologic parameters, patients' survival, and immunological characteristics of SOCS1 in TCGA-STAD or GEO datasets. Univariate and multivariate Cox regression analyses were used to determine independent risk factors, which were further integrated to establish a nomogram. A comparison of drug sensitivity was conducted for the chemotherapy responses between individuals with low- and high-SOCS1. Prediction of tumor response to checkpoint inhibitors was based on the tumor immunodeficiency and exclusion (TIDE) score. RESULTS: SOCS1 expression was significantly increased in both H. pylori-infected and STAD patients. Higher SOCS1 expression indicated an undesirable prognosis in STAD patients. SOCS1 upregulation was related to enhanced immune cell infiltrations and the upregulation of immune checkpoints in STAD patients. N stage, age and SOCS1 were identified as independent risk factors for higher mortality of STAD patients and confirmed using the nomogram. Drug sensitivity analyses demonstrated that high expression of SOCS1 in STAD patients could improve the sensitivity to chemotherapy. TIDE score showed that STAD patients with high SOCS1 expression would have superior response to immunotherapy. CONCLUSIONS: SOCS1 may act as a potential biomarker for uncovering the underlying mechanisms of gastric cancer. Increasing the activity of immunotherapy through ferroptosis-immunomodulation may be a viable strategy in STAD therapy.


Asunto(s)
Adenocarcinoma , Ferroptosis , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Pronóstico , Proteína 1 Supresora de la Señalización de Citocinas/genética
16.
J Clin Immunol ; 43(6): 1403-1413, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156989

RESUMEN

PURPOSE: Hyper activation of the JAK-STAT signaling underlies the pathophysiology of many human immune-mediated diseases. Herein, the study of 2 adult patients with SOCS1 haploinsufficiency illustrates the severe and pleomorphic consequences of its impaired regulation in the intestinal tract. METHODS: Two unrelated adult patients presented with gastrointestinal manifestations, one with Crohn's disease-like ileo-colic inflammation refractory to anti-TNF and the other with lymphocytic leiomyositis causing severe chronic intestinal pseudo-occlusion. Next-generation sequencing was used to identify the underlying monogenic defect. One patient received anti-IL-12/IL-23 treatment while the other received the JAK1 inhibitor, ruxolitinib. Peripheral blood, intestinal tissues, and serum samples were analyzed before-and-after JAK1 inhibitor therapy using mass cytometry, histology, transcriptomic, and Olink assay. RESULTS: Novel germline loss-of-function variants in SOCS1 were identified in both patients. The patient with Crohn-like disease achieved clinical remission with anti-IL-12/IL-23 treatment. In the second patient with lymphocytic leiomyositis, ruxolitinib induced rapid resolution of the obstructive symptoms, significant decrease of the CD8+ T lymphocyte muscular infiltrate, and normalization of serum and intestinal cytokines. Decreased frequencies of circulating Treg cells, MAIT cells, and NK cells, with altered CD56bright:CD16lo:CD16hi NK subtype ratios were not modified by ruxolitinib. CONCLUSION: SOCS1 haploinsufficiency can result in a broad spectrum of intestinal manifestations and need to be considered as differential diagnosis in cases of severe treatment-refractory enteropathies, including the rare condition of lymphocytic leiomyositis. This provides the rationale for genetic screening and considering JAK inhibitors in such cases.


Asunto(s)
Haploinsuficiencia , Inhibidores del Factor de Necrosis Tumoral , Adulto , Humanos , Proteínas Supresoras de la Señalización de Citocinas/genética , Interleucina-12 , Interleucina-23 , Proteína 1 Supresora de la Señalización de Citocinas/genética
17.
Exp Mol Med ; 55(4): 831-843, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37009803

RESUMEN

Long noncoding RNAs (lncRNAs), widely expressed in mammalian cells, play pivotal roles in osteosarcoma (OS) progression. Nevertheless, the detailed molecular mechanisms of lncRNA KIAA0087 in OS remain obscure. Here, the roles of KIAA0087 in OS tumorigenesis were investigated. KIAA0087 and miR-411-3p levels were detected by RT-qPCR. Malignant properties were assessed by CCK-8, colony formation, flow cytometry, wound healing, and transwell assays. SOCS1, EMT, and JAK2/STAT3 pathway-related protein levels were measured by western blotting. Direct binding between miR-411-3p and KIAA0087/SOCS1 was validated by a dual-luciferase reporter, RIP, and FISH assays. In vivo growth and lung metastasis were evaluated in nude mice. The expression levels of SOCS1, Ki-67, E-cadherin, and N-cadherin in tumor tissues were measured by immunohistochemical staining. Downregulation of KIAA0087 and SOCS1 and upregulation of miR-411-3p were found in OS tissues and cells. Low expression of KIAA0087 was associated with a poor survival rate. Forced expression of KIAA0087 or miR-411-3p inhibition repressed the growth, migration, invasion, EMT, and activation of the JAK2/STAT3 pathway and triggered apoptosis of OS cells. However, the opposite results were found with KIAA0087 knockdown or miR-411-3p overexpression. Mechanistic experiments indicated that KIAA0087 enhanced SOCS1 expression to inactivate the JAK2/STAT3 pathway by sponging miR-411-3p. Rescue experiments revealed that the antitumor effects of KIAA0087 overexpression or miR-411-3p suppression were counteracted by miR-411-3p mimics or SOCS1 inhibition, respectively. Finally, in vivo tumor growth and lung metastasis were inhibited in KIAA0087-overexpressing or miR-411-3p-inhibited OS cells. In summary, the downregulation of KIAA0087 promotes the growth, metastasis, and EMT of OS by targeting the miR-411-3p-mediated SOCS1/JAK2/STAT3 pathway.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Osteosarcoma , ARN Largo no Codificante , Animales , Ratones , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Mamíferos/metabolismo , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Humanos
18.
Eur J Pharmacol ; 949: 175724, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059377

RESUMEN

Berberine is approved for the treatment of intestinal infections and diarrhea and has been shown to have anti-inflammatory and anti-tumor effects in pathological intestinal tissues. However, it is unclear whether the anti-inflammatory effect of berberine contributes to its anti-tumor effect on colitis-associated colorectal cancer (CAC). In this study, we found that berberine effectively inhibited tumorigenesis and protected against colon shortening in CAC mouse model. Immunohistochemistry results showed a reduction in the number of macrophage infiltrations in the colon following berberine treatment. Further analysis revealed that most of the infiltrated macrophages were pro-inflammatory M1 type, which berberine effectively limited. However, in another CRC model without chronic colitis, berberine had no significant effect on tumor number or colon length. In vitro studies demonstrated that berberine treatment significantly reduced the percentage of M1 type and levels of Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Additionally, miR-155-5p level was down-regulated, and suppressor of cytokine signaling 1 (SOCS1) expression was up-regulated in berberine-treated cells. Notably, the miR-155-5p inhibitor attenuated the regulatory effects of berberine on SOCS1 signaling and macrophage polarization. Altogether, our findings suggest that the inhibitory effect of berberine on CAC development is dependent on its anti-inflammatory activity. Moreover, miR-155-5p may be involved in the pathogenesis of CAC by regulating M1 macrophage polarization, and berberine could be a promising protective agent against miR-155-5p-mediated CAC. This study provides new insights into pharmacologic mechanisms of berberine and supports the possibility that other anti-miR-155-5p drugs may be beneficial in the treatment of CAC.


Asunto(s)
Berberina , Neoplasias Asociadas a Colitis , MicroARNs , Ratones , Animales , Berberina/farmacología , Berberina/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Asociadas a Colitis/tratamiento farmacológico , Macrófagos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(3): 220-229, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-36946346

RESUMEN

Objective To explore the effects of microRNA-155-5p (miR-155-5p) on lipopolysaccharide (LPS)-induced neuroinflammatory damage of human SH-SY5Y neuroblastoma cells. Methods SH-SY5Y cells line was overexpressed miR-155-5p or transfected with negative control (miR-155-5p mimic group, mimic-NC group), down-expressed miR-155-5p or transfected with its negative control (miR-155-5p inhibitor group, inhibitor-NC group). The cells with successful transfection in the above groups were treated with LPS for 24 hours. The cells without SH-SY5Y cells transfection and those with LPS treatment were included into control group and LPS group, respectively. The activity of SH-SY5Y cells was detected by MTT assay. The apoptosis rate was detected by flow cytometry. The mRNA levels of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), interleukin 6 (IL-6) and interleukin 10 (IL-10), and expression of miR-155-5p were detected by reverse transcription PCR. The levels of cleaved caspase-3 (c-caspase-3), B-cell lymphoma/leukemia-2 (Bcl2), Bcl2-associated X protein (BAX), phosphorylated nuclear factor κB p65/nuclear factor κB p65 (p-NF-κB p65/NF-κB p65) and phosphorylated p38 mitogen-activated protein kinase/p38 mitogen-activated protein kinase (p-p38 MAPK/p38 MAPK) were detected by Western blot analysis. The expression of miR-155-5p in SH-SY5Y cells was regulated by miR-155-5p mimic and miR-155-5p inhibitor. The target relationship between miR-155-5p and suppressor of cytokine signaling 1(SOCS1) was predicted by bioinformatics, which was verified by luciferase assay. SH-SY5Y cells with down-regulation of both miR-155-5p and SOCS1 were constructed (miR-155-5p inhibitor/si-SOCS1 group). The cells activity, apoptosis, mRNA expressions of inflammatory cytokines, expression of SOCS1 protein, ratios of p-NF-κB p65/NF-κB p65 and p-p38 MAPK/p38 MAPK were detected by the above methods. Results Compared with control group, activity of SH-SY5Y cells, expression of Bcl2 protein, level of IL-10 mRNA and expression of SOCS1 protein decreased in LPS group while apoptosis rate, expressions of c-caspase-3 and BAX proteins, and levels of TNF-α, IL-1ß and IL-6 mRNA were increased, along with the increased miR-155-5p level and ratios of p-NF-κB p65/NF-κB p65 and p-p38 MAPK/p38 MAPK. The activity of SH-SY5Y cells, expression of Bcl2 protein, level of IL-10 mRNA and expression of SOCS1 protein increased in miR-155-5p inhibitor group, compared with LPS group, whereas decreased miR-155-5p level, apoptosis rate, expressions of c-caspase-3 and BAX proteins, levels of TNF-α, IL-1ß and IL-6 mRNA, and expressions of p-NF-κB p65/NF-κB p65 and p-p38 MAPK/p38 MAPK proteins were observed. Compared with LPS group, activity of SH-SY5Y cells, expression of Bcl2 protein, level of IL-10 mRNA and expression of SOCS1 protein were decreased in miR-155-5p mimic group, while miR-155-5p level, apoptosis rate, expressions of c-caspase-3 and BAX proteins, levels of TNF-α, IL-1ß and IL-6 mRNA, and ratios of p-NF-κB p65/NF-κB p65 and p-p38 MAPK/p38 MAPK proteins were increased. Targeted relationship was identified between miR-155-5p and SOCS1. Compared with miR-155-5p inhibitor group, cells activity and level of IL-10 mRNA decreased in miR-155-5p inhibitor/si-SOCS1 group, while apoptosis rate, ratios of p-NF-κB p65/NF-κB p65 and p-p38 MAPK/p38 MAPK, and levels of TNF-α, IL-1ß and IL-6 mRNA increased. Conclusion Inhibiting miR-155-5p can alleviate neuroinflammatory damage induced by LPS, which may be related to down-regulating SOCS1 level.


Asunto(s)
MicroARNs , Neuroblastoma , Humanos , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Interleucina-10/metabolismo , Transducción de Señal , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , MicroARNs/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , ARN Mensajero
20.
Gene ; 864: 147293, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813059

RESUMEN

OBJECTIVES: The SOCS1 gene is frequently mutated in primary Diffuse Large B-Cell Lymphoma (DLBCL) patients and is associated with a reduced survival rate. Using various computational techniques, the current study aims to identify Single Nucleotide Polymorphisms (SNPs) in the SOCS1 gene that are associated with the mortality rate of DLBCL patients. This study also evaluates the effects of SNPs on the structural instability of the SOCS1 protein in DLBCL patient. METHODS: The cBioPortal webserver was used for mutations and determining how the SNP mutations affect the SOCS1 protein with various algorithms (PolyPhen-2.0, Provean, PhD-SNPg, SNPs&GO, SIFT, FATHMM, Predict SNP and SNAP). Five webservers (I-Mutant 2.0, MUpro, mCSM, DUET and SDM) were used for protein instability and the conserved status and were also predicted through different tools (ConSurf, Expasy, SOMPA). Lastly, MD simulations were run on the two chosen mutations (S116N and V128G) using GROMACS 5.0.1 to study how the mutations change the structure of SOCS1. RESULTS: Among the 93 SOCS1 mutations detected in DLBCL patients, nine mutations were found to have a detrimental effect (damaging/deleterious/pathogenic/altered) on the SOCS1 protein. All the nine selected mutations are in the conserved region and four are on the extended strand site, four on the random coil site and one on the alpha helix position of the secondary protein structure. After anticipating the structural effects of these nine mutations, two were chosen (S116N and V128G) based on mutational frequency, location within the protein, structural effect (primary, secondary and tertiary) on stability and conservation status within the SOCS1 protein. The simulation of a 50 ns time interval revealed that the Rg value of S116N (2.17 nm) is higher than that of WT (1.98 nm), indicating a loss of structural compactness. In the case of the RMSD value, this mutated type (V128G) shows more deviation (1.54 nm) in comparison to the wild-type (2.14 nm) and another mutant type (S116N) (2.12 nm). The average RMSF values of wild-type and mutant types (V128G and S116N) were 0.88 nm, 0.49 nm, and 0.93 nm, respectively. The RMSF result shows that the mutant V128G structure is more stable than the wild-type and mutant S116N structures. CONCLUSION: Based on all these computational predictions, this study finds that certain mutations, particularly S116N, have a destabilising and robust effect on the SOCS1 protein. These results can be used to learn more about the importance of SOCS1 mutations in DLBCL patients and to develop new ways to treat DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Proteínas Supresoras de la Señalización de Citocinas , Humanos , Proteína 1 Supresora de la Señalización de Citocinas/genética , Mutación , Proteínas Supresoras de la Señalización de Citocinas/genética , Tasa de Mutación , Linfoma de Células B Grandes Difuso/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA