Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
BMC Cancer ; 24(1): 619, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773471

RESUMEN

BACKGROUND: Breast cancer is one of the common malignancies in women. Evidence has demonstrated that FBXO45 plays a pivotal role in oncogenesis and progression. However, the role of FBXO45 in breast tumorigenesis remains elusive. Exploration of the regulatory mechanisms of FBXO45 in breast cancer development is pivotal for potential therapeutic interventions in patients with breast cancer. METHODS: Hence, we used numerous approaches to explore the functions of FBXO45 and its underlaying mechanisms in breast cancer pathogenesis, including CCK-8 assay, EdU assay, colony formation analysis, apoptosis assay, RT-PCR, Western blotting, immunoprecipitation, ubiquitination assay, and cycloheximide chase assay. RESULTS: We found that downregulation of FBXO45 inhibited cell proliferation, while upregulation of FBXO45 elevated cell proliferation in breast cancer. Silencing of FBXO45 induced cell apoptosis, whereas overexpression of FBXO45 inhibited cell apoptosis in breast cancer. Moreover, FBXO45 interacted with BIM and regulated its ubiquitination and degradation. Furthermore, knockdown of FBXO45 inhibited cell proliferation via regulation of BIM pathway. Notably, overexpression of FBXO45 facilitated tumor growth in mice. Strikingly, FBXO45 expression was associated with poor survival of breast cancer patients. CONCLUSION: Our study could provide the rational for targeting FBXO45 to obtain benefit for breast cancer patients. Altogether, modulating FBXO45/Bim axis could be a promising strategy for breast cancer therapy.


Asunto(s)
Apoptosis , Proteína 11 Similar a Bcl2 , Neoplasias de la Mama , Proliferación Celular , Progresión de la Enfermedad , Proteínas F-Box , Ubiquitinación , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Animales , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Ratones , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Línea Celular Tumoral , Proteolisis , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos
2.
Breast Cancer Res ; 26(1): 33, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409088

RESUMEN

INTRODUCTION: Estrogen receptor (ER) positive patients compromise about 70% of breast cancers. Tamoxifen, an antagonist of ERα66 (the classic ER), is the most effective and the standard first-line drug. However, its efficacy is limited by the development of acquired resistance. METHODS: A specific inhibitor of Hsp70-Bim protein-protein interaction (PPI), S1g-2, together with an inhibitor of Hsp70-Bag3 PPI, MKT-077 and an ATP-competitive inhibitor VER155008, were used as chemical tools. Cell viability assays, co-immunoprecipitation and gene knockdown were used to investigate the role of Hsp70 in tamoxifen resistance. A xenograft model was established in which tamoxifen-resistant breast cancer (MCF-7/TAM-R) cells maintained in the presence of 5 µM tamoxifen were subcutaneously inoculated. The anti-tumor efficiency of S1g-2 was measured after a daily injection of 0.8 mg/kg for 14 days. RESULTS: It was revealed that Hsp70-Bim PPI protects ERα-positive breast cancer from tamoxifen-induced apoptosis through binding and stabilizing ERα36, rather than ERα66, resulting in sustained EGFR mRNA and protein expression. Disruption of Hsp70-Bim PPI and downregulation of ERα36 expression in tumor samples are consistent with the in vitro functions of S1g-2, resulting in about a three-fold reduction in tumor volume. CONCLUSIONS: The in vivo activity and safety of S1g-2 illustrated that it is a potential strategy for Hsp70-Bim disruption to overcome tamoxifen-resistant ER-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica
3.
Sci Rep ; 14(1): 2130, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267588

RESUMEN

Invasive assays and lung tumor-bearing mice models using a human lung adenocarcinoma cell line A549 cells transfected with the Klotho (KL) gene, A549/KL cells, have confirmed that KL suppresses invasive/metastatic potential. This study aimed to identify the co-expression protein networks and proteomic profiles associated with A549/KL cells to understand how Klotho protein expression affects molecular networks associated with lung carcinoma malignancy. A two-step application of a weighted network correlation analysis to the cells' quantitative proteome datasets of a total of 6,994 proteins, identified by mass spectrometry-based proteomic analysis with data-independent acquisition (DIA), identified one network module as most significantly associated with the A549/KL trait. Upstream analyses, confirmed by western blot, implicated the pro-apoptotic Bim (Bcl-2-like protein 11) as a master regulator of molecular networks affected by Klotho. GeneMANIA interaction networks and quantitative proteome data implicated that Klotho interacts with two signaling axes: negatively with the Wnt/ß-catenin axis, and positively by activating Bim. Our findings might contribute to the development of future therapeutic strategies.


Asunto(s)
Neoplasias Pulmonares , Vía de Señalización Wnt , Animales , Humanos , Ratones , Células A549 , Proteína 11 Similar a Bcl2/genética , Neoplasias Pulmonares/genética , Mapas de Interacción de Proteínas , Proteoma , Proteómica
4.
Cell Death Differ ; 31(1): 119-131, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38001256

RESUMEN

Paracetamol (acetaminophen, APAP) overdose severely damages mitochondria and triggers several apoptotic processes in hepatocytes, but the final outcome is fulminant necrotic cell death, resulting in acute liver failure and mortality. Here, we studied this switch of cell death modes and demonstrate a non-canonical role of the apoptosis-regulating BCL-2 homolog BIM/Bcl2l11 in promoting necrosis by regulating cellular bioenergetics. BIM deficiency enhanced total ATP production and shifted the bioenergetic profile towards glycolysis, resulting in persistent protection from APAP-induced liver injury. Modulation of glucose levels and deletion of Mitofusins confirmed that severe APAP toxicity occurs only in cells dependent on oxidative phosphorylation. Glycolytic hepatocytes maintained elevated ATP levels and reduced ROS, which enabled lysosomal recycling of damaged mitochondria by mitophagy. The present study highlights how metabolism and bioenergetics affect drug-induced liver toxicity, and identifies BIM as important regulator of glycolysis, mitochondrial respiration, and oxidative stress signaling.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Acetaminofén/toxicidad , Hígado/metabolismo , Hepatocitos/metabolismo , Metabolismo Energético , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Necrosis/metabolismo , Estrés Oxidativo , Adenosina Trifosfato/metabolismo , Mitocondrias Hepáticas/metabolismo
5.
Nat Commun ; 14(1): 2897, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210412

RESUMEN

Malignant pleural mesothelioma (MPM) has relatively ineffective first/second-line therapy for advanced disease and only 18% five-year survival for early disease. Drug-induced mitochondrial priming measured by dynamic BH3 profiling identifies efficacious drugs in multiple disease settings. We use high throughput dynamic BH3 profiling (HTDBP) to identify drug combinations that prime primary MPM cells derived from patient tumors, which also prime patient derived xenograft (PDX) models. A navitoclax (BCL-xL/BCL-2/BCL-w antagonist) and AZD8055 (mTORC1/2 inhibitor) combination demonstrates efficacy in vivo in an MPM PDX model, validating HTDBP as an approach to identify efficacious drug combinations. Mechanistic investigation reveals AZD8055 treatment decreases MCL-1 protein levels, increases BIM protein levels, and increases MPM mitochondrial dependence on BCL-xL, which is exploited by navitoclax. Navitoclax treatment increases dependency on MCL-1 and increases BIM protein levels. These findings demonstrate that HTDBP can be used as a functional precision medicine tool to rationally construct combination drug regimens in MPM and other cancers.


Asunto(s)
Mesotelioma Maligno , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 11 Similar a Bcl2/genética , Apoptosis , Línea Celular Tumoral , Combinación de Medicamentos , Proteína bcl-X/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
6.
Elife ; 122023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37078707

RESUMEN

Anti-apoptotic proteins such as BCL-XL promote cell survival by sequestering pro-apoptotic BCL-2 family members, an activity that frequently contributes to tumorigenesis. Thus, the development of small-molecule inhibitors for anti-apoptotic proteins, termed BH3-mimetics, is revolutionizing how we treat cancer. BH3 mimetics kill cells by displacing sequestered pro-apoptotic proteins to initiate tumor-cell death. Recent evidence has demonstrated that in live cells the BH3-only proteins PUMA and BIM resist displacement by BH3-mimetics, while others like tBID do not. Analysis of the molecular mechanism by which PUMA resists BH3-mimetic mediated displacement from full-length anti-apoptotic proteins (BCL-XL, BCL-2, BCL-W, and MCL-1) reveals that both the BH3-motif and a novel binding site within the carboxyl-terminal sequence (CTS) of PUMA contribute to binding. Together these sequences bind to anti-apoptotic proteins, which effectively 'double-bolt locks' the proteins to resist BH3-mimetic displacement. The pro-apoptotic protein BIM has also been shown to double-bolt lock to anti-apoptotic proteins however, the novel binding sequence in PUMA is unrelated to that in the CTS of BIM and functions independent of PUMA binding to membranes. Moreover, contrary to previous reports, we find that when exogenously expressed, the CTS of PUMA directs the protein primarily to the endoplasmic reticulum (ER) rather than mitochondria and that residues I175 and P180 within the CTS are required for both ER localization and BH3-mimetic resistance. Understanding how PUMA resists BH3-mimetic displacement will be useful in designing more efficacious small-molecule inhibitors of anti-apoptotic BCL-2 proteins.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Neoplasias , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2/genética , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína bcl-X/química
7.
Comput Math Methods Med ; 2022: 6018037, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799645

RESUMEN

Background: Propofol (PPF) has been shown in studies to cause cognitive impairment and neuronal cell death in developing animals. PPF has been demonstrated to decrease the expression of microRNA-17-5p (miR-17-5p) in a recent study. Nonetheless, the function of miR-17-5p in PPF-induced neurotoxicity and related mechanisms is uncharacterized. Methods: After the induction of neurotoxicity by treating the SH-SY5Y cells with PPF, qRT-PCR was conducted to evaluate the level of miR-17-5p. Using MTT and flow cytometry, cell viability and apoptosis rate were assessed, respectively. Interaction between miR-17-5p and BCL2 like 11 was (BCL2L11) studied using a Luciferase reporter assay. With the help of western blot analysis, we determined the level of proteins of apoptosis-related genes and autophagy-related markers. Results: In SH-SY5Y cells, PPF treatment induced neurotoxicity and downregulated miR-17-5p expression. In SH-SY5Y cells post-PPF exposure, overexpression of miR-17-5p increased cell viability and decreased apoptosis. Consistently, miR-17-5p mimics mitigated PPF-generated autophagy via inhibition of Atg5, Beclin1, and LC3II/I level and elevation of p62 protein expression. In addition, BCL2L11, which was highly expressed in PPF-treated SH-SY5Y cells, was directly targeted by miR-17-5p. Further, in PPF-treated SH-SY5Y cells, overexpressed BCL2L11 counteracted the suppressing behavior of miR-17-5p elevation on PPF-induced apoptosis. Conclusion: Overexpressed miR-17-5p alleviates PPF exposure-induced neurotoxicity and autophagy in SH-SY5Y cells via binding to BCL2L11, suggesting the possibility that miR-17-5p can serve as a candidate in the treatment of neurotoxicity (caused by PPF).


Asunto(s)
Anestesia , Proteína 11 Similar a Bcl2 , MicroARNs , Neuroblastoma , Propofol , Apoptosis/genética , Autofagia/genética , Proteína 11 Similar a Bcl2/genética , Línea Celular Tumoral , Humanos , MicroARNs/genética , Propofol/farmacología
8.
Bioengineered ; 13(5): 13728-13738, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35706417

RESUMEN

Deep vein thrombosis (DVT) is a vascular disease. The long non-coding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is positively expressed in DVT tissues, and regulates the biological behavior of endothelial progenitor cells. Here, we explored whether MALAT1 affected the physiology of human vascular endothelial cells (HUVECs) and analyzed its underlying mechanism. To overexpress/silence the expression of MALAT1 in HUVECs, MALAT1-plasmid/MALAT1-small interfering RNA (siRNA) was used. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and flow cytometry analyses were performed to observe the cell viability and apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to determine the apoptosis-related protein and gene expression levels. We used Starbase software to predict the associations among MALAT1, microRNA (miR)-383-5p, and BCL2-like 11 (BCL2L11). Luciferase reporter assay was used to validate their relationship. Compared to the control vector group, MALAT1-plasmid suppressed the viability and induced apoptosis of HUVECs, while improving Bcl-2-associated X protein (Bax) expression and decreasing Bcl-2 expression. There was an interaction between MALAT1 and miR-383-5p. Compared to the control siRNA group, MALAT1-siRNA increased the cell viability, reduced cell apoptosis, upregulated Bcl-2 expression, and suppressed Bax expression. These changes were reversed by the miR-383-5p inhibitor. Additionally, we verified that BCL2L11 is a target of miR-383-5p. miR-383-5p improved the cell proliferation, while decreasing cell apoptosis in HUVECs by targeting BCL2L11. Therefore, the lncRNA-MALAT1/miR-383-5p/BCL2L11 axis may be effective for DVT treatment.


Asunto(s)
Proteína 11 Similar a Bcl2 , MicroARNs , ARN Largo no Codificante , Trombosis de la Vena , Apoptosis/genética , Proteína 11 Similar a Bcl2/genética , Línea Celular Tumoral , Células Endoteliales/metabolismo , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Interferente Pequeño , Trombosis de la Vena/genética , Proteína X Asociada a bcl-2
9.
Asian Pac J Cancer Prev ; 23(2): 723-730, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35225486

RESUMEN

BACKGROUND: Colorectal cancer is one of the most commonly diagnosed cancers and leading causes of malignancy-related deaths all over the world. MicroRNAs (miRNAs) can regulate more than 60% of human genes, including tumor-stimulating, and -suppressor genes. Therefore, they can promote cancer development and affect risk of malignancy. miR-92a overexpression in CRC enhances tumor proliferation, invasion, and metastasis through downregulating different pro-apoptosis proteins including Bim. This study aimed to assess the role of plasma miR-92a as non-invasive marker in CRC patients, outline correlation between plasma miR-92a and serum Bim, and determine their correlations with clinicopathological parameters in CRC and adenoma patients. METHODS: A total of 54 newly diagnosed CRC patients, 15 colonic adenoma patients, and 15 age- and sex-matched control subjects were recruited in this study. Plasma miR-92a was assayed by TaqMan qRT-PCR and serum Bim was measured by ELISA. RESULTS: Statistically significant overexpression of serum miR-92a was observed in CRC patients as compared to adenoma and control groups (p<0.001 each) and lower serum Bim in CRC patients as compared to adenoma and control groups (p=0.001, p <0.001 respectively). The ROC curve analysis showed excellent AUC for plasma miR-92a in discriminating CRC from control (AUC=0.994), and adenoma (AUC=0.993) groups with highest diagnostic performance in discriminating CRC from controls (at cutoff 1.43, sensitivity 98.1%, specificity 93.9%), and adenoma patients (at cutoff 1.78, sensitivity 92.6%,  specificity 93.3%). The diagnostic performance in discriminating early from late CRC was good (at cutoff 15, AUC=0.641, sensitivity 61.2%, specificity 80%). A significant negative correlation was evident between plasma miR-92a and serum Bim both in adenoma and CRC groups (P<0.001 for both). Higher plasma miR-92a expression (r=0.275, p=0.044) and lower serum Bim (r=-0.299, p=0.028) were found to be correlated with late CRC stages. CONCLUSION: Circulating miR-92a and Bim could be promising, non-invasive diagnostic and prognostic biomarkers in CRC.
.


Asunto(s)
Adenoma/genética , Proteína 11 Similar a Bcl2/genética , Neoplasias Colorrectales/genética , MicroARNs/genética , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Curva ROC
10.
Chem Biol Interact ; 353: 109806, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34999051

RESUMEN

Hepatocellular carcinoma (HCC) is an extremely aggressive malignancy that ranks as the sixth-leading cause of cancer-associated death worldwide. Recently, various epigenetic mechanisms including gene methylation were reported to be potential next era HCC therapeutics and biomarkers. Although inhibition of epigenetic enzymes including histone lysine demethylase 4 (KDM4) enhanced cell death in HCC cells, the detailed mechanism of cell death machinery is poorly understood. In this study, we found that ML324, a small molecule KDM4-specific inhibitor, induced the death of HCC cells in a general cell culture system and 3D spheroid culture with increased cleavage of caspase-3. Mechanistically, we identified that unfolded protein responses (UPR) were involved in ML324-induced HCC cell death. Incubation of HCC cells with ML324 upregulated death receptor 5 (DR5) expression through the activation transcription factor 3 (ATF3)-C/EBP homologous protein (CHOP)-dependent pathway. Moreover, we identified BIM protein as a mediator of ML324-induced apoptosis using CRISPR/Cas9 knockout analysis. We showed that the loss of Bim suppressed ML324-induced apoptosis by flow cytometry analysis, colony formation assay, and caspase-3 activation assay. Interestingly, BIM protein expression by ML324 was regulated by ATF3, CHOP, and DR5 which are factors involved in UPR. Specifically, we confirmed the regulating roles of KDM4E in Bim and CHOP expression using a chromatin immune precipitation (ChIP) assay. Physical binding of KDM4E to Bim and CHOP promoters decreased the response to ML324. Our findings suggest that KDM4 inhibition is a potent anti-tumor therapeutic strategy for human HCC, and further studies of UPR-induced apoptosis and the associated epigenetic functional mechanisms may lead to the discovery of novel target for future cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Oxiquinolina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Antineoplásicos/química , Proteína 11 Similar a Bcl2/genética , Benzamidas/química , Benzamidas/farmacología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Neoplasias Hepáticas/patología , Oxiquinolina/química , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/antagonistas & inhibidores , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
11.
J Pineal Res ; 72(1): e12781, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826170

RESUMEN

Melatonin, secreted by the pineal gland, regulates the circadian rhythms and also plays an oncostatic role in cancer cells. Previously, we showed that melatonin induces the expression of Bim, a pro-apoptotic Bcl-2 protein, at both the transcriptional and post-translational levels. In the present study, we investigated the molecular mechanisms underlying the melatonin-mediated Bim upregulation through post-translational regulation. We found that ovarian tumor domain-containing protein 1 (OTUD1), a deubiquitinase belonging to the OTU protein family, is upregulated by melatonin at the mRNA and protein levels. OTUD1 knockdown inhibited melatonin-induced Bim upregulation and apoptosis in cancer cells. OTUD1 directly interacted with Bim and inhibited its ubiquitination. Melatonin-induced OTUD1 upregulation caused deubiquitination at the lysine 3 residue of Bim, resulting in its stabilization. In addition, melatonin-induced activation of Sp1 was found to be involved in OTUD1 upregulation at the transcriptional level, and pharmacological inhibition and genetic ablation of Sp1 (siRNA) interrupted melatonin-induced OTUD1-mediated Bim upregulation. Furthermore, melatonin reduced tumor growth and induced upregulation of OTUD1 and Bim in a mouse xenograft model. Notably, Bim expression levels correlated with OTUD1 levels in patients with renal clear cell carcinoma. Thus, our results demonstrated that melatonin induces apoptosis by stabilizing Bim via Sp1-mediated OTUD1 upregulation.


Asunto(s)
Melatonina , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2/genética , Línea Celular Tumoral , Humanos , Melatonina/farmacología , Ratones , Factor de Transcripción Sp1/genética , Activación Transcripcional , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Regulación hacia Arriba
12.
Biomed Res Int ; 2021: 3621828, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722761

RESUMEN

BACKGROUND: Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is inevitable in EGFR-mutant non-small-cell lung cancer (NSCLC) patients. A germline 2903 bp deletion polymorphism of Bcl-2-like protein 11 (BIM) causes reduced expression of proapoptotic BH3-only BIM protein and blocks TKI-induced apoptosis of tumor cells. Yet the association between the deletion polymorphism and response to EGFR-TKI treatment remains inconsistent among clinical observations. Thus, we performed the present meta-analysis. METHODS: Eligible studies were identified by searching PubMed, Embase, and ClinicalTrials.gov databases prior to March 31, 2021. Hazard ratios (HRs) and 95% confidence intervals (CIs) of progression-free survival (PFS) and overall survival (OS) and odds ratios (ORs) and 95% CIs of objective response rate (ORR) and disease control rate (DCR) were calculated by using a random effects model. Sensitivity, metaregression, and publication bias analyses were also performed. RESULTS: A total of 20 datasets (3003 EGFR-mutant NSCLC patients receiving EGFR-TKIs from 18 studies) were included. There were 475 (15.8%) patients having the 2903-bp intron deletion of BIM and 2528 (84.2%) wild-type patients. BIM deletion predicted significantly shorter PFS (HR = 1.35, 95% CI: 1.10-1.64, P = 0.003) and a tendency toward an unfavorable OS (HR = 1.22, 95% CI: 0.99-1.50, P = 0.068). Patients with deletion polymorphism had lower ORR (OR = 0.60, 95% CI: 0.42-0.85, P = 0.004) and DCR (OR = 0.59, 95% CI: 0.38-0.90, P = 0.014) compared with those without deletion. CONCLUSION: BIM deletion polymorphism may confer resistance to EGFR-TKIs and can be used as a biomarker to predict treatment response to EGFR-TKIs in EGFR-mutant NSCLC patients from Asian populations.


Asunto(s)
Proteína 11 Similar a Bcl2/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Supervivencia sin Enfermedad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/patología , Proteínas de la Membrana/genética , Mutación/efectos de los fármacos , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología
13.
Int J Oncol ; 59(5)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34558640

RESUMEN

Targeted therapy with epidermal growth factor receptor (EGFR)­tyrosine kinase inhibitors (TKIs) is a standard modality of the 1st­line treatments for patients with advanced EGFR­mutated non­small cell lung cancer (NSCLC), and substantially improves their prognosis. However, EGFR T790M mutation is the primary mechanism of 1st­ and 2nd­generation EGFR­TKI resistance. Osimertinib is a representative of the 3rd­generation EGFR­TKIs that target T790M mutation, and has satisfactory efficacy in the treatment of T790M­positive NSCLC with disease progression following use of 1st­ or 2nd­generation EGFR­TKIs. Other 3rd­generation EGFR­TKIs, such as abivertinib, rociletinib, nazartinib, olmutinib and alflutinib, are also at various stages of development. However, the occurrence of acquired resistance is inevitable, and the mechanisms of 3rd­generation EGFR­TKI resistance are complex and incompletely understood. Genomic studies in tissue and liquid biopsies of resistant patients reveal multiple candidate pathways. The present review summarizes the recent findings in mechanisms of resistance to 3rd­generation EGFR­TKIs in advanced NSCLC, and provides possible strategies to overcome this resistance. The mechanisms of acquired resistance mainly include an altered EGFR signaling pathway (EGFR tertiary mutations and amplification), activation of aberrant bypassing pathways (hepatocyte growth factor receptor amplification, human epidermal growth factor receptor 2 amplification and aberrant insulin­like growth factor 1 receptor activation), downstream pathway activation (RAS/RAF/MEK/ERK and PI3K/AKT/mTOR) and histological/phenotypic transformations (SCLC transformation and epithelial­mesenchymal transition). The combination of targeted therapies is a promising strategy to treat osimertinib­resistant patients, and multiple clinical studies on novel combined therapies are ongoing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteína 11 Similar a Bcl2/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/fisiología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
14.
Invest Ophthalmol Vis Sci ; 62(12): 16, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34533562

RESUMEN

Purpose: Over 90% of uveal melanomas harbor pathogenic variants of the GNAQ or GNA11 genes that activate survival pathways. As previous studies found that Ras-mutated cell lines were vulnerable to a combination of survival pathway inhibitors and the histone-deacetylase inhibitor romidepsin, we investigated whether this combination would be effective in models of uveal melanoma. Methods: A small-scale screen of inhibitors of bromodomain-containing protein 4 (BRD4; OTX-015), extracellular signal-related kinase (ERK; ulixertinib), mechanistic target of rapamycin (mTOR; AZD-8055), or phosphoinositide 3-kinase (PI3K; GDC-0941) combined with a clinically relevant administration of romidepsin was performed on a panel of uveal melanoma cell lines (92.1, Mel202, MP38, and MP41) and apoptosis was quantified by flow cytometry after 48 hours. RNA sequencing analysis was performed on Mel202 cells treated with romidepsin alone, AZD-8055 alone, or the combination, and protein changes were validated by immunoblot. Results: AZD-8055 with romidepsin was the most effective combination in inducing apoptosis in the cell lines. Increased caspase-3 and PARP cleavage were noted in the cell lines when they were treated with romidepsin and mTOR inhibitors. RNA sequencing analysis of Mel202 cells revealed that apoptosis was the most affected pathway in the romidepsin/AZD-8055-treated cells. Increases in pro-apoptotic BCL2L11 and decreases in anti-apoptotic BIRC5 and BCL2L1 transcripts noted in the sequencing analysis were confirmed at the protein level in Mel202 cells. Conclusions: Our data suggest that romidepsin in combination with mTOR inhibition could be an effective treatment strategy against uveal melanoma due in part to changes in apoptotic proteins.


Asunto(s)
Apoptosis/efectos de los fármacos , Depsipéptidos/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Melanoma/tratamiento farmacológico , Morfolinas/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Neoplasias de la Úvea/tratamiento farmacológico , Proteína 11 Similar a Bcl2/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Combinación de Medicamentos , Citometría de Flujo , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Immunoblotting , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Análisis de Secuencia de ARN , Survivin/genética , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Proteína bcl-X/genética
15.
Cancer Res ; 81(21): 5451-5463, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34462275

RESUMEN

Ionizing radiation (IR) and chemotherapy are mainstays of treatment for patients with rhabdomyosarcoma, yet the molecular mechanisms that underlie the success or failure of radiotherapy remain unclear. The transcriptional repressor SNAI2 was previously identified as a key regulator of IR sensitivity in normal and malignant stem cells through its repression of the proapoptotic BH3-only gene PUMA/BBC3. Here, we demonstrate a clear correlation between SNAI2 expression levels and radiosensitivity across multiple rhabdomyosarcoma cell lines. Modulating SNAI2 levels in rhabdomyosarcoma cells through its overexpression or knockdown altered radiosensitivity in vitro and in vivo. SNAI2 expression reliably promoted overall cell growth and inhibited mitochondrial apoptosis following exposure to IR, with either variable or minimal effects on differentiation and senescence, respectively. Importantly, SNAI2 knockdown increased expression of the proapoptotic BH3-only gene BIM, and chromatin immunoprecipitation sequencing experiments established that SNAI2 is a direct repressor of BIM/BCL2L11. Because the p53 pathway is nonfunctional in the rhabdomyosarcoma cells used in this study, we have identified a new, p53-independent SNAI2/BIM signaling axis that could potentially predict clinical responses to IR treatment and be exploited to improve rhabdomyosarcoma therapy. SIGNIFICANCE: SNAI2 is identified as a major regulator of radiation-induced apoptosis in rhabdomyosarcoma through previously unknown mechanisms independent of p53.


Asunto(s)
Proteína 11 Similar a Bcl2/antagonistas & inhibidores , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Radiación Ionizante , Rabdomiosarcoma/prevención & control , Factores de Transcripción de la Familia Snail/metabolismo , Animales , Apoptosis , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Ratones , Ratones SCID , RNA-Seq , Rabdomiosarcoma/etiología , Rabdomiosarcoma/patología , Factores de Transcripción de la Familia Snail/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cell Death Dis ; 12(7): 692, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34247195

RESUMEN

Chagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/-, Bim-/- mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim-/- mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/- mice. At the peak of parasitemia, peritoneal macrophages of Bim-/- mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim-/- splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim-/- mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim-/- mice and place Bim as an important protein in the control of T. cruzi infections.


Asunto(s)
Proteína 11 Similar a Bcl2/deficiencia , Enfermedad de Chagas/parasitología , Trypanosoma cruzi/patogenicidad , Animales , Proteína 11 Similar a Bcl2/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/parasitología , Células Cultivadas , Enfermedad de Chagas/genética , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/metabolismo , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Parásitos , Interferón gamma/metabolismo , Interleucina-6/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/parasitología , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Carga de Parásitos , Bazo/inmunología , Bazo/metabolismo , Bazo/parasitología , Factores de Tiempo , Trypanosoma cruzi/inmunología
17.
Nanomedicine ; 37: 102450, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34332115

RESUMEN

Epigenetic inhibitors have shown anticancer effects. Combination chemotherapy with epigenetic inhibitors has shown high effectiveness in gastric cancer clinical trials, but severe side effect and local progression are the causes of treatment failure. Therefore, we sought to develop an acidity-sensitive drug delivery system to release drugs locally to diminish unfavorable outcome of gastric cancer. In this study, we showed that, as compared with single agents, combination treatment with the demethylating agent 5'-aza-2'-deoxycytidine and HDAC inhibitors Trichostatin A or LBH589 decreased cell survival, blocked cell cycle by reducing number of S-phase cells and expression of cyclins, increased cell apoptosis by inducing expression of Bim and cleaved Caspase 3, and reexpressed tumor suppressor genes more effectively in MGCC3I cells. As a carrier, reconstituted apolipoprotein B lipoparticles (rABLs) could release drugs in acidic environments. Orally administrated embedded drugs not only showed inhibitory effects on gastric tumor growth in a syngeneic orthotopic mouse model, but also reduced the hepatic and renal toxicity. In conclusion, we have established rABL-based nanoparticles embedded epigenetic inhibitors for local treatment of gastric cancer, which have good therapeutic effects but do not cause severe side effects.


Asunto(s)
Apolipoproteínas B/farmacología , Sistemas de Liberación de Medicamentos , Epigénesis Genética/efectos de los fármacos , Liposomas/farmacología , Neoplasias Gástricas/terapia , Ácidos/metabolismo , Animales , Apolipoproteínas B/química , Apolipoproteínas B/genética , Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Decitabina/farmacología , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Liposomas/química , Ratones , Nanopartículas/química , Panobinostat/farmacología , Fase S/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
18.
Cell Death Dis ; 12(7): 655, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183647

RESUMEN

Mutations in the U2 small nuclear RNA auxiliary factor 1 (U2AF1) gene are the common feature of a major subset in myelodysplastic syndromes (MDS). However, the genetic landscape and molecular pathogenesis of oncogenic U2AF1S34F mutation in MDS are not totally understood. We performed comprehensive analysis for prognostic significance of U2AF1 mutations in acute myeloid leukemia (AML) cohort based on The Cancer Genome Atlas (TCGA) database. Functional analysis of U2AF1S34F mutation was performed in vitro. Differentially expressed genes (DEGs) and significantly enriched pathways were identified by RNA sequencing. The forkhead box protein O3a (FOXO3a) was investigated to mediate the function of U2AF1S34F mutation in cell models using lentivirus. Chromatin immunoprecipitation, immunoblotting analyses, and immunofluorescence assays were also conducted. U2AF1 mutations were associated with poor prognosis in MDS and AML samples, which significantly inhibited cell proliferation and induced cellular apoptosis in cell models. Our data identified that U2AF1-mutant cell lines undergo FOXO3a-dependent apoptosis and NLRP3 inflammasome activation, which induces pyroptotic cell death. Particularly, an increase in the level of FOXO3a promoted the progression of MDS in association with restored autophagy program leading to NLRP3 inflammasome activation in response to U2AF1S34F mutation. Based on the result that U2AF1S34F mutation promoted the transcriptional activity of Bim through upregulating FOXO3a with transactivation of cell cycle regulators p21Cip1 and p27Kip1, FOXO3a, a potentially cancer-associated transcription factor, was identified as the key molecule on which these pathways converge. Overall, our studies provide new insights that U2AF1S34F mutation functions the crucial roles in mediating MDS disease progression via FOXO3a activation, and demonstrate novel targets of U2AF1 mutations to the pathogenesis of MDS.


Asunto(s)
Autofagia , Proteína Forkhead Box O3/metabolismo , Leucemia Mieloide Aguda/metabolismo , Mutación , Síndromes Mielodisplásicos/metabolismo , Factor de Empalme U2AF/genética , Apoptosis , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Línea Celular Tumoral , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Forkhead Box O3/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación Leucémica de la Expresión Génica , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal
19.
Biochem Pharmacol ; 190: 114660, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34153292

RESUMEN

The chaperone heat shock protein 70 (Hsp70) is crucial for avoiding protein misfolding under stress, but it is also upregulated in many kinds of cancers, where its ability to buffer cellular stress prevents apoptosis. Previous research has suggested that Bim, a BH3-only member of the Bcl-2 family proteins, also serves as a cochaperone for Hsp70, which modulates the folding and stabilization of many Hsp70 oncogenic substrates in tumor cells. However, a definitive demonstration of crosstalk between Bcl-2 and Hsp70 family proteins and molecular mechanism remain unclear. Herein, we examined the effects of pan-Bcl-2 inhibitor S1, Hsp70 inhibitor S1g-6 on the K562, U937, H23, HL-60 cell lines and these inhibitors synergistically induce mitochondrial apoptosis in cancer cell lines. Moreover, we identified that Bim transfer between Bcl-2-like protein and Hsp70 underlines Bcl-2/Hsp70 crosstalk in mitochondrial apoptosis pathway. Thus, the synergy of S1 and S1g-6 to induce a panel of cancer cell lines apoptosis by inhibiting free Bim and facilitating oncogenic client AKT folding and activation. Together, our results demonstrated the combination of Bcl-2 inhibitor and Hsp70 inhibitor showed synergistic effect in cancer cells and the potential to decrease tumor regression.


Asunto(s)
Apoptosis/fisiología , Proteína 11 Similar a Bcl2/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antineoplásicos/farmacología , Proteína 11 Similar a Bcl2/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sulfonamidas/farmacología
20.
Biosci Rep ; 41(6)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33942856

RESUMEN

Radiation-induced hair cell injury is detrimental for human health but the underlying mechanism is not clear. MicroRNAs (miRNAs) have critical roles in various types of cellular biological processes. The present study investigated the role of miR-222 in the regulation of ionizing radiation (IR)-induced cell injury in auditory cells and its underlying mechanism. Real-time PCR was performed to identify the expression profile of miR-222 in the cochlea hair cell line HEI-OC1 after IR exposure. miRNA mimics or inhibitor-mediated up- or down-regulation of indicated miRNA was applied to characterize the biological effects of miR-222 using MTT, apoptosis and DNA damage assay. Bioinformatics analyses and luciferase reporter assays were applied to identify an miRNA target gene. Our study confirmed that IR treatment significantly suppressed miR-222 levels in a dose-dependent manner. Up-regulation of miR-222 enhances cell viability and alleviated IR-induced apoptosis and DNA damage in HEI-OC1 cells. In addition, BCL-2-like protein 11 (BCL2L11) was validated as a direct target of miR-222. Overexpression of BCL2L11 abolished the protective effects of miR-222 in IR-treated HEI-OC1 cells. Moreover, miR-222 alleviated IR-induced apoptosis and DNA damage by directly targeting BCL2L11. The present study demonstrates that miR-222 exhibits protective effects against irradiation-induced cell injury by directly targeting BCL2L11 in cochlear cells.


Asunto(s)
Apoptosis/efectos de la radiación , Proteína 11 Similar a Bcl2/metabolismo , Células Ciliadas Auditivas/efectos de la radiación , MicroARNs/metabolismo , Traumatismos por Radiación/metabolismo , Animales , Proteína 11 Similar a Bcl2/genética , Línea Celular , Proliferación Celular/efectos de la radiación , Regulación de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Ratones , MicroARNs/genética , Ototoxicidad , Traumatismos por Radiación/genética , Traumatismos por Radiación/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA